

Quantum optics with atoms in waveguides

Alejandro González-Tudela Vanessa Paulisch Tao Shi Yinghai Wu Jeff Kimble (Caltech) Darrick Chang (ICFO)

Workshop in Honour of Peter Zoller Quantum simulations with cold matter and photons UL Brussels, February 7th, 2016

EMITTERS & NANO-STRUCTURES

- Emiters (atoms, quantum dots,...)
- Structured materials
- Large couplings atom-light

- Theoretical framework
 - Markovian
 - Exact

Caneva, Manzoni, Shi, Douglas, JIC, Chang, New J. Phys. **17**, 113001 (2015) Shi, Chang, JIC, Phys. Rev. A **92**, 053834 (2015)

Bound states

Shi, Wu, González-Tudela, JIC, arxiv: 1512.07238

Multi-photon states

González-Tudela, Paulisch, Chang, Kimble, JIC, Phys. Rev. Lett. **115**, 163603 (2015) González-Tudela, Paulisch, Kimble, JIC, arxiv: 1602.????

1. THEORETICAL FRAMEWORK EMITTERS IN A WAVEGUIDE

Caneva, Manzoni, Shi, Douglas, JIC, Chang, New J. Phys. 17, 113001 (2015) Shi, Chang, JIC, Phys. Rev. A 92, 053834 (2015)

Caneva + Manzoni Douglas

a variety of phenomena

DESCRIPTION:

- Scattering matrix: entanglement, transmission, losses ...
- Atomic dynamics: polaritons, bound states, many-body behavior ...
- Photon dynamics: Multiphoton states, single/multi-mode, ...
- Propagation effects: retardation, dispersion,...

ATOMS NEAR 1D WAVEGUIDES THEORETICAL FRAMEWORK

ATOMS NEAR 1D WAVEGUIDES THEORETICAL FRAMEWORK

• Input-output:

- Markovian limit.
- Atomic dynamics.

• Path integral:

- Exact.
- Atomic dynamics.

(cavity QED: Gardiner, 1980's)

CONDITIONS:

- Linear dispersion relation: $H_{\text{waveguide}}$
- Flat coupling constant: $H_{\text{interaction}}$
- No atomic retardation effects

METHOD:

- Solve a master equation for the atoms
- Initial state of the waveguide => several driving fields
- Compute Fourier Transforms
- Analytical formulas for scattering

$$S_{p_1,\dots,p_n \leftarrow k_1,\dots,k_n} = FT\left(\langle \varphi_{\text{atoms}} | T \left[o(t_1) \dots o^{\dagger}(t_1') \dots \right] | \varphi_{\text{atoms}} \rangle \right)$$
$$(t) = e^{iH_{eff}t} o e^{-iH_{eff}^{\dagger}t}$$

MPQ

EXAMPLE 1: single polariton propagation in EIT configuration (check)

Polariton is absorbed if the pulse length is smaller than that of the transparency window

EXAMPLE 2: multi-photon propagation atom-atom interactions: C = 0, 0.2

Interactions change the propagation and produce bunching/antibunching

OTHER EXAMPLES:

- Entanglement generation
- Rydberg, dipole-dipole interactions
- Excitation probabilities
- Emission and absorption

ATOMS NEAR 1D WAVEGUIDES PATH INTEGRAL

EXACT FORMALISM:

- Arbitrary dispersion relation: $H_{waveguide}$
- Arbitrary coupling constant: $H_{\text{interaction}}$
- Retardation effects

METHOD:

- Express amplitude as a path integral
- Integrate out the waveguide modes
- New action with time-delayed kernels
- Fourier transform the action

$$\langle \Psi_{out} | e^{-iHt} | \Psi_{in} \rangle = \int D[\beta_i] e^{-iS_{at}[\beta_i]} \int D[\alpha_j] e^{-iS_f[\alpha_j] - iS_{int}[\alpha_j, \beta_i]}$$

$$= \int D[\beta_i] e^{-iS_{eff}[\beta_i]}$$
Fourier Transform

ATOMS NEAR 1D WAVEGUIDES PATH INTEGRAL

EXAMPLE 1: propagation of a single photon with two atoms

Initial state: $ gg\rangle 1_k\rangle$
N = 2
$\Gamma_{1d} = 1$ $kd = 2\pi n$
$\Gamma_{out} = 0$

ATOMS NEAR 1D WAVEGUIDES PATH INTEGRAL

EXAMPLE 2: excitation probability second emitter

Initial state:	$ gg angle 1_{k} angle$
N = 2	
$\Gamma_{1d} = 1$	$kd = 2\pi n$
$\Gamma_{out} = 0$	

2. MULTIPHOTON BOUND STATES

Shi, Wu, González-Tudela, JIC, arxiv: 1512.07238

$$|\Psi_{1}\rangle = c_{e} |e\rangle |0\rangle + c_{g} |g\rangle |1\rangle$$

- Interpretation: band-gap, energy conservation
- Consequences: cavity QED, dipole-dipole interactions, …

Doublas, Habibian, Hung, Gorshkov, Kimble, Chang, Nature Photonics 9, 326 (2015)

• Alternative experimental realization: atoms in optical lattices

Vega, Porras, JIC, Phys. Rev. Lett. **101**, 260404 (2008), Navarrete, Vega, Porras, JIC, New J. Phys.**13**, 023024 (2011)

$$B_{N}\rangle = c_{e} |e\rangle |\Psi_{N-1}^{e}\rangle + c_{g} |g\rangle |\Psi_{N}^{g}\rangle$$

- Interpretation: Atom creates a pontential, where photons condense
- Description:
 - Analytical approach (up to three excitations)
 - Phenomenolagical Ansatz (any dimension)
 - DMRG
 - Non perturbative regimes
- Alternative experimental realization: atoms in optical lattices

Hamiltonian

$$H = \Delta |e\rangle \langle e| + \sum_{k} \varepsilon_{k} a_{k}^{\dagger} a_{k} + \sum_{k} g_{k} (a_{k}^{\dagger} |g\rangle \langle e| + h.c.)$$

We look for proper eigenstates in the thermodynamic limit

$$|B_{N}\rangle = c_{e} |e\rangle |\Psi_{N-1}^{e}\rangle + c_{g} |g\rangle |\Psi_{N}^{g}\rangle$$

PARAMETER REGIMES:

structure

band structure

• Jaynes-Cummings regime: $\Omega \rightarrow \infty$

 $|B_N\rangle \prec c_e |e\rangle |N-1\rangle + c_e |g\rangle |N\rangle$

• Perturbative regime: $|\Delta| \rightarrow \infty$

Adiabatic elimination: the atoms create a potential where photons condense

All regimes in 1D: solution up to three excitations

SIMPLE DESCRIPTION:

atomic structure

Variational wavefunction:

$$|\Psi_{N-1}^{e}\rangle \prec A^{\dagger(N-1)} |0\rangle$$
$$|\Psi_{N-1}^{g}\rangle \prec A^{\dagger(N-1)} (A^{\dagger} + \alpha B^{\dagger}) |0\rangle$$

• Genralized GP equation:
$$\mathcal{H}_0 \begin{pmatrix} \varphi_A(\mathbf{k}) \\ \varphi_B(\mathbf{k}) \end{pmatrix} + \frac{\Omega \eta_{\mathbf{k}}}{\sqrt{V}} \alpha \begin{pmatrix} \sqrt{N}\beta \\ \gamma \end{pmatrix} = \mu \begin{pmatrix} \varphi_A(\mathbf{k}) \\ \varphi_B(\mathbf{k}) \end{pmatrix}$$

Exactly solved (in terms of three parameters) in any dimension and dispersion relation

NUMERICAL CERTIFICATION:

NUMERICAL CERTIFICATION:

IMPURITY IN A 1D WAVEGUIDE IMPLEMENTATION

ATOMS IN OPTICAL LATTICES:

Hamiltonian: $H = \Delta |1\rangle_b \langle 1| + \sum_k \varepsilon_k a_k^{\dagger} a_k + \sum_k g_k (a_k^{\dagger} |0\rangle_b \langle 1| + h.c.)$

- Creation by adiabatic evolution
- Study consquences in scattering, etc
- Multi-impurities: Effective Hamiltonians

3. MULTI-PHOTON SOURCES

A. Gonzalez-Tudela, V. Paulisch, D. Chang, H. J. Kimble, JIC, PRL 115, 163603 (2015) A. Gonzalez-Tudela, V. Paulisch, H. J. Kimble, JIC, arxiv:1602.???

Alex Vanesa Gonz.-T. Paulisch

Vanesa Darrick Paulisch Chang Jeff Kimble

MULTI-PHOTON STATES

MULTI-PHOTON STATES

MULTI-PHOTON STATES ATOMS IN 1D WAVEGUIDES

structure

band structure

• Large Purcell effects:
$$P_{1d} = \frac{\Gamma_{1d}}{\Gamma_{out}} >> 1$$

• Infidelity:
$$I = \frac{m}{P_{1d}}$$

Complex multi-mode structure

IDEA: use collective effects + heralding

MULTI-PHOTON STATES ATOMS IN 1D WAVEGUIDES

k

• Large collective effects: $\Gamma_{eff} = N\Gamma_{1d}$

- They can be used to:
 - map atomic to photonic states *single mode* states

D. Porras, JIC, Phys. Rev. A 78, 053816 (2008)

MULTI-PHOTON STATES

1. LOADING

 $|e\rangle$

2. TRIGGERING

3. EMISSION

How to generate the atomic (entangled states)?

MULTI-PHOTON STATES SIMPLE SCHEME

SCHEME 1:

Extension of Duan, Lukin, JIC, Zoller, Nature 414, 413 (2001)

 $\begin{array}{c} |e\rangle \\ atomic \\ structure \\ |s\rangle \\ \hline \\ |g\rangle \end{array}$

• Infidelity: $I_1 \approx \varepsilon^2$

• Success probability:
$$p_1 \approx \frac{1}{\varepsilon^2} \implies p_m \approx \left(\frac{1}{\varepsilon^2}\right)^m$$

Two-photon excitations produce errors.

Zero-photon excitation gives low probability.

MULTI-PHOTON STATES SCHEME with SOURCE AND DETECTOR

SCHEME 2:

atomic structure

- High detection efficiency: Detect atoms, not photons
- If the detector clicks, the process had no error

$$I_1 = 0$$

$$p_1 \approx 1 - \frac{1}{P_{1d}} \implies p_m \approx \left(1 - \frac{1}{P_{1d}}\right)^m$$

Purcel factor limits the number of photons

Can we get a polynomical scaling in m?

MULTI-PHOTON STATES SCHEME with ADDITIONAL LEVELS

SCHEME 3:

atomic structure

- Internal levels to store the excitations
- Atomic measurements (only) to merge excitations

$$I_m \approx \frac{\text{poly}(m)}{NP_{1d}}$$

 $p_m \approx \frac{1}{\text{poly}(m)}$

MULTI-PHOTON STATES SUMMARY

MULTIPHOTON GENERATION BY COLLECTIVE EFFECTS

	Collective Zeno	Heralded source +dectector	Heralded merging
Infidelity:	$I_m \approx m^2 / \sqrt{P_{1d}}$	$I_m = 1$	$I_m \approx m^2 / NP_{1d}$
Probability:	$p_m = 1$	$p_m \prec 1/\exp(m)$	$p_m \prec 1/\operatorname{poly}(m)$

 P_{1d} :Purcel factor N :Number of atoms m : Number of photons

4. OTHER PROBLEMS

OTHER PROBLEMS SURFACE ACOUSTIC WAVES

M. Schütz, E. Kessler, G. Giedke, L. Vandersypen, M. Lukin, JIC, PRX 5, 031031 (2015)

Geza Lieven Giedke Vanders. Mikhai Lukin

QUANTUM OPTICS IN WAVEGUIDES SUMMARY & OUTLOOK

MPQ

- Challenging experiments
- New regimes:
 - Large Purcel effects
 - Collective phenomena
 - Bound states
- Connection to cold atoms
- Quantum simulations
 - Multi-impurities

