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Is it possible to outperform classical computers in the next 10 years?

In this talk, I will share my views on how to positively answer to the key question:

Evidently, any such proposal can only involve: 
i) few tens of qubits, cavities, motional modes, open transmission lines 
ii) novel paradigms for quantum computing and quantum simulation

Bilbao Quantum Machine 
BQM

Most of my examples will be in circuit QED (cQED) and superconducting circuits (SC)
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Superconducting circuits

Quantum field theory models 
L. García-Álvarez et al., PRL 2015

Digital-analog 
quantum simulation

Complexity 
simulating 

  complexity

Quantum Field Theory models  
Casanova et al., PRL 2011
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and in the time- and space-dependent phases that are
associated to energy and momentum conservation.

The bosonic field will, in addition, be written as
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This Hamiltonian contains the self-interacting dynam-
ics given by |f, f̄ , ni $ |f, f̄ , n ± 1i (|f, f̄ , ni denotes
the state with one fermion, one antifermion, and n
bosons), mediated by b†

inbina
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, dind†
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k0 and
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. It also includes pair creation and annihilation

processes given by |f, f̄ , ni $ |0, 0, n ± 1i, mediated by
dinbina†
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and b†

ind†
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k0 in the quasi-resonant case, as well

as dinbina
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ind†
ina†
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in the far o↵-resonant case.

The last kind of transitions, as well as self-interactions,
are o↵-resonant and would be neglected in the weak cou-
pling regime, but would be allowed in our formalism for
USC/DSC regimes [18]. In our proposed setup, all per-
turbative series terms are included, as shown in Fig. 1.

For practical purposes, we consider |k0| ⌧ !0, i.e.,
a slow massive boson. We may then approximate
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and T is the total time of the process, being �
t

the tem-
poral interval of the interaction region. Thus, the self-
interactions are always on, while the pair creation and
annihilation take place only when the fermion and an-
tifermion wavepackets overlap, as they should. Accord-
ingly, the Hamiltonian we aim to simulate is
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We propose to implement this Hamiltonian dynamics in
a system of two trapped ions, see Fig. 2a. The bosonic
mode will be encoded in the center-of-mass (COM) vi-
bronic mode of the two-ion system. We envision to

FIG. 2. (a) Setup for the trapped-ion simulation. (b)
|hf, 0, 0| (t)1i|2 as a function of t in units of !0 (red/upper
curves), where | (t)1i is the evolved state from | (0)1i =
|f, 0, 0i, and average number of virtual bosons (blue/lower

curves), ha†
0a0i, for g1 = 0.15!0, 0.1!0, 0.05!0, 0.01!0, g2 = 0.

The largest amplitudes correspond to the largest couplings.
(c) |hf, f̄ , 0| (t)2i|2 as a function of t in units of !0 (red/upper
left curve), where | (t)2i is the evolved state from | (0)2i =
|f, f̄ , 0i, and average number of virtual bosons (blue/lower

left curve), ha†
0a0i, for g1 = 0.01!0, g2 = 0.21!0, �t = 3/!0,

T = 30/!0, � = 0. (d) The same as (c) for g1 = 0.1!0,
g2 = !0, �t = 4/!0, T = 30/!0, � = 0.

map the 4-dimensional Hilbert space associated to the
fermionic/antifermionic operators onto 4 internal levels
of the first ion. For this, we consider a Jordan-Wigner
mapping, b†

in = I ⌦ �+, bin = I ⌦ ��, d†
in = �+ ⌦ �

z

,
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z

, and encode it in four internal levels of
the first ion, |1i, |2i, |3i, |4i, e.g., b†

in = |4ih3| + |2ih1|,
d†
in = |4ih2| � |3ih1|, the vacuum state is state |1i, and

|fi = |2i, |f̄i = �|3i, |f, f̄i = �|4i. Accordingly, Hamil-
tonian (13) results in
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Here, the first line corresponds to a detuned red sideband
interaction between |4i and |1i with time-dependent
Rabi frequency g(t) = g2 exp[�(t � T/2)2/2�2

t

]. The
second line is a detuned blue sideband interaction, be-
tween the same levels and with the same Rabi frequency.
The third line can be developed applying detuned red
and blue sideband interactions to |3i and |2i to pro-
duce (|3ih2|� |2ih3|)[a0 exp(�i!0t)+a†

0 exp(i!0t)]/i, and
a rotation of |3i and |2i with a classical field to pro-

Trapped ions

Trapped ions require 
discretized field modes

cQED naturally enjoys a 
continuum of bosonic modes
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Jaynes-Cummings (JC) model in circuit QED: a field mode represents the field mode, 
the two-level atom is replaced by a superconducting qubit, also called artificial atom.

 
HJC =

ω0

2
σ z + ω a†a + g σ +a +σ −a†( )

Circuit QED (cQED) and Superconducting Circuits (SC)

It is an unacknowledged quantum simulation of the JC model in circuit QED.

Yale group 

A. Wallraff et al., Nature 2004

just by increasing l. However, in a realistic quantum
simulator, there will be a limit to the number of local
e−iHkt=l gates feasible to apply, due to accumulated gate
errors. Accordingly, one has to optimize the number of
steps l to get the best possible result.
Heisenberg interaction.—Digital methods can be used to

simulate the Heisenberg spin model with available resour-
ces in superconducting circuits. We consider a setup made
of several transmon qubits coupled to a single coplanar
microwave resonator [27],

HT ¼ ωra†aþ
XN

i¼1

½4EC;iðni − ng;iÞ2 − EJ;i cosϕi

þ 2βieVrmsniðaþ a†Þ&: (2)

Here, ni, ng;i, and ϕi stand, respectively, for the quantized
charge on the superconducting island, the offset charge and
the quantized flux of the ith transmon qubit. The operators
aða†Þ act on the resonator field, whose first mode has
frequency ωr. EC;i is the charging energy of the super-
conducting island, while EJ;i ¼ Emax

J;i j cosðπΦi=Φ0Þj is the
Josephson energy of the dc-SQUID loop embedded in the
ith qubit. The latter can be tuned from small values up to
Emax
J;i by changing the ratio between the external magnetic

flux Φi, that threads the loop, and the elementary flux
quantum Φ0. Here, βi are renormalization coefficients of
the couplings due to circuit capacitances, Vrms is the root
mean square voltage of the resonator, and e is the electron
charge. Typical transmon regimes consider ratios of
Josephson to charging energy EJ=EC ≳ 20.
Notice that cavity and circuit QED platforms do not

feature the Heisenberg interaction from first principles.
Nevertheless, one can consider a digital simulation of
the model. We show that the coupled transmon-resonator
system, governed by the Hamiltonian in Eq. (2), can
simulate Heisenberg interactions of N qubits, which in
the case of homogeneous couplings reads

HH ¼
XN−1

i¼1

Jðσxi σxiþ1 þ σyi σ
y
iþ1 þ σziσ

z
iþ1Þ: (3)

Here the Pauli matrices σji , j ∈ fx; y; zg refer to the
subspace spanned by the first two levels of the ith transmon
qubit. We begin by considering the simplest case, in
which two qubits are involved. The XY exchange inter-
action can be directly reproduced by dispersively coupl-
ing two transmon qubits to the same resonator [28–30],
Hxy

12 ¼ Jðσþ1 σ−2 þ σ−1 σ
þ
2 Þ ¼ J=2ðσx1σx2 þ σy1σ

y
2Þ. The XY

exchange interaction can be transformed via local rota-
tions of the single qubits to get the effective Hamiltonians
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12 ðπ=4Þ ¼ exp½−iπ=4ðσxðyÞ1 þ σxðyÞ2 Þ& represents a local

rotation of the first and second transmon qubits along
the xðyÞ axis. The XYZ exchange Hamiltonian Hxyz

12 can
therefore be implemented according to the protocol shown
in Fig. 1(a) with the following steps. Step 1.— The qubits
interact for a time t according to the XY Hamiltonian Hxy

12.
Step 2.— Application of single qubit rotations Rx

12ðπ=4Þ to
both qubits. Step 3.— The qubits interact for a time t with
the Hxy

12 Hamiltonian. Step 4.— Application of single qubit
rotation Rx†

12ðπ=4Þ to both qubits. Step 5.— Application of
single qubit rotation Ry

12ðπ=4Þ to both qubits. Step 6.— The
qubits interact for a time t according to the Hxy

12

Hamiltonian. Step 7.— Application of single qubit rotation
Ry†
12ðπ=4Þ to both qubits. Consequently, the total unitary

evolution reads

UH
12ðtÞ ¼ e−iH

xy
12
te−iH

xz
12
te−iH

yz
12
t ¼ e−iH

H
12t: (4)

This evolution operator simulates the dynamics of Eq. (3)
for two qubits. Arbitrary inhomogeneities of the couplings
can be achieved by implementing different simulated
phases for different digital steps. Notice that, in this case,
just one Trotter step is needed to achieve a simulation
without digital errors, due to the commutativity of Hxy

12,
Hxz

12, andH
yz
12. Thus, from a practical point of view, the only

source of errors will come from accumulated gate errors.
One can assume two-qubit gates with an error of about 5%
and eight π=4 single qubit rotations with errors of 1%.
This will give a total fidelity of the protocol around 77%.
Moreover, the total execution time for a π=4 simulated
XYZ phase will be of about 0.10 μs. Throughout the Letter,
we compute the execution times by summing the corre-
sponding times of all the employed gates, where we
consider typical circuit QED values.

(a)

(b)

(c)

FIG. 1. Protocols for digital quantum simulations with trans-
mon qubits. (a) Heisenberg model of two qubits. (b) Heisenberg
model of three qubits. (c) Frustrated Ising model of three qubits.
Here, RxðyÞ ≡ RxðyÞðπ=4Þ and R̄x ≡ Rxðπ=2Þ. Note that exchang-
ing each R matrix with its adjoint does not affect the protocols.

PRL 112, 200501 (2014) P HY S I CA L R EV I EW LE T T ER S
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 cQED has advantages in atomic control that overcomes those of microwave CQED, 
and, at the same time, it enjoys longitudinal and transversal driving as in optical CQED.
MANTRA: the same model in another quantum platform always brings novel physics: 
strongly dispersive regime, USC & DSC of light-matter in cavities and open TLs, etc.

Two motivations for quantum simulations 

I) Quantum simulation establishes analogies between unconnected fields, 
it is a communication vessel producing a flood of knowledge in both directions.

II) Quantum simulations will allow us to predict and explain novel physics 
when we will be able to implement scalable quantum simulators. 

For instance, solving complex problems in condensed matter, quantum chemistry, 
quantum field theory, machine learning, and artificial intelligence.

+ +

+ +

…

…

a b



Which was the first quantum simulation experiment?

 
Hr = η Ωr σ +aeiφ r +σ −a†e− iφ r( )

Red sideband excitation of the ion = JC interaction

 
Hb = η Ωb σ +a†eiφ b +σ −ae−iφ b( )

Blue sideband excitation of the ion = anti-JC interaction

We could consider the implementation of the JC model in trapped ions 
as (one of) the first nontrivial quantum simulations.

 
H0 = ν(a

†a + 1
2
)

The quantized electromagnetic field is replaced by quantized ion motion

This allowed Cirac & Zoller to propose in 1995 the first 
implementable two-qubit gate for universal QC in trapped ions!

MANTRA: the same model in another quantum platform always brings novel physics, 
… if you are creative enough.
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Digital quantum machines 

There are two classes of digital quantum machines:  

 1) Digital (gate-based) quantum computer (DQC) 

2) Digital quantum simulator (DQS)

DQC/DQS may not  be able to outperform classical computers with prethreshold 
quantum platforms, and fault-tolerant approaches demand millions of gates/qubits.

A DQC can become universal, fault tolerant, and scalable. 
It is meant to perform general-purpose quantum algorithms (e.g., Grover & Shor).

A DQS is not meant to be universal, but it could turn fault tolerant and scalable. 
It is essentially a purpose-oriented DQC that mimics models (spins, bosons, fermions).



DQS of spin Models with SC 
Las Heras et al., PRL 2014

just by increasing l. However, in a realistic quantum
simulator, there will be a limit to the number of local
e−iHkt=l gates feasible to apply, due to accumulated gate
errors. Accordingly, one has to optimize the number of
steps l to get the best possible result.
Heisenberg interaction.—Digital methods can be used to

simulate the Heisenberg spin model with available resour-
ces in superconducting circuits. We consider a setup made
of several transmon qubits coupled to a single coplanar
microwave resonator [27],

HT ¼ ωra†aþ
XN

i¼1

½4EC;iðni − ng;iÞ2 − EJ;i cosϕi

þ 2βieVrmsniðaþ a†Þ&: (2)

Here, ni, ng;i, and ϕi stand, respectively, for the quantized
charge on the superconducting island, the offset charge and
the quantized flux of the ith transmon qubit. The operators
aða†Þ act on the resonator field, whose first mode has
frequency ωr. EC;i is the charging energy of the super-
conducting island, while EJ;i ¼ Emax

J;i j cosðπΦi=Φ0Þj is the
Josephson energy of the dc-SQUID loop embedded in the
ith qubit. The latter can be tuned from small values up to
Emax
J;i by changing the ratio between the external magnetic

flux Φi, that threads the loop, and the elementary flux
quantum Φ0. Here, βi are renormalization coefficients of
the couplings due to circuit capacitances, Vrms is the root
mean square voltage of the resonator, and e is the electron
charge. Typical transmon regimes consider ratios of
Josephson to charging energy EJ=EC ≳ 20.
Notice that cavity and circuit QED platforms do not

feature the Heisenberg interaction from first principles.
Nevertheless, one can consider a digital simulation of
the model. We show that the coupled transmon-resonator
system, governed by the Hamiltonian in Eq. (2), can
simulate Heisenberg interactions of N qubits, which in
the case of homogeneous couplings reads

HH ¼
XN−1

i¼1

Jðσxi σxiþ1 þ σyi σ
y
iþ1 þ σziσ

z
iþ1Þ: (3)

Here the Pauli matrices σji , j ∈ fx; y; zg refer to the
subspace spanned by the first two levels of the ith transmon
qubit. We begin by considering the simplest case, in
which two qubits are involved. The XY exchange inter-
action can be directly reproduced by dispersively coupl-
ing two transmon qubits to the same resonator [28–30],
Hxy

12 ¼ Jðσþ1 σ−2 þ σ−1 σ
þ
2 Þ ¼ J=2ðσx1σx2 þ σy1σ

y
2Þ. The XY

exchange interaction can be transformed via local rota-
tions of the single qubits to get the effective Hamiltonians
Hxz

12 ¼ Rx
12ðπ=4ÞH

xy
12R

x†
12ðπ=4Þ ¼ J=2ðσx1σx2 þ σz1σ

z
2Þ and

Hyz
12 ¼ Ry

12ðπ=4ÞH
xy
12R

y†
12ðπ=4Þ ¼ J=2ðσy1σ

y
2 þ σz1σ

z
2Þ. Here,

RxðyÞ
12 ðπ=4Þ ¼ exp½−iπ=4ðσxðyÞ1 þ σxðyÞ2 Þ& represents a local

rotation of the first and second transmon qubits along
the xðyÞ axis. The XYZ exchange Hamiltonian Hxyz

12 can
therefore be implemented according to the protocol shown
in Fig. 1(a) with the following steps. Step 1.— The qubits
interact for a time t according to the XY Hamiltonian Hxy

12.
Step 2.— Application of single qubit rotations Rx

12ðπ=4Þ to
both qubits. Step 3.— The qubits interact for a time t with
the Hxy

12 Hamiltonian. Step 4.— Application of single qubit
rotation Rx†

12ðπ=4Þ to both qubits. Step 5.— Application of
single qubit rotation Ry

12ðπ=4Þ to both qubits. Step 6.— The
qubits interact for a time t according to the Hxy

12

Hamiltonian. Step 7.— Application of single qubit rotation
Ry†
12ðπ=4Þ to both qubits. Consequently, the total unitary

evolution reads

UH
12ðtÞ ¼ e−iH

xy
12
te−iH

xz
12
te−iH

yz
12
t ¼ e−iH

H
12t: (4)

This evolution operator simulates the dynamics of Eq. (3)
for two qubits. Arbitrary inhomogeneities of the couplings
can be achieved by implementing different simulated
phases for different digital steps. Notice that, in this case,
just one Trotter step is needed to achieve a simulation
without digital errors, due to the commutativity of Hxy

12,
Hxz

12, andH
yz
12. Thus, from a practical point of view, the only

source of errors will come from accumulated gate errors.
One can assume two-qubit gates with an error of about 5%
and eight π=4 single qubit rotations with errors of 1%.
This will give a total fidelity of the protocol around 77%.
Moreover, the total execution time for a π=4 simulated
XYZ phase will be of about 0.10 μs. Throughout the Letter,
we compute the execution times by summing the corre-
sponding times of all the employed gates, where we
consider typical circuit QED values.

(a)

(b)

(c)

FIG. 1. Protocols for digital quantum simulations with trans-
mon qubits. (a) Heisenberg model of two qubits. (b) Heisenberg
model of three qubits. (c) Frustrated Ising model of three qubits.
Here, RxðyÞ ≡ RxðyÞðπ=4Þ and R̄x ≡ Rxðπ=2Þ. Note that exchang-
ing each R matrix with its adjoint does not affect the protocols.
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DQS with superconducting circuits: Bilbao theory 

DQS of fermionic models with SC 
Las Heras et al., EPJ QT 2015



Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
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Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting
many-body dynamics. Computing characteristics of even small systems on conventional computers poses
significant challenges. A quantum simulator has the potential to outperform standard computers in
calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of
the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum
electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to
construct a digital decomposition of the model-specific evolution and extract its full dynamics.
This approach is universal and efficient, employing only resources that are polynomial in the number
of spins, and indicates a path towards the controlled simulation of general spin dynamics in super-
conducting qubit platforms.

DOI: 10.1103/PhysRevX.5.021027 Subject Areas: Condensed Matter Physics,
Quantum Information,
Superconductivity

Quantum simulations using well-controllable quantum
systems to simulate the properties of another less tractable
one [1,2] are expected to be able to predict the properties
and dynamics of diverse systems in condensed matter [3,4],
quantum chemistry [5], and high-energy physics [6,7]. In
particular, quantum simulations are expected to provide
new insights into open problems, such as modeling high-Tc
superconductivity [8], thermalization [9], and nonequili-
brium dynamics [10]. Up to now, several prototypical
quantum simulations have been proposed and realized in
trapped ions [11], cold atoms [12], and quantum photonics
[13]. These systems have fundamentally different intrinsic
properties offering complementary paths for realizing
quantum simulators to which circuit QED platforms are
expected to contribute. Examples of simulations carried out
include spin models [14–16], many-body physics [17], and
relativistic quantum mechanics [18]. In the field of super-
conducting circuits, quantum simulations are still in their
infancy [19]. Topological properties [20,21] have been
simulated recently, as have been fermionic models [22].

Quantum simulators are typically classified into two
main categories, namely, analog and digital. Analog quan-
tum simulators are designed to display intrinsic dynamics
that are equivalent to those of the simulated system. While
this approach is not universal, it features control of the
relevant Hamiltonian parameters better than in the system
to be simulated. Instead, digital quantum simulators [2] can
reproduce the dynamics of a quantum system via a
universal digital decomposition of its Hamiltonian H ¼P

kHk into efficient elementary gates realizing Hk. This
approach is based on the Suzuki-Lie-Trotter expansion of
the time evolution UðtÞ¼ e−iHt¼ limn→∞ð

QN
k¼1 e

−iHkt=nÞn
and was recently demonstrated experimentally in a trapped-
ion digital quantum simulator [15]. Variants of this digital
protocol make use of fractal approximations [23], adaptive
time steps for time-dependent Hamiltonians [24], and
heralded protocols for the implementation of linear combi-
nations of operators [25].
Here, we demonstrate digital quantum simulation of spin

systems [16] in an architecture known as circuit QED [26].
Our experiments are carried out with two superconducting
transmon qubits [27] coupled dispersively to a common
mode of a coplanar waveguide resonator (see Appendix A
for the device layout and setup diagram). We operate
the circuit at 30 mK in a dilution refrigerator. The
qubits Q1 and Q2 interact with a coplanar waveguide
resonator with a fundamental resonance frequency at
7.14 GHz, which serves both as a quantum bus [28] and
for readout [29].
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One of the key applications of quantum information is simulating nature. Fermions are

ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy

physics. However, universally simulating their interactions is arguably one of the

largest challenges, because of the difficulties arising from anticommutativity. Here we use

digital methods to construct the required arbitrary interactions, and perform quantum

simulation of up to four fermionic modes with a superconducting quantum circuit. We employ

in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple

model of uncorrelated errors. The presented approach is in principle scalable to a larger

number of modes, and arbitrary spatial dimensions.
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Digitized adiabatic quantum computing with a superconducting circuit
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A major challenge in quantum computing is to solve general problems with limited physical hardware. Here,
we implement digitized adiabatic quantum computing, combining the generality of the adiabatic algorithm with
the universality of the digital approach, using a superconducting circuit with nine qubits. We probe the adiabatic
evolutions, and quantify the success of the algorithm for random spin problems. We find that the system can
approximate the solutions to both frustrated Ising problems and problems with more complex interactions, with
a performance that is comparable. The presented approach is compatible with small-scale systems as well as
future error-corrected quantum computers.

Quantum mechanics can help solve complex problems in
physics [1], chemistry [2], and machine learning [3], pro-
vided they can be programmed in a physical device. In adia-
batic quantum computing [4–6], the system is slowly evolved
from the ground state of a simple initial Hamiltonian to a fi-
nal Hamiltonian that encodes a computational problem. The
appeal of this analog method lies in its combination of sim-
plicity and generality; in principle, any problem can be en-
coded. In practice, applications are restricted by limited con-
nectivity, available interactions, and noise. A complemen-
tary approach is digital quantum computing, where logic gates
combine to form quantum circuit algorithms [7]. The digital
approach allows for constructing arbitrary interactions and is
compatible with error correction [8, 9], but requires devising
tailor-made algorithms. Here, we combine the advantages of
both approaches by implementing digitized adiabatic quantum
computing in a superconducting system. We tomographically
probe the system during the digitized evolution, explore the
scaling of errors with system size, and measure the influence
of local fields. We conclude by having the full system find the
solution to random Ising problems with frustration, and prob-
lems with more complex interactions. This digital quantum
simulation [10–13] consists of up to nine qubits and up to 103

quantum logic gates. This demonstration of digitized quantum
adiabatic computing in the solid state opens a path to solving
complex problems, and we hope it will motivate further re-
search into the efficient synthesis of adiabatic algorithms, on
small-scale systems with noise as well as future large-scale
quantum computers with error correction.

A key challenge in adiabatic quantum computing is to con-
struct a device that is capable of encoding problem Hamilto-
nians that are non-stoquastic [14]. Such Hamiltonians would
allow for universal adiabatic quantum computing [15, 16]
as well as improving the performance for difficult instances

⇤ Present address: IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598, USA

of classical optimization problems [17]. Additionally, sim-
ulating interacting fermions for physics and chemistry re-
quires non-stoquastic Hamiltonians [1, 18]. In general, non-
stoquastic Hamiltonians are more difficult to study classically,
as Monte Carlo simulations fail to converge due to the “sign
problem” [19]. A hallmark of non-stoquastic Hamiltonians
is the need for several distinct types of coupling, for exam-
ple containing both �

z

�
z

and �
x

�
x

couplings with different
signs. With a digitized approach different couplings can be
constructed without change of hardware. In addition, long-
range multibody interactions can be assembled to aid in quan-
tum tunneling [20] or to encode the non-local terms required
for fermionic simulations [21, 22], which is otherwise ham-
pered by limited connectivity. And finally, analog systems
exhibit noise which can thwart the evolution, whereas digital
systems can have error correction. Our experiment addresses
the open challenge of adiabatically evolving to final problem
Hamiltonians that are non-stoquastic.

Here, we explore the adiabatic quantum evolutions of one-
dimensional spin chains with nearest-neighbour coupling. We
start with a simple ferromagnetic problem to visualize the adi-
abatic evolution process. We identify specific error contribu-
tions, and follow up by exploring the scaling of errors with
system size. We move towards more complex Hamiltonians
and add local fields. We finish by testing the device on ran-
dom problems that are stoquastic, containing �

z

�
z

type cou-
pling, as well as non-stoquastic problems with both �

z

�
z

and
�
x

�
x

couplings. The initial and problem Hamiltonians are
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where B
z

and B
x

denote local field strengths, and J
zz

and
J
xx

the �
z

�
z

and �
x

�
x

coupling strengths. The Ising model
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Analog quantum machines 

There are two classes of analog quantum machines:  

 1) Analog quantum simulator (AQS) 

2) Analog quantum computer (AQC)

An AQS is not meant to be universal but it could, in principle, outperform classical computers. 
Optical lattices and quantum photonics are trying hard. Trapped ions and SC should also bet.

 An AQC can be represented by adiabatic quantum computing or quantum annealing. 
It performs quantum computations by encoding classes of optimization problems.

AQS/AQC may not outperform classical devices with prethreshold quantum platforms. 
It is usually accepted without demonstration that AQS/AQC cannot become fault tolerant.



Ultrastrong coupling (USC) regime of the quantum Rabi model

We have recently seen the advent of the ultrastrong coupling (USC) regime 
of light-matter interactions in cQED, where 0.1< g/w < 1, and RWA cannot be applied.

T. Niemczyk et al., Nature Phys. 6, 772 (2010) 

P. Forn-Díaz et al., PRL 105, 237001 (2010)

HQRM =
~!0

2
�z + ~!a†a+ ~g(�+ + ��)(a† + a)

Recently, the analytical solutions of the QRM were presented: D. Braak, PRL 107, 100401 (2011).

Current experimental efforts are trying to approach nonperturbative USC regimes, where g/w ~ 0.5-1.0

Very recent works, see arXiv and APS March Meeting abstracts, announce even the experimental arrival 
of the deep strong coupling (DSC) regime of light-matter interactions. 

The DSC regime was proposed and studied in Casanova et al., PRL 2010



Deep strong coupling (DSC) regime of the QRM

The DSC regime of the JC model happens when g/w > 1.0, and it has been questioned 
whether such a regime could be experimentally reached or ever exist in nature.

chains break into the known Jaynes-Cummings doublets
fjg; na þ 1i; je; naig because we enter into the domain of
applicability of the RWA.

We introduce the parity basis jp; nbi, where bybjnbi ¼
nbjnbi, and b ¼ !xa such that bjp; nbi ¼

ffiffiffiffiffi
nb

p jp; nb # 1i.
Using this basis, the Hamiltonian in Eq. (1) can be
written as

H ¼ @!bybþ @gðbþ byÞ # @!0

2
ð#1Þbyb!: (4)

This Hamiltonian commutes with the parity operator !,
and for each parity chain (p ¼ &1) there is an independent
Hamiltonian describing a perturbed harmonic oscillator.

Note that the term#@!0ð#1Þbyb!=2 behaves as an energy
shift proportional to !0. In the DSC regime, we can get rid
of the term @gðbþ byÞ in Eq. (4) by changing to the basis

Dð#"0Þjp; nbi, with Dð"0Þ ¼ e"0b
y#"'

0b and "0 ¼ g=!.
The eigenenergies and eigenfunctions can be approxi-
mated as a series in !0=!

E"0
p;nb=@(!nb#g2=!#!0

2
pð#1Þnb"nbnb

þ
X

mb!nb

!2
0

4!ðnb#mbÞ
j"nbmb

j2þOð!3
0=!

3Þ: (5)

Alternative approximations can be found in the literature
[21]. To first order we get a displacement in the energy
levels due to the coupling "nbnb ¼ hnbjDð2"0Þjnbi, a

correction which is much smaller than 1, j"nbmb
j )

2#ðnbþmbÞ: Note that this formalism is rigorously valid in
the DSC regime.

We study now the DSC dynamics with the initial state
jc ð0Þi ¼ jþ; 0bi ¼ jg; 0ai, as we activate the interaction
in Eq. (4). We observe that the photon statistics PnbðtÞ will
spread independently along each parity chain, eventually
reaching an energy barrier and bouncing repeatedly.
Remarkably, an intuitive picture can be found, as displayed
in Figs. 1 and 2, that provides physical insight into a
problem that is, in general, analytically intractable. Note
that, in Figs. 1(a) and 1(b), the round trip of the initial
photon number wave packet induces collapse revivals that
are not reminiscent of the SC regime of the JC model [2],
where initial large coherent states are required. In the DSC
limit, with !0 ¼ 0, this intuitive picture can be rigorously
confirmed integrating the evolution

jc ðtÞi¼Dyð"0Þe#ið!byb#g2=!ÞtDð"0Þjþ;0bi¼Uðt;!0¼0Þ
* jc ð0Þi¼eiðg

2=!Þte#iðg=!Þ2 sinð!tÞjþ;"ðtÞi; (6)

where "ðtÞ ¼ "0ðe#i!t # 1Þ is the amplitude of a coherent
state. The revival probability of the initial state reads

Pþ0bðtÞ ¼ jhc ð0Þjc ðtÞij2 ¼ e#j"ðtÞj2 ; (7)

exhibiting periodic collapses and full revivals [28]. When
the initial state is jþ; 2bi ¼ jg; 2ai, as in Fig. 1(c), the DSC

dynamics generates counterpropagating photon number
wave packets in both directions that bounce back and forth
producing interference secondary peaks. Similar intuition
follows when considering initial superposition states, e.g.,
ðjþ; 0biþ jþ; 2biÞ=

ffiffiffi
2

p
, as long as the state components

belong to the same parity chain, otherwise no secondary
peaks appear. When we break the qubit degeneracy,
!0 ! 0, the intuitive picture remains but we lose the
integrability of the problem. Probability still spreads along
each parity chain, as seen in Fig. 2, but now the photon
number wave packet suffers self-interference, it distorts
and its center no longer follows the periodic orbits of
!0 ¼ 0 The result are full collapses and partial revivals

FIG. 1 (color online). (a),(b) Round trip of a photon number
wave packet and collapse revivals due to DSC dynamics with
initial state jþ; 0bi ¼ jg; 0ai. (c) Collapse revivals with second-
ary peaks due to counterpropagating photon number wave pack-
ets starting in initial state jþ; 2bi ¼ jg; 2ai. For all cases,!0 ¼ 0
and g=! ¼ 2.

FIG. 2 (color online). (a) Photon statistics at different times of
the evolution with !0 ¼ 0:5!. (b) Comparison of probability
Pþ;0b ðtÞ calculated for !0 ¼ 0 (solid line) and !0 ¼ 0:5!
(dashed line). In all simulations the initial state is jþ; 0bi and
g=! ¼ 2.

PRL 105, 263603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

263603-2

Forget about Rabi oscillations or perturbation theory: 
parity chains and photon number wavepackets 

define the physics of the DSC regime.

J. Casanova, t al., PRL 105, 263603 (2010)



AQS of USC & DSC regimes of the quantum Rabi model

Two-tone microwave driving

Leads to the effective Hamiltonian: QRM in all regimes

D. Ballester et al., PRX 2012

HJC =
~!q

2
�z + ~!a†a+ ~g(�†a+ �a†)

HD = ~⌦1(e
i!1t� +H.c.) + ~⌦2(e

i!2t� +H.c.)

H = ~(! � !1)a
†a+

~⌦2

2
�
z

+
~g
2
�
x

(a+ a†)

A two-tone driving in cavity QED or circuit QED can turn any JC model 
into a USC or DSC regime of the QRM model.

AQS with superconducting circuits: Bilbao theory



Digital quantum machines and analog quantum machines have polarized 
SS and AMO communities. Where is your place in this debate?

This debate is flawed or may not exist at all. 

We propose 
digital-analog quantum simulation (DAQS) 

with prethreshold quantum devices to outperform classical computers in the next 10 years.

Digital quantum machines or analog quantum machines?



Digital quantum Rabi and Dicke models 
 Mezzacapo et al., Sci. Rep. 2014

Experiment at TU Delft?

In DAQS, analog blocks are combined sequentially with digital steps. 

Analog blocks are made of collective quantum gates, that is, in-built complex operations. 
Digital steps are local quantum operations that may act also in a global manner. 

Analog blocks provide the complexity of the simulated model, digital steps provide flexibility. 
Similar spirit can be followed by introducing digital-adiabatic quantum computers (DAQC).

Complexity Simulating Complexity

A fist experiment in DAQS for superconducting circuits 
Bilbao theory + Delft experiment?



Quantum Rabi model: most fundamental light-matter interaction

Digital Quantum Rabi and Dicke Models in Superconducting Circuits

A. Mezzacapo,1 U. Las Heras,1 J. S. Pedernales,1 L. DiCarlo,2 E. Solano,1, 3 and L. Lamata1

1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
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P. O. Box 5046, 2600 GA Delft, The Netherlands
3IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain

(Dated: May 23, 2014)

We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using
circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which
are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition
into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the
quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this
proposal under realistic superconducting circuit scenarios.

PACS numbers: 03.67.Lx, 42.50.Pq, 02.30.Ik

The simplest, most fundamental interaction of quan-
tum light and quantum matter can be described by the
quantum Rabi model, consisting of the dipolar coupling
of a two-level system with a single radiation mode [1].
The Dicke model [2] was later introduced to generalize
this interaction to an ensemble of N two-level systems.
Typically, the coupling strength is small compared to the
transition frequencies of the two-level system and the
radiation mode, leading to effective Jaynes-Cummings
and Tavis-Cummings interactions, respectively, after per-
forming a rotating-wave approximation (RWA). This in-
troduces a U(1) symmetry and integrability to the model
for any N [3, 4]. Recently, analytical solutions for the
generic quantum Rabi and Dicke model for N = 3 were
found [5, 6]. However, the general case for arbitrary N is
still unsolved, while its direct study in a physical system
remains an outstanding challenge.

A variety of quantum platforms, such as cavity QED,
trapped ions, and circuit QED, provides a natural imple-
mentation of the Jaynes-Cummings and Tavis-Cummings
models, due to the weak qubit-mode coupling strength.
When the latter is a fraction or comparable to the mode
frequency, the model is said to be in the ultrastrong
coupling (USC) regime. Experimental evidence of this
regime has been observed in the optical [7] and microwave
domains [8, 9]. Coupling strengths larger than the mode
frequency mark the transition towards the recently in-
troduced deep-strong coupling (DSC) regime [10]. Signa-
tures of the latter may be retrieved effectively in different
quantum systems [11, 12], but an experimental observa-
tion of the full quantum Rabi and Dicke models in all
parameter regimes has not yet been realized. In partic-
ular, the quantum simulation [13] of the Dicke Hamil-
tonian could outperform analytical and numerical meth-
ods, while enabling the simulation of engineered super-
radiant phase transitions [14–16]. Recently, technologi-
cal improvements of controlled quantum platforms have
increased the interest in quantum simulations [17–20].
A digital approach to quantum simulations was put for-

ward in Ref. [21]. In this sense, it has been analyzed how
suitable versions of digital quantum simulators can be
implemented with available quantum platforms [22–25].

In this Letter, we propose the analog-digital quantum
simulation of the quantum Rabi and Dicke models in a
circuit QED setup, provided only with Jaynes-Cummings
and Tavis-Cummings interactions, respectively. We show
how the rotating and counter-rotating contributions to
the corresponding dynamics can be effectively realized
with digital techniques. By interleaved implementation
of rotating and counter-rotating steps, the dynamics of
the quantum Rabi and Dicke models can be simulated for
all parameter regimes with negligible error. Lastly, we
show how a relativistic Dirac dynamics can be retrieved
in the limit where the mode frequency cancels.

We start by considering a generic circuit QED setup
consisting of a charge-like qubit, e.g. a transmon
qubit [26], coupled to a microwave resonator. The setup
is well described by the Hamiltonian (~ = 1) [27]

H = !
r

a†a +
!

q

2
�z + g(a†�� + a�+), (1)

where !
r

and !
q

are the resonator and qubit transition
frequencies, g is the resonator-qubit coupling strength,
a†(a) is the creation(annihilation) operator for the res-
onator mode, and �± raise and lower excitations on the
qubit. The capacitive interaction in Eq. (1) excludes ex-
citations of the higher levels of the qubit device, because
typically the coupling g is much smaller than other transi-
tion frequencies of the system. By trying to design setups
with larger capacitive couplings, pushing them above dis-
persive regimes, one starts to populate the higher levels
of the transmons, producing unwanted leakage. On the
other hand, methods based on orthogonal drivings of the
qubits [28, 29] may increase the resonator population.
Here, we show that the dynamics of the quantum Rabi
Hamiltonian

H
R

= !R

r

a†a +
!R

q

2
�z + gR�x(a† + a) (2)
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Small coupling as compared to mode & qubit frequencies: Jaynes-Cummings model

Digital Quantum Rabi and Dicke Models in Superconducting Circuits

A. Mezzacapo,1 U. Las Heras,1 J. S. Pedernales,1 L. DiCarlo,2 E. Solano,1, 3 and L. Lamata1

1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
2Kavli Institute of Nanoscience, Delft University of Technology,

P. O. Box 5046, 2600 GA Delft, The Netherlands
3IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain

(Dated: May 23, 2014)

We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using
circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which
are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition
into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the
quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this
proposal under realistic superconducting circuit scenarios.
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The simplest, most fundamental interaction of quan-
tum light and quantum matter can be described by the
quantum Rabi model, consisting of the dipolar coupling
of a two-level system with a single radiation mode [1].
The Dicke model [2] was later introduced to generalize
this interaction to an ensemble of N two-level systems.
Typically, the coupling strength is small compared to the
transition frequencies of the two-level system and the
radiation mode, leading to effective Jaynes-Cummings
and Tavis-Cummings interactions, respectively, after per-
forming a rotating-wave approximation (RWA). This in-
troduces a U(1) symmetry and integrability to the model
for any N [3, 4]. Recently, analytical solutions for the
generic quantum Rabi and Dicke model for N = 3 were
found [5, 6]. However, the general case for arbitrary N is
still unsolved, while its direct study in a physical system
remains an outstanding challenge.

A variety of quantum platforms, such as cavity QED,
trapped ions, and circuit QED, provides a natural imple-
mentation of the Jaynes-Cummings and Tavis-Cummings
models, due to the weak qubit-mode coupling strength.
When the latter is a fraction or comparable to the mode
frequency, the model is said to be in the ultrastrong
coupling (USC) regime. Experimental evidence of this
regime has been observed in the optical [7] and microwave
domains [8, 9]. Coupling strengths larger than the mode
frequency mark the transition towards the recently in-
troduced deep-strong coupling (DSC) regime [10]. Signa-
tures of the latter may be retrieved effectively in different
quantum systems [11, 12], but an experimental observa-
tion of the full quantum Rabi and Dicke models in all
parameter regimes has not yet been realized. In partic-
ular, the quantum simulation [13] of the Dicke Hamil-
tonian could outperform analytical and numerical meth-
ods, while enabling the simulation of engineered super-
radiant phase transitions [14–16]. Recently, technologi-
cal improvements of controlled quantum platforms have
increased the interest in quantum simulations [17–20].
A digital approach to quantum simulations was put for-

ward in Ref. [21]. In this sense, it has been analyzed how
suitable versions of digital quantum simulators can be
implemented with available quantum platforms [22–25].

In this Letter, we propose the analog-digital quantum
simulation of the quantum Rabi and Dicke models in a
circuit QED setup, provided only with Jaynes-Cummings
and Tavis-Cummings interactions, respectively. We show
how the rotating and counter-rotating contributions to
the corresponding dynamics can be effectively realized
with digital techniques. By interleaved implementation
of rotating and counter-rotating steps, the dynamics of
the quantum Rabi and Dicke models can be simulated for
all parameter regimes with negligible error. Lastly, we
show how a relativistic Dirac dynamics can be retrieved
in the limit where the mode frequency cancels.

We start by considering a generic circuit QED setup
consisting of a charge-like qubit, e.g. a transmon
qubit [26], coupled to a microwave resonator. The setup
is well described by the Hamiltonian (~ = 1) [27]

H = !
r

a†a +
!

q

2
�z + g(a†�� + a�+), (1)

where !
r

and !
q

are the resonator and qubit transition
frequencies, g is the resonator-qubit coupling strength,
a†(a) is the creation(annihilation) operator for the res-
onator mode, and �± raise and lower excitations on the
qubit. The capacitive interaction in Eq. (1) excludes ex-
citations of the higher levels of the qubit device, because
typically the coupling g is much smaller than other transi-
tion frequencies of the system. By trying to design setups
with larger capacitive couplings, pushing them above dis-
persive regimes, one starts to populate the higher levels
of the transmons, producing unwanted leakage. On the
other hand, methods based on orthogonal drivings of the
qubits [28, 29] may increase the resonator population.
Here, we show that the dynamics of the quantum Rabi
Hamiltonian

H
R

= !R

r

a†a +
!R

q

2
�z + gR�x(a† + a) (2)
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How DAQS works on superconducting circuits?

Digital quantum Rabi and Dicke models 
 Mezzacapo et al., Sci. Rep. 2014



Interaction available in cQED: Jaynes-Cummings model
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We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using
circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which
are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition
into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the
quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this
proposal under realistic superconducting circuit scenarios.
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The simplest, most fundamental interaction of quan-
tum light and quantum matter can be described by the
quantum Rabi model, consisting of the dipolar coupling
of a two-level system with a single radiation mode [1].
The Dicke model [2] was later introduced to generalize
this interaction to an ensemble of N two-level systems.
Typically, the coupling strength is small compared to the
transition frequencies of the two-level system and the
radiation mode, leading to effective Jaynes-Cummings
and Tavis-Cummings interactions, respectively, after per-
forming a rotating-wave approximation (RWA). This in-
troduces a U(1) symmetry and integrability to the model
for any N [3, 4]. Recently, analytical solutions for the
generic quantum Rabi and Dicke model for N = 3 were
found [5, 6]. However, the general case for arbitrary N is
still unsolved, while its direct study in a physical system
remains an outstanding challenge.
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trapped ions, and circuit QED, provides a natural imple-
mentation of the Jaynes-Cummings and Tavis-Cummings
models, due to the weak qubit-mode coupling strength.
When the latter is a fraction or comparable to the mode
frequency, the model is said to be in the ultrastrong
coupling (USC) regime. Experimental evidence of this
regime has been observed in the optical [7] and microwave
domains [8, 9]. Coupling strengths larger than the mode
frequency mark the transition towards the recently in-
troduced deep-strong coupling (DSC) regime [10]. Signa-
tures of the latter may be retrieved effectively in different
quantum systems [11, 12], but an experimental observa-
tion of the full quantum Rabi and Dicke models in all
parameter regimes has not yet been realized. In partic-
ular, the quantum simulation [13] of the Dicke Hamil-
tonian could outperform analytical and numerical meth-
ods, while enabling the simulation of engineered super-
radiant phase transitions [14–16]. Recently, technologi-
cal improvements of controlled quantum platforms have
increased the interest in quantum simulations [17–20].
A digital approach to quantum simulations was put for-

ward in Ref. [21]. In this sense, it has been analyzed how
suitable versions of digital quantum simulators can be
implemented with available quantum platforms [22–25].

In this Letter, we propose the analog-digital quantum
simulation of the quantum Rabi and Dicke models in a
circuit QED setup, provided only with Jaynes-Cummings
and Tavis-Cummings interactions, respectively. We show
how the rotating and counter-rotating contributions to
the corresponding dynamics can be effectively realized
with digital techniques. By interleaved implementation
of rotating and counter-rotating steps, the dynamics of
the quantum Rabi and Dicke models can be simulated for
all parameter regimes with negligible error. Lastly, we
show how a relativistic Dirac dynamics can be retrieved
in the limit where the mode frequency cancels.

We start by considering a generic circuit QED setup
consisting of a charge-like qubit, e.g. a transmon
qubit [26], coupled to a microwave resonator. The setup
is well described by the Hamiltonian (~ = 1) [27]

H = !
r

a†a +
!

q

2
�z + g(a†�� + a�+), (1)

where !
r

and !
q

are the resonator and qubit transition
frequencies, g is the resonator-qubit coupling strength,
a†(a) is the creation(annihilation) operator for the res-
onator mode, and �± raise and lower excitations on the
qubit. The capacitive interaction in Eq. (1) excludes ex-
citations of the higher levels of the qubit device, because
typically the coupling g is much smaller than other transi-
tion frequencies of the system. By trying to design setups
with larger capacitive couplings, pushing them above dis-
persive regimes, one starts to populate the higher levels
of the transmons, producing unwanted leakage. On the
other hand, methods based on orthogonal drivings of the
qubits [28, 29] may increase the resonator population.
Here, we show that the dynamics of the quantum Rabi
Hamiltonian

H
R

= !R

r

a†a +
!R

q

2
�z + gR�x(a† + a) (2)
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can be encoded in a superconducting setup provided with
a Jaynes-Cummings interaction, as in Eq. (1), using a
digital expansion.

The quantum Rabi Hamiltonian in Eq. (2) can be de-
composed into two parts, H
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= H1 + H2, where

H1 =
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�z + g(a†�� + a�+),
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�z + g(a†�+ + a��), (3)

and we have defined the qubit transition frequency in
the two steps such that !1

q

� !2
q

= !R

q

. These two inter-
actions can be simulated in a typical circuit QED device
with fast control of the qubit transition frequency. Start-
ing from the qubit-resonator Hamiltonian in Eq. (1), one
can define a frame rotating at frequency !̃, in which the
effective interaction Hamiltonian becomes

H̃ = �̃
r

a†a + �̃
q

�z + g(a†�� + a�+), (4)

with �̃
r

= (!
r

� !̃) and �̃
q

= (!
q

� !̃) /2. Therefore,
Eq. (4) is equivalent to H1, following a proper redefinition
of the coefficients. The counter-rotating term H2 can be
simulated by applying a local qubit rotation to H̃ and a
different detuning for the qubit transition frequency,

e�i⇡�

x

/2H̃ei⇡�

x

/2 = �̃
r

a†a��̃
q

�z+g(a†�++a��). (5)

By choosing different qubit-resonator detuning for the
two steps, �̃1

q

for the first one and �̃2
q

for the rotated step,
one is able to simulate the quantum Rabi Hamiltonian,
Eq. (2), via digital decomposition [21], by interleaving
the simulated interactions. The frequency scheme of the
protocol is shown in Fig. 1. Standard resonant Jaynes-
Cummings interaction parts with different qubit transi-
tion frequencies are interrupted by microwave pulses, in
order to perform customary qubit flips [30]. This se-
quence can be repeated according to the digital simu-
lation scheme to obtain a better approximation of the
quantum Rabi dynamics.

The simulated Rabi parameters can be obtained as a
function of the physical parameters of the setup by in-
verting the derivation presented above. In this way, one
has that the simulated bosonic frequency is related to
the resonator detuning !R

r

= 2�̃
r

, the two-level transi-
tion frequency is related to the transmon frequency in
the two steps, !R

q

= �̃1
q

� �̃2
q

, and the coupling to the
resonator remains the same, gR = g. Notice that even
if the simulated two-level frequency !R

q

depends only on
the frequency difference, large detunings �̃1(2)

q

will af-
fect the total fidelity of the simulation. In fact, since
the digital error depends on the magnitude of individual
commutators between the different interaction steps, us-
ing larger detunings linearly increases the latter, which
results in fidelity loss of the simulation. To minimize
this loss, one can choose, for example, the transmon fre-
quency in the second step to be tuned to the rotating

!q
!r

!̃

time

1 12

FIG. 1. (Color online) Frequency scheme of the stepwise im-
plementation for the quantum Rabi Hamiltonian. A trans-
mon qubit of frequency !q is interacting with a microwave
resonator, whose transition frequency is !r. The interac-
tions H1,2 in Eq. (3) are simulated respectively with a Jaynes-
Cummings interaction (step 1), and another one with different
detuning, anticipated and followed by ⇡ pulses (step 2).

TABLE I. Simulated quantum Rabi dynamics parameters ver-
sus frequencies of the system. For all entries in the right col-
umn, the resonator frequency is fixed to !r/2⇡ = 7.5 GHz,
and the coupling gR/2⇡ = 100 MHz. Frequencies are shown
up to a 2⇡ factor.

gR = !R
q /2 = !R

r /2 !̃ = 7.4 GHz, !1
q � !2

q = 200 MHz
gR = !R

q = !R
r !̃ = 7.45 GHz, !1

q � !2
q = 100 MHz

gR = 2!R
q = !R

r !̃ = 7.475 GHz, !1
q � !2

q = 100 MHz

frame, such that �̃2
q

= 0. To estimate the loss of fi-
delity due to the digital approximation of the simulated
dynamics, we consider a protocol performed with typi-
cal transmon qubit parameters [26]. We estimate a res-
onator frequency of !

r

/2⇡ = 7.5 GHz, and a transmon-
resonator coupling of g/2⇡ = 100 MHz. The qubit fre-
quency !

q

and the frequency of the rotating frame !̃ are
varied to reach different parameter regimes. To per-
form the simulation for the quantum Rabi model with
gR/2⇡ = !R

q

/2⇡ = !R

r

/2⇡ = 100 MHz, for example,
one can set !1

q

/2⇡ = 7.55 GHz, !2
q

/2⇡ = 7.45 GHz. In
this way, one can define an interaction picture rotating at
!̃/2⇡ = 7.45 GHz to encode the dynamics of the quantum
Rabi model with minimal fidelity loss. Considering that
single-qubit rotations take approximately ⇠ 10 ns, tens
of Trotter steps could be comfortably performed within
the coherence time. Notice that, in performing the pro-
tocol, one has to avoid populating the third level of the
transmon qubit. Considering transmon anharmonicities
of about ↵ = �0.1, for example, in this case one has third
level transition frequencies of 6.795 GHz and 6.705 GHz.
Therefore, given the large detuning with the resonator,
it will not be populated. Similarly, by choosing different
qubit detunings and rotating frames, one can simulate a
variety of parameter regimes, e.g. see Table I.

In order to capture the physical realization of the sim-
ulation, we plot in Fig. 2 the behavior of the transmon-
resonator system during the simulation protocol. We nu-
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FIG. 1. (Color online) Frequency scheme of the stepwise im-
plementation for the quantum Rabi Hamiltonian. A trans-
mon qubit of frequency !q is interacting with a microwave
resonator, whose transition frequency is !r. The interac-
tions H1,2 in Eq. (3) are simulated respectively with a Jaynes-
Cummings interaction (step 1), and another one with different
detuning, anticipated and followed by ⇡ pulses (step 2).

TABLE I. Simulated quantum Rabi dynamics parameters ver-
sus frequencies of the system. For all entries in the right col-
umn, the resonator frequency is fixed to !r/2⇡ = 7.5 GHz,
and the coupling gR/2⇡ = 100 MHz. Frequencies are shown
up to a 2⇡ factor.
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of Trotter steps could be comfortably performed within
the coherence time. Notice that, in performing the pro-
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of about ↵ = �0.1, for example, in this case one has third
level transition frequencies of 6.795 GHz and 6.705 GHz.
Therefore, given the large detuning with the resonator,
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variety of parameter regimes, e.g. see Table I.
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Cummings interaction parts with different qubit transi-
tion frequencies are interrupted by microwave pulses, in
order to perform customary qubit flips [30]. This se-
quence can be repeated according to the digital simu-
lation scheme to obtain a better approximation of the
quantum Rabi dynamics.
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verting the derivation presented above. In this way, one
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plementation for the quantum Rabi Hamiltonian. A trans-
mon qubit of frequency !q is interacting with a microwave
resonator, whose transition frequency is !r. The interac-
tions H1,2 in Eq. (3) are simulated respectively with a Jaynes-
Cummings interaction (step 1), and another one with different
detuning, anticipated and followed by ⇡ pulses (step 2).

TABLE I. Simulated quantum Rabi dynamics parameters ver-
sus frequencies of the system. For all entries in the right col-
umn, the resonator frequency is fixed to !r/2⇡ = 7.5 GHz,
and the coupling gR/2⇡ = 100 MHz. Frequencies are shown
up to a 2⇡ factor.
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frame, such that �̃2
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= 0. To estimate the loss of fi-
delity due to the digital approximation of the simulated
dynamics, we consider a protocol performed with typi-
cal transmon qubit parameters [26]. We estimate a res-
onator frequency of !

r

/2⇡ = 7.5 GHz, and a transmon-
resonator coupling of g/2⇡ = 100 MHz. The qubit fre-
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and the frequency of the rotating frame !̃ are
varied to reach different parameter regimes. To per-
form the simulation for the quantum Rabi model with
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/2⇡ = 100 MHz, for example,
one can set !1
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this way, one can define an interaction picture rotating at
!̃/2⇡ = 7.45 GHz to encode the dynamics of the quantum
Rabi model with minimal fidelity loss. Considering that
single-qubit rotations take approximately ⇠ 10 ns, tens
of Trotter steps could be comfortably performed within
the coherence time. Notice that, in performing the pro-
tocol, one has to avoid populating the third level of the
transmon qubit. Considering transmon anharmonicities
of about ↵ = �0.1, for example, in this case one has third
level transition frequencies of 6.795 GHz and 6.705 GHz.
Therefore, given the large detuning with the resonator,
it will not be populated. Similarly, by choosing different
qubit detunings and rotating frames, one can simulate a
variety of parameter regimes, e.g. see Table I.

In order to capture the physical realization of the sim-
ulation, we plot in Fig. 2 the behavior of the transmon-
resonator system during the simulation protocol. We nu-
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protocol is shown in Fig. 1. Standard resonant Jaynes-
Cummings interaction parts with different qubit transi-
tion frequencies are interrupted by microwave pulses, in
order to perform customary qubit flips [30]. This se-
quence can be repeated according to the digital simu-
lation scheme to obtain a better approximation of the
quantum Rabi dynamics.

The simulated Rabi parameters can be obtained as a
function of the physical parameters of the setup by in-
verting the derivation presented above. In this way, one
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this loss, one can choose, for example, the transmon fre-
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FIG. 1. (Color online) Frequency scheme of the stepwise im-
plementation for the quantum Rabi Hamiltonian. A trans-
mon qubit of frequency !q is interacting with a microwave
resonator, whose transition frequency is !r. The interac-
tions H1,2 in Eq. (3) are simulated respectively with a Jaynes-
Cummings interaction (step 1), and another one with different
detuning, anticipated and followed by ⇡ pulses (step 2).

TABLE I. Simulated quantum Rabi dynamics parameters ver-
sus frequencies of the system. For all entries in the right col-
umn, the resonator frequency is fixed to !r/2⇡ = 7.5 GHz,
and the coupling gR/2⇡ = 100 MHz. Frequencies are shown
up to a 2⇡ factor.
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of about ↵ = �0.1, for example, in this case one has third
level transition frequencies of 6.795 GHz and 6.705 GHz.
Therefore, given the large detuning with the resonator,
it will not be populated. Similarly, by choosing different
qubit detunings and rotating frames, one can simulate a
variety of parameter regimes, e.g. see Table I.

In order to capture the physical realization of the sim-
ulation, we plot in Fig. 2 the behavior of the transmon-
resonator system during the simulation protocol. We nu-
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FIG. 2. (Color online) A transmon qubit and microwave
resonator simulating the quantum Rabi Hamiltonian in the
regime gR = !R

r , !R
q = 0. The ideal dynamics, plotted in the

inset, shows collapses and revivals of the photon and qubit
population. The latter are recovered via sequential qubit-
resonator interactions and qubit flips. The photon population
is pumped to the expected value at the time marked by the
arrow. Note that the simulating time t̃ is different from the
simulated time t.

merically integrate a master equation, alternating steps
of Jaynes-Cummings interaction with single-qubit flip
pulses. We consider ⇢̇ = �i[H, ⇢]+L(a)⇢+�

�

L(�z)⇢+
��L(��)⇢, with Jaynes-Cummings terms H̃ = �̃

r

a†a +
�̃

q

�z + g(a†�� + a�+), alternated with qubit-flip opera-
tions H

f

= f(t)�x, where f(t) is a smooth function such
that

R
T

f

0 f(t)dt = ⇡/2, T
f
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The quantum dynamics is affected by Lindblad super-
operators �
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L(�z)⇢, ��L(��)⇢, and L(a)⇢ modelling
qubit dephasing, qubit relaxation and resonator losses.
We have defined L(A)⇢ = (2A⇢A† � A†A⇢ � ⇢A†A)/2.
We set a resonator-qubit coupling of g/2⇡ = 80 MHz,
and a frame rotating at the qubit frequency, �̃
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= 0,
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/2⇡ = 40 MHz. We consider ��/2⇡ = 30 kHz,
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/2⇡ = 60 kHz, and /2⇡ = 100 kHz. The inset of
Fig. 2 shows collapses and revivals of both the photon
and spin dynamics, which are typical signatures of the
regimes of the quantum Rabi dynamics dominated by
the coupling strength. We consider prototypical DSC
dynamics, with !R
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= 0, and gR = !R

r

. We choose to
set the simulation at the time marked by the black ar-
row, close to the photon population peak in the inset. A
simulation with 15 digital steps is then performed. The
time for a single qubit flip pulse is set to T
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= 10 ns.
Periodic collapses and revivals of the bosonic population
of the quantum Rabi model ha†ai
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are shown as a func-
tion of time, in the inset. The ideal spin and bosonic
populations h�
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, evolving according to the
quantum Rabi Hamiltonian, are shown to be in good
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FIG. 3. (Color online) Time evolution of the fidelity
F = |h S | Ri|2 of state | Si evolving according to the dig-
itized protocol, to the ideal state | Ri evolving according to
the quantum Rabi dynamics, with a) gR = !R

r /2 = !R
q /2,

b) gR = !R
r = !R

q , c) gR = 2!R
r = !R

q , and d) gR = 2!R
r =

1.5!R
q . The simulation is performed for different number n of

Trotter steps. Black curves in the insets show the overlap of
the ideal evolved state with the one at time t = 0, |h R| 0i|2,
initialized with a fully excited qubit and the resonator in the
vacuum state.

agreement with the simulated ones, h�
z

i and ha†ai, at
the final simulated time. In fact, during the Jaynes-
Cummings interaction parts, photons are pumped into
the resonator. Afterwards, before the photon population
starts to decrease due to excitation exchanges with the
transmon qubit, a qubit flip further enhances the photon
production.

The simulation protocol can be performed for every
time of the dynamics, with the number of digital steps
tuned to reach a satisfactory simulation fidelity. We
plot in Fig. 3 the fidelity F = |h 

S
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i|2 as a func-
tion of time of the simulated wavefunction  

S

, includ-
ing resonator and spin degrees of freedom, versus the
ideal one  

R

, given by Eq. (2). The fidelity is plot-
ted for different parameters and iteration steps. Increas-
ing the number of steps, the fidelity grows as expected
from standard Suzuki-Lie-Trotter expansions [31]. In
principle, the whole protocol can accurately access non-
analytical regimes of these models, including USC and
DSC regimes.

By adding several transmon qubits to the architecture,
the presented method can be extended to simulate the
Dicke Hamiltonian
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starts to decrease due to excitation exchanges with the
transmon qubit, a qubit flip further enhances the photon
production.
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analytical regimes of these models, including USC and
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and in the time- and space-dependent phases that are
associated to energy and momentum conservation.

The bosonic field will, in addition, be written as

A(t, x) = a0e
�i!0teik0x + a†

0e
i!0te�ik0x. (10)

Consequently, the resulting interaction Hamiltonian is

H = g
X

i,j=f,f̄

F i,j(p
i

, p
j

, k0, t) ✓i†
pi

✓j
pj

a0 + H.c., (11)

where {✓i
pi
}
i=f,f̄

= bin, d†
in, and

Ff,f (p
f

, p
f

, k0, t) =

✓Z
dx|G̃

f

(p
f

, x, t)|2eik0x

◆
e�i!0t,

F f̄ ,f̄ (p
f̄

, p
f̄

, k0, t) =

✓Z
dx|G̃

f̄

(p
f̄

, x, t)|2eik0x

◆
e�i!0t,

Ff,f̄ (p
f

, p
f̄

, k0, t) =

✓Z
dxG̃

f

(p
f

, x, t)⇤G̃
f̄

(p
f̄

, x, t)

⇥ e�i(pf+pf̄�k0)x
⌘

ei(!f+!f̄�!0)t. (12)

This Hamiltonian contains the self-interacting dynam-
ics given by |f, f̄ , ni $ |f, f̄ , n ± 1i (|f, f̄ , ni denotes
the state with one fermion, one antifermion, and n
bosons), mediated by b†

inbina
k0 , b†

inbina†
k0

, dind†
ina

k0 and

dind†
ina†

k0
. It also includes pair creation and annihilation

processes given by |f, f̄ , ni $ |0, 0, n ± 1i, mediated by
dinbina†

k0
and b†

ind†
ina

k0 in the quasi-resonant case, as well

as dinbina
k0 and b†

ind†
ina†

k0
in the far o↵-resonant case.

The last kind of transitions, as well as self-interactions,
are o↵-resonant and would be neglected in the weak cou-
pling regime, but would be allowed in our formalism for
USC/DSC regimes [18]. In our proposed setup, all per-
turbative series terms are included, as shown in Fig. 1.

For practical purposes, we consider |k0| ⌧ !0, i.e.,
a slow massive boson. We may then approximate
Ff,f (p

f

, p
f

, k0, t) = F f̄ ,f̄ (p
f̄

, p
f̄

, k0, t) = g1 exp(�i!0t),

and Ff,f̄ (p
f

, p
f̄

, k0, t) = g2 exp[�(t� T/2)2/(2�2
t

) + i�t],
where g2/g1 gives the relative strength of the pair cre-
ation with respect to the self-interaction, � = !

f

+!
f̂

�!0

and T is the total time of the process, being �
t

the tem-
poral interval of the interaction region. Thus, the self-
interactions are always on, while the pair creation and
annihilation take place only when the fermion and an-
tifermion wavepackets overlap, as they should. Accord-
ingly, the Hamiltonian we aim to simulate is

H = g1e
�i!0t

⇣
b†
inbina0 + dind†

ina0

⌘
(13)

+ g2e
� (t�T/2)2

2�2
t

h
ei�tb†

ind†
ina0 + e�i(2!0+�)tdinbina0

i
+ H.c.

We propose to implement this Hamiltonian dynamics in
a system of two trapped ions, see Fig. 2a. The bosonic
mode will be encoded in the center-of-mass (COM) vi-
bronic mode of the two-ion system. We envision to

FIG. 2. (a) Setup for the trapped-ion simulation. (b)
|hf, 0, 0| (t)1i|2 as a function of t in units of !0 (red/upper
curves), where | (t)1i is the evolved state from | (0)1i =
|f, 0, 0i, and average number of virtual bosons (blue/lower

curves), ha†
0a0i, for g1 = 0.15!0, 0.1!0, 0.05!0, 0.01!0, g2 = 0.

The largest amplitudes correspond to the largest couplings.
(c) |hf, f̄ , 0| (t)2i|2 as a function of t in units of !0 (red/upper
left curve), where | (t)2i is the evolved state from | (0)2i =
|f, f̄ , 0i, and average number of virtual bosons (blue/lower

left curve), ha†
0a0i, for g1 = 0.01!0, g2 = 0.21!0, �t = 3/!0,

T = 30/!0, � = 0. (d) The same as (c) for g1 = 0.1!0,
g2 = !0, �t = 4/!0, T = 30/!0, � = 0.

map the 4-dimensional Hilbert space associated to the
fermionic/antifermionic operators onto 4 internal levels
of the first ion. For this, we consider a Jordan-Wigner
mapping, b†

in = I ⌦ �+, bin = I ⌦ ��, d†
in = �+ ⌦ �

z

,
din = �� ⌦ �

z

, and encode it in four internal levels of
the first ion, |1i, |2i, |3i, |4i, e.g., b†

in = |4ih3| + |2ih1|,
d†
in = |4ih2| � |3ih1|, the vacuum state is state |1i, and

|fi = |2i, |f̄i = �|3i, |f, f̄i = �|4i. Accordingly, Hamil-
tonian (13) results in

H = �g(t)

✓
|4ih1| a0e

i�t + |1ih4| a†
0e

�i�t

◆

�g(t)

✓
|1ih4| a0e

�i(2!0+�)t + |4ih1| a†
0e

i(2!0+�)t

◆

�g1

✓
|3ih3|� |2ih2|

◆✓
a0e

�i!0t + a†
0e

i!0t

◆

+g1 I

✓
a0e

�i!0t + a†
0e

i!0t

◆
. (14)

Here, the first line corresponds to a detuned red sideband
interaction between |4i and |1i with time-dependent
Rabi frequency g(t) = g2 exp[�(t � T/2)2/2�2

t

]. The
second line is a detuned blue sideband interaction, be-
tween the same levels and with the same Rabi frequency.
The third line can be developed applying detuned red
and blue sideband interactions to |3i and |2i to pro-
duce (|3ih2|� |2ih3|)[a0 exp(�i!0t)+a†

0 exp(i!0t)]/i, and
a rotation of |3i and |2i with a classical field to pro-
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FIG. 2. (color online). Dynamics for the 3 + 1 ions configu-
ration of the NN XX Hamiltonian. Dotted curves stand for
h�i

ziE for the exact dynamics, and solid curves stand for h�i
ziI

for realistic ion interactions (i = 1, 2, 3 for the first, second
and third ion). The parameters are chosen in order to have
maxima in the fidelity F (t) = |h E(t)| I(t)i|2 of ⇠ 0.995 (top
black curve) at time steps of ⇠ 333 ⌫1t. These time steps can
be chosen as Trotter steps.

possibility of obtaining an Ising field in linear chains of
trapped ions has been proposed and realized [32, 36].
However, in implementing NN interactions between more
than two ions, one must be careful in designing an ap-
propriate set of lasers and detunings in order to minimize
the spurious non-nearest-neighbor (NNN) e↵ects. To this
extent, we have realized numerical simulations for a 3+1
ions setup [37], using one set of two pairs of counter-
propagating lasers detuned close to the shifted center of
mass (COM) shifted mode of frequency �1 = ⌫1 � !0/3
to drive the first two ions (detunings ±�1), and another
set of lasers detuned close to a second mode of frequency
�2, that in the case of 3+1 ions can be chosen as the
breathing mode, addressing the second and the third ion
(detunings ±�2). For a generic number of ions, Rabi fre-
quencies ⌦i of the lasers driving the i-th and the i+1-th
ions are chosen to achieve the desired strength in the
Ising coupling, according to [36],

HNN =
N�1X

i=1

⌦2
i

" 
NX

m=1

⌘i,m⌘i+1,m�m

�2
i ��2

m

!

+
⌘i,N+1⌘i+1,N+1⌫N+1

�2
i � ⌫2

N+1

�
�x

i �x
i+1. (7)

In Fig. 2, the first and second ion are driven with two
pairs of counterpropagating lasers with detuning close to
the shifted COM mode (�1 = 1.0187 ⌫1 for !0 = h/4).
The Rabi frequencies are chosen properly in order to
reach a NN interaction of h/2 = 0.001 ⌫1. Lasers driving
the second and the third ions are detuned close to the
shifted breathing mode at ⌫2 = 1.731 ⌫1 [35], with pa-
rameters �2 = 1.71196 ⌫1. Detunings are chosen to have a
dynamics decoupled with respect to the phonons at time

steps ⇠ 333 ⌫t and a negligible NNN interaction [37]. At
these times, the ion spins match the exact value, phonons
are detached from spins and the fidelity oscillation (top
black curve) F (t) = |h E(t)| I(t)i|2 reaches maxima,
with peaks of ⇠ 0.995.

The initial state, as in all our numerical simulations,
except where specified, is chosen to mimic a configura-
tion in which one electron is injected at the center of a
one dimensional lattice provided with Holstein interac-
tions. To this extent, all the spins are initialized in the
opposite Z direction, except the one in site N/2, in case
of even N , or (N + 1)/2 in case of odd N . The spin of
the last ion has to be initialized along the Z direction in
order to be a passive ion with respect to the dynamics,
according to the protocol for the implementation of H3

given below. The vibrational modes are assumed to be
initially cooled down to the ground state with resolved
sideband cooling [33].

Notice that one can always implement a perfect NN
coupling by using more stroboscopic steps. A possibil-
ity is to decompose the global NN into nearest-neighbor
pairwise interactions. Another possibility is to design a
counter, non-nearest-neighbor interaction step between
pairs of non-nearest neighbor ions in order to eliminate
the spurious NNN imperfections. Given that one has an
unwanted hi,j�

i
x�j

x, one can add more Trotter steps to
the protocol of the form �hi,j�

i
x�j

x in order to have an
Hamiltonian free of NNN couplings. The dynamics as-
sociated to the step with H2 is implemented similarly to
the one of H1, with a di↵erent choice of the initial phases
of the lasers, in order to achieve a YY interaction.

The Hamiltonian H3 is realized as a combination of
2N red and blue detuned lasers with appropriate ini-
tial phases in order to recover a coupling of the i-th
ion (i = 1, ...N) with the mi-th normal (shifted) mode
⌘i,mi

⌦i�
i
x(b†mi

+ bmi
). The i-th ion is driven with red

and blue detuned lasers to the mi-th mode, establishing
a one-to-one correspondence between the first N ions and
the first N normal modes. Moreover, the last ion of the
chain is driven by 2N lasers detuned in order to be cou-
pled with the same modes of the ions in the chain. Two
additional rotations of the spins of all ions around the
Y axis are applied before and after coupling the spins to
the phonons. They can be obtained by acting two times
with a global beam upon all the N + 1 ions at the same
time. The Hamiltonian describing this process is,

He�p =
NX

i=1

(⌦i⌘i,mi�
i
z+⌦N+1,i⌘N+1,mi�

N+1
z )(bmi+b†mi

).

(8)
The Rabi frequencies of the lasers must be chosen accord-
ing to ⌦i = g/2⌘i,mi

, ⌦N+1,i = g/2⌘N+1,mi
. If the last

ion is initialized with the spin aligned along the Z axis
and not addressed by spin flip gates during the simula-
tion, the previous described gates result in the e↵ective

Trapped ions

Quantum chemistry models 
L. García-Álvarez et al., arXiv 2015

Superconducting circuits

Further works involving DAQS concepts

+ +

+ +

…

…

a b

Superconducting circuits

Quantum field theory models 
L. García-Álvarez et al., PRL 2015



Complexity 
Simulating/Computing 

Complexity

DQS + AQS+AQC

Neuromorphic 
Quantum Computing 

(NQC)

Quantum memristors provide complexity

Digital-Analog 
Quantum Simulation 

DAQS

Analog blocks provide complexity

Digital steps provide versatility

Digital-Adiabatic 
quantum computing 

DAQC

Digital steps provide versatility

Adiabatic blocks provide complexity

Embedding Quantum Simulators 
EQS

Optimal Quantum Control 
OQC

Bilbao Quantum Machine 
BQM

Quantum Machine Learning 
QML

Quantum Artificial Intelligence 
QAI


