# Short baseline experiments and sterile neutrinos

Nick van Remortel Solvay-Francqui Workshop on Neutrinos May 27-29 2015



**Research Foundation** Flanders Opening new horizons

foundation of public utility









#### Overview

- Tensions with 3 neutrino paradigm by range of experiments  $\rightarrow$  sterile neutrinos
- Cosmological bounds
- Mutual tension between experiments
- Prospects for near future
- The SoLid experiment at SCK-CEN

## Tensions <sup>3</sup>

 B. Kayser @ Moriond EW 2012:arXiv: 1207.2167
 "Not all of the neutrino data are successfully described by the standard three-neutrino paradigm. ...

...there are <u>hints</u>, <u>coming from a variety of sources</u>, that nature may contain more than three neutrino mass eigenstates, and squared-mass splittings significantly larger than the measured  $|\Delta m_{21}^2|$  and  $|\Delta m_{32}^2|$ . Whether individually or taken together, these <u>hints are not convincing</u>. However, they are <u>interesting enough to call for further</u>, hopefully conclusive, <u>investigation</u>"

## Sterile neutrinos <sup>4</sup>

- Experimental observation of short-baseline oscillations suggest at least one extra v mass eigenstate with relatively large mass splitting  $|\Delta m|^2 \gtrsim 0.1 \ eV^2$
- If confirmed & combined with Z decay properties this implies the existence of an electroweak singlet v state which is dubbed `sterile'
- Sterile v's can couple no non-SM particles and are valid candidates for (warm) dark matter
- Sterile v's can be easily incorporated in the SM Lagrangian via introduction of Dirac and/or Majorana mass terms

## Bounds from Planck <sup>5</sup>

 CvB decoupled at T=1MeV (~2 second old universe)

2 - (2)

 $\Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{\Omega_{4,1}}$ 

• Current temperature of CvB

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.945 K \to k T_{\nu} \approx 1.68 \cdot 10^{-4} eV$$

Number density/flavor For relativistic plasma

Extra radiation component

If non-relativistic

$$n_{f} = \frac{5}{4} \frac{\zeta(5)}{\pi^{2}} g_{f} T_{f}^{3} \to n_{\nu_{k}, \overline{\nu}_{k}} \approx 0.1827 \cdot T_{\nu}^{3} \approx 112 cm^{-3}$$

$$\Omega_{\nu} h^{2} = \frac{7}{4} \left(\frac{4}{11}\right)^{4/3} N_{eff}^{\nu} \Omega_{\gamma} h^{2} \qquad \text{Standard Model predicts:} \\ N_{eff}^{\nu} = 3.046$$

Changing Neff changes expansion rate at recombination Inversely proportional to small angular scale anisotropy CMB also slightly sensitive to  $\sum m_{\nu i}$ 

#### Bounds from Planck<sup>6</sup>



## Bounds from Planck<sup>7</sup>

[Planck 2013 results.XVI.]

 $N_{\rm eff}$ 

4.0

3.5

0.0



1.2

1.8

 $m_{\nu,\,\rm sterile}^{\rm eff}\,[eV]$ 

0.6

2.4

- assumption: 3 active neutrinos coexisting with extra massless species
- $\sum m_{\nu}$  and  $N_{\text{eff}}$  different impact on CMB: **no significant correlation**
- results adding **BAO**:

$$N_{\text{eff}} = 3.32 \pm 0.27 \ (68\% CL)$$
  
 $\sum m_{\nu} < 0.28 \text{ eV} \ (95\% CL)$ 

$$m_{\nu,\text{sterile}}^{\text{eff}} = (\Delta N_{\text{eff}})^{3/4} m_{\text{sterile}}^{\text{thermal}}$$

- for low  $N_{\text{eff}}$  unconstrained within  $\Omega_c h^2$
- for  $m_{\text{sterile}}^{\text{thermal}} < 10 \text{ eV}$  $N_{\text{eff}} < 3.91$  $m_{\nu,\text{sterile}}^{\text{eff}} < 0.59 \text{ eV}$

M. Spinelli, Neutrino 2014

(same results valid for

0.112

0.104

0.096

0.088

## Bounds from BBN<sup>8</sup>

- Abundance of light elements largely driven by total baryon/proton ratio
- But:
  - Electron neutrino's determine proton/neutron ratio
  - Change in expansion rate influences neutron/proton ratio
  - Abundance of helium most sensitive to  $\mathrm{N}_{\mathrm{eff}}$

| Model                                                           | Data                     | Neff                    | Ref.           |
|-----------------------------------------------------------------|--------------------------|-------------------------|----------------|
| $\eta + N_{eff}$                                                | $\eta_{CMB} + Y_p + D/H$ | $3.8^{(+0.8)}_{(-0.7)}$ | [331]          |
|                                                                 | $\eta_{CMB} + Y_p + D/H$ | < (4.05)                | [ <u>332</u> ] |
|                                                                 |                          | $3.85 \pm 0.26$         | [333]          |
|                                                                 | $Y_{\rm p}$ +D/H         | $3.82 \pm 0.35$         | [333]          |
|                                                                 |                          | $3.13 \pm 0.21$         | [333]          |
| $\eta + N_{eff}, (\Delta N_{eff} \equiv N_{eff} - 3.046 \ge 0)$ | $\eta_{CMB}$ +D/H        | $3.8 \pm 0.6$           | [122]          |
|                                                                 | $\eta_{CMB} + Y_p$       | $3.90^{+0.21}_{-0.58}$  | [122]          |
|                                                                 | $Y_{\rm p}$ +D/H         | $3.91_{-0.55}^{+0.22}$  | [122]          |
| K. N. Abazajian et al. ArXiv:12                                 | 04.5379v1 [h             | ep-                     |                |

## Global fits to SB Accelerator data <sup>9</sup>

#### Appearance data

Disappearance data



## Global SBA fits<sup>10</sup>

- Very narrow overlaps in detected signals
- Disappearance probability is quadratically suppressed by (small) appearance amplitudes

$$\sin^2 2\theta_{\mu e} \approx 4 \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu \mu}$$

• Forementioned tension can be (artificially) relaxed by considering 3+2, 1+3+1 scenarios  $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{\text{SBL},3+2} = 4 |U_{\alpha 4}|^2 |U_{\beta 4}|^2 \sin^2 \phi_{41} + 4 |U_{\alpha 5}|^2 |U_{\beta 5}|^2 \sin^2 \phi_{51} + 8 |U_{\alpha 4} U_{\beta 4} U_{\alpha 5} U_{\beta 5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \gamma_{\alpha \beta})$ 



#### Short Baseline Reactor <sup>11</sup>

- Fission reactors are intense source of  $\overline{v_e}$ :  ${}^{235}_{92}U + n \rightarrow X_1 + X_2 + 2n$  (200MeV)
  - $\rightarrow 6 \ \overline{v_e} \text{ per fission} \rightarrow 2.10^{20} \text{ n/s/GW}_{th}$ 
    - $2x \ 3$  beta decays distributed over hundreds of possible  $\beta$ -decay branches
    - $\overline{v_e}$ 's generally detected via inverse  $\beta$ -decay:  $\overline{v_e} + p \rightarrow e^+ + n$  (1.8 MeV energy treshold)
    - (only) 4 fissile isotopes produce  $v_e$ 's above IBD treshold:  $^{235}U$ ,  $^{238}U$ ,  $^{239}Pu$ ,  $^{241}Pu$
- First direct observation of  $\overline{v_e}$  by Cowan & Reines at Savannah River power plant: Science 124, 103 (1956).
- Followed by many measurements in 1980's and '90's at Savannah River, Goesgen, Rovno, Bugey, ILL



#### $\overline{v_e}$ flux calculation and reactor anomaly

• Ab initio computing: 1000's of decay branches computed analytically with input on branching fractions from nuclear databases, and using MCNP MC to track burnup and activity of each isotope over time:  $\rightarrow$  predicts electron and  $\overline{v_e}$ spectra in rather model independent way

Th. A. Mueller, et al., Phys. Rev C 83, 054615 (2011)

 $\overline{v_e}$  spectrum predicted with ~10% accuracy, dominated by missing experimental data on exotic nuclei and pandemonium effects



#### $\overline{v_e}$ flux calculation and reactor anomaly<sup>13</sup>

- Lots of high precision electron energy spectra available for pure fissile isotopes  $\rightarrow$  conversion of measured e-spectra into predicted  $\overline{v_e}$  spectra: Fit ~ 30 slices of endpoints to iteratively extract ~ 30 component  $\overline{v_e}$  spectra via  $E_v = E_0 - E_e$
- Combine ab-initio with fitting and inclusion of much more branches to obtain best prediction: uncertainties smaller and 3% systematic shift wrt precision reference data: Th. A. Mueller, et al., Improved predictions of reactor antineutrino spectra, Phys. Rev C 83, 054615 (2011)



#### $\overline{v_e}$ flux calculation and reactor anomaly<sup>14</sup>

- Lots of high precision electron energy spectra available for pure fissile isotopes  $\rightarrow$  conversion of measured e-spectra into predicted  $\overline{v_e}$  spectra: Fit ~ 30 slices of endpoints to iteratively extract ~ 30 component  $\overline{v_e}$  spectra via  $E_v = E_0 - E_e$
- Combine ab-initio with fitting and inclusion of much more branches to obtain best prediction: uncertainties smaller and 3% systematic shift wrt precision reference data:

P. Huber, Determination of antineutrino spectra from nuclear reactors, Phys. Rev C 84, 024617 (2011)



#### Reactor anomaly <sup>15</sup>

0.6

ROVNO88 3S

ROVNO88\_1S

18.2 m ROVNO88 2S

0.7

0.8

0.9

1.1

1.2

0.938

0.959

1.3

±0.008 ±0.068

±0.009 ±0.075

±0.009 ±0.07

+0.009 +0.06

±0.008 ±0.063

±0.010 ±0.038

+0.006 +0.035

±0.010 ±0.046

+0.059 +0.048

+0.043 +0.05

±0.024 ±0.05

±0.023 ±0.058

±0.115 ±0.044

0.000 +0.020

1.4

0.004

±0.022

1.3

1.4

- G. Mention et al., Reactor antineutrino anomaly, Phys.Rev.D 83, 073006 (2011), confirmed by P. Huber Phys.Rev.C 84, 024617 (2011)
- Previous improved  $\overline{v_e}$  spectra show 3% underestimation of  $\bullet$ integrated flux
- Improved neutron lifetime increases IB ightarrow
- Total predicted detectable flux increases by 3.5%



#### Reactor anomaly<sup>16</sup>



#### Constraints from LBR<sup>17</sup>

 Daya Bay coll, "Search for a Light Sterile Neutrino at Daya Bay", PRL 113, 141802 (2014)



 Gallium Anomaly <sup>18</sup>
 Radiochemical experiments GALLEX (Phys. Lett. B 420 (1998) 114, Phys. Lett. B 685 (2010) 47) & SAGE (Phys. Rev. C 59 (1999) 2246)



• Calibrated with  $\beta$ -sources (<sup>51</sup>Cr, <sup>37</sup>Ar)



All observed a **deficit** of neutrino interactions **compared** to the **expected activity:** 

R = meas./pred. rates = 0.86 ± 0.06(1 σ) 

#### Reactor data only

## Combined fits 19

Reactor + Gallium



- Combined no oscillation disfavored at more than 99.9% C.L.
- Significance of best fit ~ 3.3  $\sigma$

## GLOBAL fits of SBA, reactor&Gallium



- Severe tensions between disappearance & appearance data, between null results and signals
- Only 2  $|\Delta m_4|^2$  values around 0.9 and 6 eV<sup>2</sup> preferred



## Reactor experiment requirements<sup>22</sup>

- High flux  $\rightarrow$  High Thermal power
- Compact core: diam < 1 m</li>
- Small flux model uncertainties: pure & enriched fuel
- Approachable to d<10m
- Low backgrounds
- Fine detector segmentation and good energy resolution to allow E/L measurements
- High CC detection efficiency

## Impact of key exp. parameters



## New reactor experiments 24

| Name       | Det   | Size<br>[# × l] | ΔE<br>@MeV   | BL<br>[m]         | Rate<br>[1/d]                  | Effi<br>[%] |
|------------|-------|-----------------|--------------|-------------------|--------------------------------|-------------|
| SBL Korea  | Gd-LS | 1×700           | 6%           | 27                | 900                            | 40          |
| Neutrino-4 | Gd-LS | 2×800           | 100<br>pe/PM | 6-13              |                                |             |
| STEREO     | Gd-LS | 6×300           | 400 pe       | 8.811.2<br>1012.4 | 410 <sub>det</sub>             | 60          |
| Prospect   | LS Li | 140×20          | 10%          | 7.9               |                                | 30          |
|            |       | 10k             |              | 17.9              |                                |             |
| DANSS      | PS Gd | 2.5k×0.4        | 24%          | 9.7↔12.2          | 10k                            |             |
| SoLid      | PS Li | 23k×0.125       | 17%          | 5.511             | 416 <sub>det</sub> /t<br>@6.8m | 41          |

Torsten Soldner – ILL

NuPhys2014: Sterile Neutrinos @ Reactors

19

6





#### SoLid experiment overview <sup>26</sup>



- Source: SCK-CEN BR2 MTR reactor
  - **45-70 MWth** power, 150 days/year
  - Relatively low level of reactor background
- Baseline L = 6.8m (center detector)
- 2.88 tonnes fiducial mass
- Modest passive shielding
- 416 reconstructed evts/day
- E resolution = 17%
- Data taking in early 2016



- IBD efficiency 41% at 600keV treshold
- 300 days running at 6.8m baseline
- flux normalisation (4.1%), detector efficiency (2%) systematics and backgrounds (S:B ~ 5-6)
  large bins to account for energy
- smearing effects

## SoLid collaboration formed sept 2014











27



Tech

Virginia











- •Tank in Pool MTR research reactor
- •Licensed to run at power up to 100 MW
  - -variable operating power
  - -5/6 cycles per year
  - -low reactor backgrounds

**Universiteit Antwerpen** 

## SCK•CEN BR2



#### on axis with reactor





**Beryllium matrix** and assemblies

20

## Detector principle<sup>29</sup>

$$\bar{\nu}_e + p \rightarrow e^+ + n$$





- Neutron / gamma-ray discrimination from pulse
  - distinctive response for prompt and delayed signal
  - neutron used to trigger event read out
- Voxelisation of target volume
  - neutron captured in neighboring cube increasing localisation of IBD event

## Technology& Design





30



#### Advantages<sup>31</sup>

- Very compact and highly efficient detector:
  - Spatial resolution of 5 cm!
  - energy resolution: 10-17%
  - Movable over distance to core between 6-15m
  - Extendable by adding more planes
  - Very high background rejection due to
    - Time and topological signature of true  $\overline{v_e}$  signals
    - Additional shielding
    - Already operating in low background environment



## Staged design<sup>32</sup>

- Started with 8 kg prototype in dec 2013
- Finished construction of 288 kg full scale module in Nov 2014
- Planned (and funded) construction of a 1.4 T detector by summer 2016
- If more funding secured: Extension with 2<sup>nd</sup> station of 1.4 T

## NEMENIX 8kg prototype<sup>33</sup>

#### Purposes:

- Proof of composite scintillator concept
- Develop reconstruction techniques
- Measure backgrounds at experimental location
- TRL 2 3





N. Ryder @ Workshop Applied Antineutrino Physics 2014

## SM1 288 kg module<sup>34</sup>

#### Purposes:

- $80 \times 80 \times 45 \text{ cm}^3$
- Proof of event topology concept
- Measure  $\bar{\nu_e}$  energy spectrum
- Compare measured and calculated flux and spectrum
- Demonstrate reactor monitoring
- Scale up production, DAQ, etc.
- Improve reconstruction, analysis
- TRL 3 5



N. Ryder @ Workshop Applied Antineutrino Physics 2014

## Construction of SM1<sup>35</sup>

- UAntwerpen, UGent & VUB :
- 3000 cubes machined & assembled in 3,5 months time
- Cosmic Muon veto system built & tested
- Mechanical design + financing materials: SUBATECH Nantes









## Construction of SM1<sup>36</sup>

- Electronics: Oxford & Bristol
  - 300 MPPC sensors coupled to 300 optical fibers
  - 10 amplifier&digitizer boards, 5 DAQ modulel



## Deployment at SCK<sup>37</sup>



# First results <sup>38</sup> Cosmic muon tracks and dE/dx





- Allow to calibrate uniformity of gains in channels
- Estimate energy scale and resolution

#### First results<sup>39</sup>

#### • Channel gain calibration



• Energy scale



# Several methods with varying complexity



## Physics potential of Phase 1<sup>41</sup>

- Opportunity for precision measurement of flux at <d>=5.8m with 1-2 cycles
- Dominated by systematics
- Before most (or all) other experiments
- Measure rate difference at two values of d (5.5-6m)
- Measure E difference at two values of d
- Reactor flux calculation:
  - Will determine spectrum





#### Current status<sup>42</sup>

- 8kg prototype: ~60 days of reactor ON data under analysis: hints of significant excess of  $\overline{v_e}$ candidates  $\rightarrow$  to be published soon
- 288 kg demonstrator:
  - ~10 days of good quality reactor ON data should allow first flux measurement at ~5.5 m distance (uncovered terrain), perhaps first energy spectrum
  - Currently calibrated with cosmics,  $\gamma$  and n sources
- 1.4 T station under construction, to be finished by summer 2016
- Next BR2 cycle expected for Aug 2016

## Conclusion<sup>43</sup>

- Lots of conflicting data in search for short baseline oscillations
- Sterile neutrinos still viable portal for new physics
- New generation of improved SB accelerator and reactor experiments being staged
- Belgian BR2 reactor and SoLid experiment seem to be at front line for reactor based sterile neutrino searches

#### Backup



#### Other SB Reactor experiments<sup>45</sup>



NuPhys2014: Sterile Neutrinos @ Reactors

From: T. Soldner at nuPhys 2014, London Universiteit Antwerpen



## Hot off the press: PROSPECT2 operating @ HFIR

~2 liter Li-LS detector in small Bpoly/ lead shield

- not representative of final shield design but useful for MC validation







<sup>6</sup>Li and fast neutron PSD strongly suppress backgrounds

Studies Underway:

- Muon correlations
- Detailed simulation comparison
- Internal background contribution (Rx off)

10Hz Rx On singles rate > 200keV -several orders of magnitude reduction with more to come

From N. Bowden at AAP workshop, Paris 2014

## NUCIFER @ OSIRIS and STEREO @ ILL<sup>48</sup>

#### Main caracteristics of NUCIFER :

- 850 L of Gd-loaded (0.2%) liquid scintillator (MPIK scintillator),
- 16 PMTs fixed on an acrylic buffer,
- central calibration tube,
- ~7 m from a 70 MW<sub>th</sub> "pool type" research reactor.

#### STEREO

- Six cells (40×90×90) cm<sup>3</sup> filled with Gd-loaded liquid scintillator.
- Surrounding crown filled with unloaded liquid scintillator.
  - Containment of energy leakage
  - Active veto of external background
- Light collection :
  - Four PMTs per cell and acrylic buffer.
  - Acrylic walls and optical segmentations with VM200.







#### **Backgrounds at various facilities**<sup>50</sup> PROSPECT @ NIST







# 6

#### Radioactive sources

 Plans to place MCi sources inside or near existing v detectors

<sup>144</sup>*Ce* at Daya Bay D.A. Dwyer et al., PHYSICAL REVIEW D 87, 093002 (2013)

 $10^{2}$ 



#### <sup>144</sup>*Ce*, <sup>51</sup>*Cr* SOX at Borexino G. Bellini et al., JHEP08(2013)038



## Short Baseline Accelerator<sup>52</sup>

- First v anomalies appear in short baseline  $\overline{\nu_{\mu}}(\nu_{\mu})$  beam experiments:
  - 2001 LSND Collab.: Evidence for neutrino oscillations from the observation of  $\overline{v_e}$  appearance in a  $\overline{v_{\mu}}$  beam, Phys. Rev. D64, 112007 (2001).  $P(\overline{v_{\mu}} \rightarrow \overline{v_e}) = (0.264 \pm 0.067 \pm 0.045)\%$

implying  $|\Delta m_4|^2 > 0.1 eV^2$ 

- 2002 KARMEN Collab.: Upper limits for neutrino oscillations  $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$  from muon decay at rest, Phys. Rev. D65, 112001 (2002)

Exclude large part (but not all) of parameter space favored by LSND

## Short Baseline Accelerator<sup>53</sup>

- First v anomalies appear in short baseline  $\overline{v_{\mu}}(v_{\mu})$  beam experiments:
  - MINIBOONE: Initially no conformation (2007), but more data and re-analysis show excess both in  $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$  and  $\nu_{\mu} \rightarrow \nu_{e}$  modes Improved Search for  $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$  Oscillations in the MiniBooNE Experiment, PRL 110, 161801 (2013)
  - MINOS (2005-2012): Long baseline with near (1km) and far (735 km) station, high energy  $v_{\mu}$  and  $\overline{v_{\mu}}$  beam: no evidence of distorted v energy spectrum, using CC+NC events: exclude most of the favored region by LSND+MINIBOONE for  $|\Delta m_4|^2 < 1eV^2$
- Overall severe tension between signals in appearance and disappearance data
- Large mixing  $\sin^2\theta_{\mu e4} > 10^{-3}$  excluded for  $|\Delta m_4|^2 < 1eV^2$

## Update from MINOS 54



2014  $v_{\mu}$  dissappearance limits, presented by A. Sousa, neutrino 2014, Boston arXiv:1502.07715 [hep-ex]

# Follow-up experiments<sup>55</sup> MINOS+: same Near+far detectors Extended beam intensity&energy, since 2013 Expected limits by 2016

Improve mixing angle sensitivity with factor 2



#### 20/02/15 ake Louise 2015 Thomas Strauss, AEC-LHEP Bern, 56 56 CH LAr Mass In the beaution of the bird MINOS **ICARUS T600** NOV 600m – Far Delector CARUS/T600 MicroBooNE MiniBooNE MicroBooNE NuM Neutrino Boost Beam Neutrin Beam LAr1-ND 110m - Nea SciBooNE 1-ND

**BNB** Target

#### 20/02/15

#### Thomas Strauss, AEC-LHEP Bern, 57 57 CH Oscillation Physics

# $v_{\mu}$ to $v_{e}$ oscillation $v_{e}$ Appearance



#### $v_{\mu}$ to $v_{x}$ oscillation $v_{\mu}$ Disappearance



#### nuSTORM 58

 nuSTORM: proposal for a v factory via stored μ beam, arXiv:1308.6822v1, arXiv:1402.5250v1

