www.solvayinstitutes.be

Université Libre de Bruxelles Campus Plaine - Solvay Room

Solvay-Francqui Workshop on

Brussels 27 - 29 May, 2015

Neutrinos: from Reactors to the Cosmos

Recent results from reactor experiments and prospects for the future

Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

Outline

- Neutrino Oscillations
- Past Oscillation Experiments for θ_{13} measurement
- θ_{13} hunting
- Present neutrino oscillation reactor experiments
- Future projects and neutrino mass hierarchy

First neutrino detection...

1956: Fred Reines and Clyde Cowan detect the first neutrino interactions near the nuclear reactor of Savannah River at the USA (11 m from the reactor and 12 m underground).

Nobel prize in 1995

Clyde Cowan Jr.

Frederick Reines

M. Dracos IPHC/CNRS-UdS

Brussels, May 2015

How neutrinos propagate through matter? (Mikheyev-Smirnov-Wolfenstein effect)

$$\begin{vmatrix} \mathbf{v}_{j}(t) \end{pmatrix} = e^{-iHt/\hbar} \begin{vmatrix} \mathbf{v}_{j}(0) \end{pmatrix} \qquad i \frac{d}{dt} \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = H_{j} \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix}$$
only for electron neutrinos
$$\underbrace{\mathbf{v}_{e}}_{CC} \qquad \underbrace{\mathbf{v}_{e,\mu,\tau}}_{CC} \qquad \text{in "ordinary" matter}$$

$$H_{j} = UHU^{\dagger} = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} U^{\dagger} \rightarrow \frac{1}{2E} \left[U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} U^{\dagger} \rightarrow \frac{1}{2E} \left[U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} U^{\dagger} + \begin{pmatrix} A_{cc} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right]$$
with: $A_{cc} = 2EV_{cc} = 2\sqrt{2}EG_{F}N_{e} \approx 7.56 \times 10^{-5} eV^{2} \left(\frac{\rho}{g/cm^{3}} \right) \left(\frac{E}{GeV} \right) \qquad (\rho \sim 3 g/cm^{3} \text{ for earth} erust)$

5

How neutrinos propagate through matter? (Mikheyev-Smirnov-Wolfenstein effect)

$$P_{\nu_{\mu} \rightarrow \nu_{e}(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})} \approx s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{\widetilde{B}_{\mp}}\right)^{2} \sin^{2} \left(\frac{\widetilde{B}_{\mp}L}{2}\right) \quad \text{"atmospheric"} \\ + c_{23}^{2} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \left(\frac{AL}{2}\right) \quad \text{"solar"} \\ + \widetilde{J} \frac{\Delta_{12}}{A} \frac{\Delta_{13}}{\widetilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\widetilde{B}_{\mp}L}{2}\right) \cos \left(\pm\delta_{CP} - \frac{\Delta_{13}L}{2}\right) \quad \text{"interference"} \\ \widetilde{J} = c_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13}, \Delta_{ij} = \frac{\Delta m_{ij}^{2}}{2E_{\nu}}, \quad \widetilde{B}_{\mp} = |A \mp \Delta_{13}|, A = \sqrt{2}G_{F}N_{e} \\ \text{matter effect} \\ P\left(\overline{\nu_{e}} \rightarrow \overline{\nu_{e}}\right) \approx 1 - \sin^{2} 2\theta_{12}c_{13}^{4} \sin^{2} \frac{\Delta m_{21}^{2}L}{4E} \qquad \text{no } \delta_{CP} \text{ dependence} \\ -\sin^{2} 2\theta_{13} \left[c_{12}^{2} \sin^{2} \frac{\Delta m_{31}^{2}L}{4E} + s_{12}^{2} \sin^{2} \frac{\Delta m_{32}^{2}L}{4E}\right]$$

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

M. Dracos IPHC/CNRS-UdS

Brussels, May 2015

The θ₁₃ hunting

predictions of 63 models

The θ₁₃ hunting

disappearance of electron neutrinos

Actually, we have almost neglected θ_{13} on this figure

For $\theta_{13} \sim 10^{\circ}$

Inverse β decay and reactor neutrino detection mode

In a pure scintillator the neutron will be captured by hydrogen:

 $n H \rightarrow D \gamma$ (2.2 MeV)

Very often the scintillator is doped with gadolinium that increase the capture probability and liberates more γ 's:

n ^mGd
$$\rightarrow$$
 ^{m+1}Gd γ ' s (8 MeV)

M. Dracos IPHC/CNRS-UdS

The CHOOZ detector

- Site: nuclear plant of CHOOZ, Ardennes (France)
- 2 reactors: 2x4200 MW
- deep: 300 mwe
- 5 tons liquid scintillator (doped with gadolinium)
- <L> ~ 1 km

$$\overline{v}_e + p \rightarrow n + e^+$$

 $n + Gd \rightarrow 8 \text{ MeV } \gamma$

5-tons target

Brussels, May 2015

Chooz results

Best limit up to 2011: CHOOZ nuclear reactor experiment

$$\overline{v}_e \rightarrow \overline{v}_x$$
 disappearance experiment

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

Brussels, May 2015

13

~short term expectations

Meanwhile...

New proposals for neutrino beams to measure:

• θ_{13} as low as possible

 $\otimes B$

- neutrino mass hierarchy (sign of Δm_{13})
- CP violation

(Super Beams, Beta Beams, Nutrino Factory)

 $\pi \rightarrow \mu + \nu$

 $\pi \rightarrow \mu + \nu$

Project Comparison (unknown θ_{13})

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

Meanwhile...

	New Reactor Projects ready (2011)						
	Daya Bay	Dou	ble Chooz	•	RENO		
	(China)	(F	rance)	(Sou	(South Korea)		
Ling Ao NPP Daya Bay NPP		o Ik		YongGwan	g Nuclear Power Plant		
		Luminosity in 3 years (ton·GW·y)	Overburden near/far (mwe)	Expected sensitivity	Start of data taking		
	Daya Bay	4200	270/950	<0.01	August 2011		
	Double Chooz	210	80/300	0.02~0.03	April 2011		
	RENO	740	90/440	~0.02	August 2011		

Brussels, May 2015

Reactor neutrino detectors

Outer Veto (plastic scintillator)

> Shielding (15 cm steel)

Inner Veto (liquid scintillator) 78 (8") PMTs

Brussels, May 2015

Target (r=1.2 m)

- acrylic vessel (8 mm)
- 8.3 tons Gd-scintillator

Gamma Catcher (e=0.55 m) scintillator

Buffer (e=1.05 m)

- steel (3 mm)
- 80 tons "oil"
- 390 PMTs (10")

Reactor neutrino detectors

near detector ready since

θ₁₃ is large!!!

reactor experiments discovery of the $1 \rightarrow 3$ oscillation

M. Dracos IPHC/CNRS-UdS

T2R Do not forget the T2K evidence...

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

Precision era with high statistics

Detector calibration

Systematic errors

(limiting factor)

Daya Bay

DC	
Source	Uncertainty $(\%)$
Bugey4 measurement	1.4
Fractional fission rate of each isotope	0.8
Thermal power	0.5
IBD cross-section	0.2
Mean energy released per fission	0.2
Distance to reactor core	< 0.1
Total	1.7

	Efficiency	Uncer	tainty
		Correlated	Uncorrelated
Target Protons		0.47%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed Energy cut	92.7%	0.97%	0.12%
Prompt Energy cut	99.81%	0.10%	0.01%
Capture time cut	98.70%	0.12%	0.01%
Gd capture ratio	84.2%	0.95%	0.10%
Spill-in correction	104.9%	1.50%	0.02%
Combined	80.6%	2.1%	0.2%

RENO

Uncertainties sources	Uncertainties (%)	Errors of sin ² 2θ ₁₃ Error (fraction)
Statistics (near) (far)	0.21 % 0.54 %	0.008
Isotope fraction	0.7 %	0.003 → 15.6 %
Thermal power	0.5 %	0.002 → 6.9 %
Detection efficiency	0.2 %	0.003 → 15.6 %
Backgrounds (near) (far)	0.14 % 0.51 %	0.006 → 62.3 %

Brussels, May 2015

Background

	Background	Near	Far	Uncertainty	Method
	Accidentals	1.4%	2.3%	negligible	statistically calculated from uncorrelated singles
	⁹ Li/ ⁸ He	0.4%	0.4%	50%	measured with after-muon events
Daya Bay	$^{241}Am^{-13}C$	0.03%	0.2%	50%	MC benchmarked with single gamma and strong AmC source
	Fast neutrons	0.1%	0.1%	30%	measured from AD/water/RPC tagged muon events
	$^{12}C(lpha, \textit{n})^{16}C$	0.01%	0.1%	50%	calculated from measured radioactivity

Present results

(NuTel2015)

Precision era

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

excess for 4<E<6 MeV

How about the spectrum predictions?

- Significance: globally ~ 2 σ , locally up to 4 σ
- Events depending on reactor power disfavouring unexpected backgrounds
- A single β -branch or mono-energetic line cannot simulate this excess
- A possible explanation:
 - Decays of prominent fission daughter isotopes (~ 42% rate from ⁹⁶Y, ⁹²Rb, ¹⁴²Cs, ⁹⁷Y, ⁹³Rb, ¹⁰⁰Nb, ¹⁴⁰Cs, ⁹⁵Sr)

- No effect to θ_{13} especially if nearfar comparison is applied.
- Not large enough to explain the • reactor anomaly.

Possible explanations

Two general approaches used to calculate antineutrino spectra:

- Conversion method: relies on the measured β spectra from the ILL which are fitted with a set of virtual β branches and then converted into the corresponding antineutrino. spectra.
- Summation (or ab initio) method: makes use of all available information on the β decays of each fission fragment, summing each nuclide's individual β spectrum weighted by its yield in fission.

"illustrative comparison... the overall agreement between the measurements and ab initio calculation is surprising..."

Precision measurements of energy spectrum needed

- New Very Short
 Baseline experiments (mainly for sterile neutrino searches)
- Very good energy resolution needed

Li loaded Liquid scintillator

Brussels, May 2015

What next?

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

Neutrino spectrum

Energy resolution

The sensitivity will strongly depend on the energy resolution (E_m : mesured energy)

E_v [MeV]

Measured spectrum (without background):

M. Dracos IPHC/CN

Spectral analysis

Fourrier transform of the energy spectrum F(t): (t=L/E)8000

$$FCT(\omega) = \int_{t_{\min}}^{t_{\max}} F(t) \cos(\omega t) dt$$
$$FST(\omega) = \int_{t_{\min}}^{t_{\max}} F(t) \sin(\omega t) dt$$

Discriminant variables:

 $RL = \frac{RV - LV}{RV + LV}$ (for FCT) $PV = \frac{P - V}{P + V}$ (for FST) RL>0 and PV>0 \rightarrow NH RL<0 and PV<0 \rightarrow IH Statistical test of RL+PV

Brussels, May 2015

IH 6000 - NH 4000 2000 -2000 R(ight) V(alley) -4000-6000 (eft) V(alley) -8000 0.0024 0.0018 0.002 0.0022 0.0026 0.0028 0.003 ōm²/eV2 FST 8000 P(eak) ١H 6000 - NH 4000 2000 -2000 -4000 -6000 V(alley) 0.003 36 õm²/eV²

0.002

0.0022

0.0024

FCT

M. Dracos IPHC/CNRS-UdS 0.0018 PHYS. REV. D 78, 111103(R) (2008)

0.0028

0.0026

Detector position

PHYS. REV. D 78, 111103(R) (2008)

JUNO/RENO-50

- Rich physics program:
 - Reactor neutrinos
 - Mass Hierarchy
 - precision measurements of oscillation parameters
 - Supernovae neutrinos
 - Geoneutrinos
 - Solar neutrinos
 - Atmospheric neutrinos
 - Exotic searches

38

JUNO

	NPP	Daya Bay	Huizhou	Lufeng	Yangjiang			Taish	nan		
	Status	Operational	Planned	Planned	Under const	ructio	n	Unde	r con	struct	tion
	Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW			18.4 (GW		
Overburden ~ 700 m Kaiping, Jiang Men city, Guangdong Province		Evangzhou Guang Zhou 2.5 h drive	Cuang Zhou Dengguan Cuss 5 h drive Chengshan Chu Hai Chu Hai Chu Hai		Previous site candidate Huizhou Huizhou NPP Daya Bay		China Jangmen Beijing Jangmen Buarnel Roma Rusmel				
		3 /3	A AMa	Hong Ko	ong		ł	oy 202	20: 26	.6 GW	1
1	Section 1	53 km	Mac	au	Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6
1 A	53 kn	n /	10	3	Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9
	and the second		00		Baseline (km)	52.75	52.84	52.42	52.51	52.12	52.21
	my s	Laisna NDD	n		Cores	TS-C1	TS-C2	TS-C3	TS-C4	DYB	HZ
1	Yar	ngjiang			Power (GW)	4.6	4.6	4.6	4.6	17.4	17.4
В	nP russels. Mav 2	2015		M. Dracos IPHC	/CNRS-UdS	32.76	32.63	32.32	32.20	215	265

Experimental site

JUNO detector

Brussels, May 2015

High energy resolution

How to reach the required energy resolution?

- Photocathode coverage: 77% with 20" PMTs
- High PMT QE: ~35%
- Liquid scintillator attenuation length: ~30 m

R5912-100

35%

3.4 ns

3.5 kHz

1.5 ns

• High light yield with optimised fluors

R5912

25%

3 ns

1 kHz

5.5 ns

	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	6%/√E	5%/√E	3%/√E
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

MCP-PMT

(%)

25%

5 ns

2.2 kHz

3.5 ns

Brussels, May 2015

QE@410 nm

Rise time

Dark noise

TTS

Background

IBD~60/day

Event Type	Raw rate	Reduction
Radioactivity (in FV <17.2m)	0.4 Hz (PMTs) 2.2 Hz (LS) 3.7 Hz (acrylic) 0.2 Hz (support) 1.3 Hz (Rn) ~ 0.03 (rock)	Use low radioactivity PMTs; LS raw material purification (w/o distillation after LS production)
Cosmogenic isotopes (delayed)	340/day	
Spallation neutron	1.8 Hz	
Accidentals	~410/day	→ 1.1 /day w/ prompt-delayed distance $R_{p-d} < 1.5m$. Negligible.
Fast neutron	0.01/day	0.01/day (σ=100%)
⁹ Li/ ⁸ He	80/day	1.8/day after muon veto (σ =20%)
(a, n)	3.8/day (acrylic) 0.2/day (balloon)	→ 0.05 /day (acrylic), FV cut (σ =50%) → negligible (balloon), FV cut

Brussels, May 2015

IBD bkg

Performance

Brussels, May 2015

M. Dracos IPHC/CNRS-UdS

- Inputs
 - 100 kevents (6 years)
 - 3% @ 1 MeV energy resolution
 - 1% energy scale uncertainty
 - realistic backgrounds
- Sensitivity
 - JUNO only
 - 50% chance to have 3 σ or higher
 - 2.3% chance to have 5 σ or higher
 - JUNO + 1% $\Delta m_{\mu\mu}^2$
 - 84% chance to have 3 σ or higher
 - 16% chance to have 5 σ or higher

Oscillation parameters

- First experiment to observe:
 - •simultaneously "solar" and "atmospheric" oscillations
 - •more than two cycles of neutrino oscillations
- Complementary to long baseline accelerator program
- Probing the unitarity of U_{PMNS} to the sub-percent level!

Current

~3%

~4%

~7%

 Δm_{21}^2

 Δm_{32}^2

 $\sin^2\theta_{12}$

JUNO schedule

JUNO Collaboration

Europe (23)

APC Paris Charles U **CPPM Marseille** FZ Julich **INFN-Frascati INFN-Ferrara INFN-Milano INFN-Padova INFN-Perugia INFN-Roma 3 IPHC Strasbourg**

JUNO

INR Moscow JINR LLR Paris **RWTH** Aachen Subatech Nantes TUM **U.Hamburg** ULB **U** Mainz U Oulu **U** Tuebingen **YPI** Armenia

Observers: US institutions **HEPHY Vienna PUC Brazil**

Jyvaskyla U.

Asia (28)

BNU CAGS CQ U CIAE DGUT **ECUST** Guangxi U HIT **IHEP** Jilin U

Nanjing U Nankai U Natl. CT U Natl. Taiwan U Natl. United U NCEPU Pekin U Shandong U Shanghai JTU Sichuan U

SYSU Tsinghua **UCAS USTC** Wuhan U Wuyi U Xiamen U Xi'an JTU

M. Dracos IPHC/CNRS-UdS

RENO-50

- 18 kton liquid scintillator underground detector
- 15000 20" PMTs
- R&D funding (\$ 2M in 3 years, 2015~2017) given by the Samsung Science & Technology Foundation.
- A proposal has been submitted to obtain construction funding.
- 2015:
 - Group organization
 - Detector simulation & design
 - Geological survey
- 2016 ~ 2017 :
 - Civil engineering for tunnel excavation, Underground facility ready, Structure design,
 - PMT evaluation and order, Preparation for electronics, HV, DAQ & software tools, R&D for liquid scintillator and purification
- 2018 ~ 2020 : Detector construction
- 2021 ~: Data taking & analysis

RENO-50 physics

Determination of neutrino mass hierarchy

- 3 σ sensitivity from 5 years of data

•Precise measurement of θ_{12} , Δm_{21}^2 and Δm_{32}^2

$$\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} < 1.0\% (1\sigma) \qquad \frac{\delta \Delta m^2_{21}}{\Delta m^2_{21}} < 1.0\% (1\sigma)$$

$$\frac{\delta \Delta m^{2}_{32}}{\Delta m^{2}_{32}} < 1.0\% (1\sigma)$$

Neutrino burst from a Supernova in our Galaxy

- ~5,600 events (@8 kpc)

Geo-neutrinos : ~ 1,000 geo-neutrinos for 5 years

- Study the heat generation mechanism inside the Earth

Solar neutrinos : with ultra low radioactivity

- MSW effect on neutrino oscillation and solar models

Detection of J-PARC beam (Hyper-K): ~200 events/year

M. Dracos IPHC/CNRS-UdS

Comparisons and complementarities

- width of bands due to
 - δ_{CP} (for NOvA and LBNE)
 - $40^{\circ} < \theta_{23} < 50^{\circ}$ (for INO and PINGU)
 - $3.0\%\sqrt{(1 \text{ MeV/E})} < \sigma_{E} < 3.5\%\sqrt{(1 \text{ MeV/E})}$

- complementarities
 - reactors (low energy)
 - LS, antineutrinos
 - LBL (high energy)
 - accelerator and atm. neutrinos
 - LAr, WC, ...

Brussels, May 2015

Conclusions

- Reactor experiments allowed the θ_{13} measurement and opened now the door to:
 - neutrino Mass Hierarchy determination
 - observation of a possible CP violation in the lepton sector using conventional neutrino beams.
- Better reactor predictions are needed
 - new very short baseline reactor experiments in preparation will probably do the job.
- New Medium baseline large volume reactor experiments will very probably solve the Mass Hierarchy problem during the next 10 years:
 - High energy resolution is needed.
 - JUNO:
 - Under construction in China
 - RENO-50:
 - In R&D phase in S. Korea.
- Accurate measurement of neutrino oscillation parameters.

Is that all?

Supernovae explosions

- 5000 v will be detected by JUNO if explosion at 10 kpc (centre of our galaxy)
 - energy spectrum
 - time distribution
- better understanding of the explosion mechanisms
- detection of relic neutrinos produced by previous explosions

Detection of Geo-neutrinos

Geo-neutrinos in JUNO

1.8-3.4MeV Reactor Neutrinos: 14±0.14/day Geo-neutrinos 2±0.5/day JUNO ~700/year Kamland 116/10 years Borexino 14.3/5 years

KamLAND: 30±7 TNU Borexino: 38.8±12.0 TNU JUNO: reach an uncertainty of 3 TNU large background from reactors Aim: 37 ±10% (stat.) ±10% (syst.)

(TNU ~ number of detected v/year/kt LS (IBD, 10^{32} p)

Photodetectors

Nouveau type de PMT: MCP_c (remplacement des dynodes)

MicroChannel Plates Sphère entièrement active 2 3 Insulated trestle table 30% 2. Anode 3 3. MCP dodule 4 Bracket of the cables 5 4 Transmission Photocathode 40% 5. 6 7 Glass shell 6. 7 7. **Reflection Photocathode** 8 8. Glass joint 8 Efficacité quantique: 30% Transmission du verre: 40% Efficacité de collection: 70% Brussels, May 2015 M.I

Liquid scintillator

- **Baseline:** *LAB+PPO+bisMSB (without Gd)*
- Improvement of the light yield
 - Optimisation of the fluor concentration
- Improvement of the transmission
 - Solvent: LAB
 - improvement of the production process
 - Handling/purification
 - distillation, filtration, water extraction, N₂ separation, ...
- Radioactivity reduction
 - less critical due to Gd absence
 - Singles<3Hz (>0.7MeV), if ⁴⁰K/U/Th <10⁻¹⁵ g/g (preliminary)

Linear Alky Benzene (LAB)	Atte. Length @ 430 nm
RAW	14.2 m
Vacuum distillation	19.5 m
SiO ₂ column	18.6 m
Al ₂ O ₃ column	22.3 m
LAB from Nanjing, Raw	20 m
Al ₂ O ₃ column	25 m

Sterile neutrinos in Daya Bay

Double beta decay

PHYSICAL REVIEW D 73, 053005 (2006)

A.O.B.

