

Direct neutrino mass measurement

Solvay-Francqui Workshop on

Neutrinos: from Reactors to the Cosmos

Guido Drexlin, Institut für Experimentelle Kernphysik

Direct neutrino mass measurement

Solvay-Francqui Workshop on

Neutrinos: from Reactors to the Cosmos

Guido Drexlin, Institut für Experimentelle Kernphysik

- introduction: v-mass & ß-spectroscopy
- previous approaches
- KATRIN experiment: design & status
- novel approaches: Project 8 & ¹⁶³Ho EC-experiments
- Conclusion

hunting neutrino masses

hunting neutrino masses

introduction: v-mass & ß-spectroscopy

Review: G.D., V. Hannen, S. Mertens, C. Weinheimer, Current Direct Neutrino Mass Experiments, Advances in High Energy Physics Vol. 2013, ID293986

ß-decay: Fermi theory & v-mass

• model independent measurement of $m(v_e)$

- based solely on kinematic parameters & energy conservation

small shape modifications due to final states, radiative & recoil corrections

6

ß-decay: kinematics

• model independent measurement of $m(v_e)$

- based solely on kinematic parameters & energy conservation

ß-decay: relative shape modification

ß-isotopes for highest v-mass sensitivity

ß-isotopes for highest v-mass sensitivity

read-out technologies for highest sensitivity

MAC-E filter

min. longitudinal ß-energy E_{\parallel} $\Delta E = 0.9 \text{ eV} (100\%)$

cyclotron radiation max. transversal ß-energy E_{\perp}

 $\Delta E = 15 \text{ eV} (FWHM)$

ß-detection requirements

cover large solid angle (~ 2π) very low background rate at E₀ high energy resolution (~ eV) short dead time, no pile up

> ΔE < 2 eV usually suffices for sub-eV sensitivity

thermal µ-calorimeter

released decay-energy

 $\Delta E \sim 10 \text{ eV} (FWHM)$

source ⇔ detector

magn.-metal.calorimeter

decay-energy

 $\Delta E = 2-10 \text{ eV} (FWHM)$

experimental v-mass data: Re-187, Mainz & Troitsk

bolometer experiments for ¹⁸⁷Re

MAC-E principle: Mainz, Troitsk, KATRIN

Magnetic Adiabatic Collimation & Electrostatic Filter

Troitsk & Mainz experiments

Troitsk experiment

windowless gaseous tritium source

2011 re-analysis of selected data from 1994-2004: no evidence for Troitsk anomaly

 $m^2(v_e) = (-0.67 \pm 1.89 \pm 1.68) eV^2$

 $m(v_e) < 2.05 \ eV$

V.N. Aseev et al., Phys. Rev. D 84 (2011) 112003

Mainz experiment

quench condensed tritium source

2004 final analysis of Mainz phase II data from 1998-2001: analysis of last 70 eV

 $m^2(v_e) = (-0.6 \pm 2.2 \pm 2.1) eV^2$

 $m(v_e) < 2.3 \, eV$

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

KATRIN – design & status

KATRIN experiment

Karlsruhe Tritium Neutrino Experiment

- next-generation direct v-mass experiment at KIT
- International Collaboration: 15 institutions in 5 countries:
- reference v-mass sensitivity:

~120 members

 $m(v_e) = 200 \text{ meV}$

KATRIN overview: 70 m beamline

tritium source: **10¹¹ ß-decays/s**

 $(\equiv LHC particle production)$

experimental challenges

- ₩ 10-3 isotope content in source
- ♦ 10-5 non-adiabaticity in electron transport
- ♥ 10-6 monitoring of HV-fluctuations
- ₩ 10-8 remaining ions after source
- ♥ 10-14 remaining flux of molecular tritium

total background: 10⁻² cps

 $(\equiv low level @ 1 mwe)$

reached or exceeded

KATRIN – challenges and solutions

required: source fluctuation: $\Delta T < 10^{-3}$

required: HV-fluctuations: $\Delta U < 60 \text{ mV}$

- **TLK**: unique large research facility at KIT for KATRIN and fusion (ITER) 20 years of experience in tritium handling and processing, > 20 FTE

B. Bornschein et al., Fusion Sci. Techn. 60 (2011) 1088

cryostat assemby at ri GmbH progressing well and on schedule

- arrival at KIT (TLK) expected in mid-August 2015
- WGTS system integration with tritium loops is on the critical path

electrostatic spectrometers & detector

KIT-KCETA

LFCS low-field fine-tuning EMCS earth field compensation

main spectrometer vessel

Ø **=** 12.7 m

2011: fully commissioned large Helmholtz coil system

January 2012: Inner electrode system (24,000 wires) completely mounted (precision: 200 µm!)

Minning

 $\Delta U = 20 \text{ mV}!$

spectrometer commissioning

two long-term commissioning phases SDS-I/SDS-II in 2013-15 to verify:

- concepts & functionality of all components: UHV, HV, SC, DAQ,...
- MAC-E filter characteristics via egun-transmission studies
- background model (electrons) & optimise bg-suppression methods

Transmission studies & mapping

Transmission studies & mapping

Transmission studies & mapping

backgrund – status

backgrund – status

R_{bq}(total) ~ 10 mcps reference value: R_{ba}(total) ~ 1050 mcps experimental value: ACHILLES Background reduction required by factor ~ 100 vessel **NEG-pump** very large surfaces

magnetic & electrostatic shielding only against charged particles: e⁻ & H⁻
 neutral, unstable atoms (^{219,220}Rn, H*) can penetrate to inner flux tube

Rn-background & LN2-cooled baffles

efficiency of IN2-cooled Cu-baffles

Rydberg model of background

40

KATRIN neutrino mass sensitivity

first explorative T2 data in mid-2016

- small column density pd allows first search for sterile keV neutrinos
- ramp up to nominal pd-values until end of 2016
- early 2017: start T2 with nominal pd

reference v-mass sensitivity

for 3 'full beam' (5 calendar) years:

sensitivity $m(v_e) = 200 \text{ meV} (90\% \text{ CL})$

350 meV (5σ)

explore fully differential read-out recent ToF-studies very promising!!

novel approaches: Project 8 & ¹⁶³Ho EC-experiments

PROJECT 8

Project 8 – a novel spectroscopic approach

Cyclotron Radiation Emission Spectroscopy (CRES)

 observe coherent cyclotron radiation of ß-decay electrons in homogeneous magnetic field of B = 1 T

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{e \cdot B}{m_e + E_{e,kin}}$$

- precise measurement of ω yields electron kinetic energy

B. Monreal, J. Formaggio, Phys. Rev. D 80, 051301(R) (2009)

Project 8 – recent technology breakthrough

Single electron detection

- electron source: ^{83m}Kr-decay (E = 17.83 keV / 30.2-30.4 keV / 31.9 keV)
- s.c. solenoid B = 1 T with weak harmonic magnetic trap of up to 8.2 mT
- 1 m WR42 waveguide for TE₁₀ mode to receiver (pre-amps)

D.M. Asner et al., Single electron detection and spectroscopy via relativistic cyclotron radiation, Phys. Rev. Lett. 114, 162501 (2015)

Physicists have long known that charged particles like electrons will spiral in a magnetic field and give off radiation. But nobody had ever detected the radio waves emanating from a single whirling electron—until now. The striking new technique researchers used to do it hight sponden belo particle objective a question that has the hight spondent belo particle objective a question that has the particular technique and the has the has the hight spondent a question that has the hight spondent as the has the hight spondent as thight spondent as the hight spondent as the hight spondent

By Adrian Cho 21 April 2015 6:45 pm 33 Comments

Physics World - the member magazine of the Institute of Physics physics world.com

Cyclotron radiation from a single electron is measured for the first time Apr 27, 2015 @29 comments

Going in circles: the Project 8 experime

The cyclotron radiation emitted by a single electron has been measured for the first time by a team of physicists in the US and Germany. The research provides a new and potentially more precise

Project 8 – single electron

first detection of cyclotron radiation from a single keV electron

45

Project 8 – ^{83m}Kr spectrum

energy resolution :

- increase resolution ΔE at expense of statistics
- shallower trap depth:
 - a) different field gradients sampled
 - b) steeper pitch angles
 - c) less trapping

future :

- further improve ΔE
- first T2 runs, larger 1 cm³ cell then 10 cm³ cell
- plan for an atomic tritium source??

electron capture & v-mass

■ EC-process of ¹⁶³Ho : ¹⁶³Ho + $e^- \rightarrow v_e + {}^{163}Dy^*$ (only from $s_{\frac{1}{2}}$ or $p_{\frac{1}{2}}$ orbitals) 1 – after EC, v_e carries away energy

electron capture & v-mass

EC-process of ¹⁶³Ho : ¹⁶³Ho + $e^- \rightarrow v_e + {}^{163}Dy^* \rightarrow {}^{163}Dy + T_C$ 2 – atomic hole state de-excites to g.s.

electron capture & v-mass

Region close to Q-value Q_{EC}: v_e carries away energy and momentum, allows to measure m²(v_e)

¹⁶³Ho-EC: description of the spectrum

exact Q-value (2.5...2.8 keV): ideal, if Q_{EC} is very close to M1 resonance

¹⁶³Ho-EC: description of the spectrum

exact Q-value (2.5...2.8 keV): v-mass sensitivity can change by factor 3-4

¹⁶³Ho electron capture & statistics

Required setups for sub-eV sensitivity

- design of final experiment: independent measurement of Q_{EC} required Penning trap mass spectroscopy: SHIPTRAP (GSI) 30-100 eV, MPIK
- # of events $N_{ev} > 10^{14}$
- for 10¹⁴ events / year need
 10⁵ detectors (100 Bq each)

typical detector parameters:

- small pile up $f_{pu} < 10^{-5}$
- short rise time $t_r < 1 \ \mu s$
- $-\Delta E(FWHM) < 5 eV$

arrays of low-temperature micro-calorimeters

low-temperature µ-calorimeters

¹⁶³Ho-experiments: the fever is on

Common experimental challenges to reach sub-eV sensitivity:

- high purity ¹⁶³Ho source (production)
- excellent detector performance (arrays)
- background reduction

- Comenius University, Bratislava, Slovakia
- Dept. of Physics, IIT Roorkee, India
- JGU Mainz
- INR, Hungarian Acad. of Sciences
- ITEP, Moscow, Russia
- Univ. of Tübingen, Germany
- KIP, Heidelberg University, Germany
- MPIK Heidelberg, Germany
- PNPI Petersburg, Russia
- Saha Institute of Nuclear Physics, Kolkata, India

- Milano-Bicocca University, Italy
- INFN Sez. Milano-Bicocca, Italy
- INFN Sez. Genova, LNGS, Italy
- INFN Sez. Roma, Italy
- Lisboa University, Portugal
- Miami University, USA
- NIST, Boulder, USA
- JPL, Pasadena, USA

NuMECS

- LANL, Los Alamos, USA
- NIST, Boulder, USA
- Univ. of Wisconsin, Md., USA

ECHo – from pixels to arrays

increase number of pixels and make use of microwave SQUID multiplexing

ECHo – recent results

most precise calorimetric ¹⁶³Ho spectrum obtained

- rise time t = 130 ns
- $-\Delta E = 7.6 \text{ eV} @ 6 \text{ keV} (2013)$
- ΔE = 2.4 eV @ 0 keV (2014)

Future steps

- background: material screening
- bg-level: 5×10⁻⁵ counts/eV/det/day
- high-purity ¹⁶³Ho sources: mass separation at CERN-ISOLDE

phase-1: 2015 – 2018

1000 Bq and 1 y: $m(v_e) < 10 \text{ eV}$

phase-2: 2018 – ...

10⁶ Bq and 3 y: $m(v_e)$ in sub-eV range

Energy E [keV]

HOLMES – technology

- 2013: funding via ERC Advanced Grant (2014-2019)
- array 1000 TES-based microcalorimeters, each with 300 Bq of Ho-163 fully embedded

key tasks:

- ¹⁶³Ho isotope production: n-irridiation of ¹⁶²Er₂O₃ @ILL
- ¹⁶³Ho source embedding: ion implanter
- optimisation of single pixels:

Mo/Cu TES on SiNx membrane with bismuth absorbers

- array engineering: 2x32 sub-arrays
- multiplexed read-out: microwave multiplexing (µMUX)
- data handling: FPGAs for 3×10⁵ Bq

successor to

MARE

- collect 3×10^{13} events over 3 years: sensitivity m(v) = 0.4 - 1.8 eV (90% CL)

- total Ho-163 activity:

baseline targets:

HOLMES – overview

Conclusions

kinematic studies of ß-decay/EC : the only model-independent method to determine the absolute v-mass scale

KATRIN will probe quasi-degenerate mass scale down to $m(v_e) = 200 \text{ meV}$

- first tritium runs expected in mid-2016
- studies for KATRIN phase II to go beyond this value, search keV-steriles

Project 8 – promising read-out technology (CRES), first single electron seen long R&D expected for planned atomic tritium source for sub-eV sensitivity

Ho-163 renaissance & excitement (ECHo, HOLMES)

- advantage: scalable approach
- large amount of work in Europe and the US, goal: reach sub-eV sensitivity

Conclusions

the complete picture of neutrino masses is obtained only by comparing high-precision results from direct neutrino mass searches with 0vßß experiments and cosmological studies

backup slides

absolute v-mass scale

history of tritium ß-decay experiments

ITEP	m _v	
T ₂ in complex molecule magn. spectrometer (Tret'yakov)	17-40 eV	experimental results for m_v^2
Los Alamos		100
gaseous T ₂ - source magn. spectrometer (Tret'yakov)	< 9.3 eV	√ ⁵⁰ I I
Tokio	< 13.1 oV	
T - source magn. spectrometer (Tret'yakov)	< 13.1 ev	E -50 − Livermore
Livermore		100 Los Alamos
gaseous T ₂ - source magn. spectrometer (Tret'yakov)	< 7.0 eV	150 Mainz
Zürich		• Troitsk
T ₂ - source impl. on carrier magn. spectrometer (Tret'yakov)	< 11.7 eV	-200 - ▲ Zürich
Troitsk (1994-today)		-250 - electrostatic
gaseous T ₂ - source electrostat. spectrometer	< 2.05 eV	-300 magnetic spectrometers
Mainz (1994-today)		
frozen T ₂ - source	< 2.3 eV	1986 1988 1990 1992 1994 1996 1998 2000
electrostat. spectrometer		year

MARE experiment: R&D for Re-187

MARE The Microcalorimeter Arrays for a Rhenium Experiment

Genova, U Miami, U Lisbon/ITN

- metallic Re absorbers (up to 300)
- m = (0.2-0.3) g ∜⇒ ~0.25 Bq
- TES sensors (Ir-Au bi-layer), multiplexed SQUID read-out
- $-\Delta E \sim 11 \text{ eV}$
- τ_{rise} ~ 160 µs

Milano, NASA/GSFC, U Wisconsin

MARE experiment: R&D for Re-187

radon background - data & model

excellent agreement of data & earlier Rn-model

Background due to stored electrons following nuclear decays in the KATRIN spectrometers and its impact on the neutrino mass sensitivity

S. Mertens^{a,*}, G. Drexlin^a, F.M. Fränkle^{a,b}, D. Furse^d, F. Glück^{a,c}, S. Görhardt^a, M. Hötzel^a, W. Käfer^a, B. Leiber^a, T. Thümmler^a, N. Wandkowsky^a, J. Wolf^a

keV-mass sterile neutrinos: WDM

exploratory studies to search for keV-mass scale sterile neutrinos (WDM)

- WDM: may mitigate problems of Λ CDM paradigm at smaller scales (kpc)
- tritium ß-decay allows to search for keV sterile v's up to $m(v) \sim 18 \text{ keV}$

keV-mass sterile neutrinos: WDM

exploratory studies to search for keV-mass scale sterile neutrinos (WDM)

- WGTS source luminosity plus new differential read-out scheme
- sensitivity down to $\sin^2 \theta \sim 10^{-7}$ seems possible, if control of systematics

Tritium-ß-decay Experiments for keV-Scale Sterile Neutrinos, JCAP 1502 (2015) 02

shape modification due to v-masses

Information in integrated spectrum from rather broad interval analysis uses 4 fit parameters: mass m(v_e), R_{bq}, endpoint E₀, amplitude A_{siq}

spectral shape modification & MTD

shape modification: information on m²(v_e) mainly from region 4 eV below E₀ Solution of the second second

spectral shape – integral measurement

only relative spectral shape is measured, no absolute measurement

4 parameters:

0.00

-0.01

- background rate R_{ba}
- signal amplitude Asia
- endpoint energy E₀
- neutrino mass $m^2(v_e)$

 $\rho = 0.67$

E₀ - 18575 (eV)

0.00

KATRIN v-mass sensitivity & MTD

■ sensitivity as a function of measuring time: in case systematics is constrained to $\sigma_{syst} = 0.017 \text{ eV}^2 \Rightarrow \text{very fast progress in sensitivity}$

important:

- systematics
- optimized MTD
- background

light sterile neutrinos: reactor anomaly

shape modification below E_0 by active $(m_a)^2$ and sterile $(m_s)^2$ neutrinos

light sterile neutrinos: reactor-v-anomaly

KATRIN sensitivity reevaluated for light (ev-scale) sterile neutrinos parameter region Δm² ~ 1 eV, sin² 2θ_s ~ 0.1 has been suggested by reactor anti-neutrino anomaly

ensemble testing – no bias for m_v

bias-free neutrino mass analysis

$$\sigma_{\rm stat}(m_{\gamma}^2) = (0.0162 \pm 0.0001) \,\mathrm{eV}^2$$

parameter	setting
column density	$\rho d = 5 \cdot 10^{17} \mathrm{cm}^{-2}$
scattering probabilities	$P_0 = 0.413339$
	$P_1 = 0.292658$
	$P_2 = 0.167331$
	$P_3 = 0.079129$
	$P_4 = 0.031776$
active source cross-section	$A_{\rm S}=53.3{\rm cm^2}$
magnetic field strengths	$B_{\rm S} = 3.6 \mathrm{T}$
	$B_{\rm max} = 6.0 \mathrm{T}$
	$B_{\rm A} = 3 \cdot 10^{-4} {\rm T}$
tritium purity	$\varepsilon_{\rm T} = 0.95$
background rate	$\dot{N}_{\rm bg} = 0.01 {\rm cps}$
detection efficiency	$\varepsilon_{\rm det} = 0.9$
measurement interval	$[E_0 - 30 \mathrm{eV}, E_0 + 5 \mathrm{eV}]$
Doppler effect	neglected
$_{\ell}$ physical boundaries	extrapolation to negative $m_{\mathbf{v}}^2$
tritium endpoint energy	$E_0 = 18575 \mathrm{eV}$

tritium ß-decay: final states

molecule (³HeT)⁺ in final state is left in an excited state:

- rotational-vibrational exciations
- electronic excitations (discrete levels up to continuum)
- excellent theoretical calculations available
- close cooperation with A. Saenz, experimental: TRIMS @ UW Seattle

parameter correlations

correlations of the 4 parameters E_0 , $m(v_e)$, A_{sig} , R_{bg} in the v-mass analysis

disentangling active-sterile neutrinos

correlation of parameters in the search for light (eV-scale) neutrinos

optimized scanning strategies

nominal: active neutrinos

specific for sterile neutrinos

in case of enhanced background

techniques in ß-spectroscopy

WGTS demonstrator

ISS

WGTS demonstrator

inner Loop

LARA

11 control Cabinets

S. Grohmann et al., The thermal behaviour of the tritium source in KATRIN, Cryogenics (2013)

background with 2-layer electrode

March 2, 2015: IE with full functionality does not further reduce bg !!

countermeasures against background

a novel background model: H* atoms

formation of highly excited hydrogen Rydberg atoms H* at walls

via PSD (photon) and ESD (electron) stimulated desorption

- long-lived (ms)
 ⇔long paths (>10 m)
- small E_b (meV) ∜ easily ionised

5s ({=0)

5p ({=1)

5d ({=2)

 $5f(\ell=3)$

5g ({=4)

a novel background model: H* atoms

formation of highly excited hydrogen Rydberg atoms H* at walls

via PSD (photon) and ESD (electron) stimulated desorption

- long-lived (ms) ⇔long paths (>10 m)

- small E_b (meV) ∜ easily ionised

n) otion IOm) I

ionisation of highly excited

hydrogen Rydberg atoms H* by BBR

- ♦ isotropic low-energy electrons on meV-scale
- Solutions can reproduce data
- electrode field-ionises part of H*-atoms

Ghz

a novel background model: H* atoms

KIT-KCETA

efforts to eliminate long-lived H* atoms from surface:

- remove hydrogen (H2O and H2) from wall by long bake-out procedure 200°C

ongoing bake-out:

- mid-June: new measurements with imporved surface conditions
- also: improved shielding against γ´ε (suppress PSD)

background sources

- ß-decay electrons from areas with different electrostatic potentials
- ß-decays from T⁻/T⁺ ions, clusters X-rays, gammas & electrons from natural radioactivity or scattered ß-decay electrons (beam-halo)

systematic effects – I

- precise measurement of experimental response function
- special unfolding technique to derive cross section σ_{inel} at E = 18.6 keV
- narrow analysis window around E_0 to maximise no-loss electron fraction

systematic effects - II

- stabilisation of ρd : injection pressure, beam tube T = 27K, Laser-Raman
- cyclic scans of pd: high-intensity electron gun
- monitoring of pd: rear detector/system, forward beam monitor

hysteresis effects from HV and ρd scanning

- minimisation of trapped particles from scanning of column density ρd
- optimised scanning strategy
- randomized steps of HV

 $\Delta m_{\nu}^2 = -$

general relation for

tritium-ß-decay

systematic effects – III

- stabilisation of plasma: neutralise ions ($\Phi < 20 \text{ mV}$), injection of meV-e⁻
- cyclic scans of plasma: high-intensity electron gun runs at different pd
- monitoring of plasma: rear detector/system

MARE experiment

general strategy to increase sensitivity to sub-eV regime:

- deploy large arrays of cryogenic micro-bolometers up-scaling of source intensity with 1 mg Re ≈ 1 decay/s
- avoid pulse pile-up: develop faster detectors
- develop multiplexed read-out technologies
- improve energy resolution to 1 eV-level

MARE-I ~ 10⁹-10¹⁰ ß-decays

- set-up small bolometer array: v-mass sensitivity $m(v_e) \sim few eV$
- test & select different isotopes (¹⁶³Ho-EC/¹⁸⁷Re-ß-decay) and read-out/sensor techniques (TES, Si-thermistor, MMC, ...)

MARE-II ~ 10¹⁴ ß-decays

- full set-up, large bolometer array with 10⁴-10⁵ pixels
- aim for statistical v-mass sensitivity $m(v_e) \sim 0.1-0.2 \text{ eV}$

Project 8 – a novel technology ansatz

experimental status end of 2013:

- prototype experiment running at UW Seattle
- aim: detect cyclotron emission from single electron
- source: 17.8 keV electrons from ^{83m}Kr (K32-line)
- cryostat: B = 1T, small magnetic bottle ($V = 1 \text{ mm}^3$)

R&D 2014 on:

- antenna technology
- receiver & DAQ technology
- study Doppler shifts
- Project 8 ultimately aims for

sensitivity m(v) =100 meV (90% CL)

a lot of R&D work still to be performed

Project 8 – power consideration

experimental challenges:

 very small power P of emitted synchrotron radiation by single keV-electron, requires adequate antennae & amplifier technologies

$$P(\beta,\gamma) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2e^2 \cdot \omega_0^2}{3c} \cdot \frac{\beta^2 \cdot \sin^2 \theta}{1-\beta^2} \quad \begin{array}{l} \mathsf{P}_{\mathsf{signal}} \sim 10^{-15} \, \mathsf{W} \quad (1\mathsf{T}, \, 18.6 \, \mathsf{keV}) \\ \mathsf{P}_{\mathsf{noise}} \sim 10^{-17} \, \mathsf{W} \quad (\mathsf{thermal noise ampl.}) \end{array}$$

MC simulation: 30 µs measuring interval with 10⁵ ß-decay electrons

Project 8 – future steps

next steps in CRES

- improve (fiducial) detection volume to 1 cm³
- improve energy resolution to $\Delta E = 1 \text{ eV}$ by applying more shallow "bathtub" trap
- first measurements with molecular T2 cell design under development
- expand fiducial volume to 10 cm³
 with patch antenna array
- R&D on atomic tritium source
- ultimate dream: go beyond KATRIN sensitivity (needs a lot of R&D)

¹⁶³Ho-EC: description of the spectrum

exact Q-value (2.5...2.8 keV): v-mass sensitivity can change by factor 3-4

recent theoretical investigations on role of two- & three-hole states in ¹⁶³Dy* (Robertson, Faessler et al.)*

- Dirac-Hartree-Fock approach to 2 holes

- different shape of 2h resonance & $m(v_e)$

4 parameters in shape analysis:

- neutrino mass $m(v_e)$
- distance of leading resonance (M1) to Q_{EC}
- width of resonance
- intensity of resonance

- Use TES arrays with 32x32 pixels
- Resolution 1 2 eV FWHM
- Need 5 TES arrays for 0.2 eV/c² sensitivity
 - Makes 5000 pixels (vs. 50000 for Re)
- ¹⁶³Ho production has been demonstrated
- Embedding process is under investigation
- Readout developed and tested as prototype
- Next: TDR for funding

F. Gatti, ISAPP 2011 and J Low Temp Phys (2008) 151

