The origin of cosmic neutrinos and the high energy sky, a theoretical perspective

> E. Waxman Weizmann Institute

Solvay-Francqui Workshop on Neutrinos: from reactors to the cosmos May 2015

The main driver of HE v astronomy: The origin of CRs

UHE, >10¹⁰GeV, CRs

UHE: Composition

UHE: Energy production rate & spectrum

dQ/d log E =Const.:

- Observed in a wide range of systems,

- Obtained in collision-less shock acceleration (the only predictive model of particle acceleration).

Intermediate energy: Neutrinos

• $p + \gamma \rightarrow N + \pi$ $\pi^{0} \rightarrow 2\gamma$; $\pi^{+} \rightarrow e^{+} + \nu_{e} + \nu_{\mu} + \overline{\nu_{\mu}}$; $\varepsilon_{\nu}/\varepsilon_{p} \sim 0.05$ \rightarrow Identify UHECR sources,

Study BH accretion/acceleration physics.

• For all known sources, $\tau_{\gamma p} <=1$:

$$\varepsilon_{v}^{2} \frac{dj_{v}}{d\varepsilon_{v}} \leq \Phi_{WB} \equiv \frac{3}{8} \frac{ct_{H}}{4\pi} \zeta \frac{dQ_{p}}{d\log \varepsilon} = 2.5 \times 10^{-8} \zeta \left(\frac{dQ/d\log \varepsilon}{10^{44} \text{ erg/Mpc}^{3} \text{yr}}\right) \frac{\text{GeV}}{\text{cm}^{2} \text{s sr}}$$

$$\zeta = 0.6, 3 \quad \text{for} \quad f(z) = 1, (1+z)^{3}$$

$$\overset{\text{[EW \& Bahcall 99; Bahcall \& EW 01]}}{di}$$

• If X-G p's:
$$\varepsilon_v^2 \frac{dJ_v}{d\varepsilon_v} (10^{19} \text{eV}) = \Phi_{\text{WB}}$$

[Berezinsky & Zatsepin 69]

 \rightarrow Identify primaries, determine f(z)

π production: p/A-p/ γ

- $\pi \text{ decay} \rightarrow \nu_e: \nu_\mu: \nu_\tau = 1:2:0 \text{ (propagation)} \rightarrow \nu_e: \nu_\mu: \nu_\tau = 1:1:1$
- $p(A)-p: \varepsilon_v / \varepsilon_p \sim 1/(2 \times 3 \times 4) \sim 0.04 \ (\varepsilon_p \rightarrow \varepsilon_A / A);$
 - IR photo dissociation of A does not modify $\Gamma;$
 - Comparable particle/anti-particle content.
- p(A)-γ: ε_ν/ε_p~ (0.1-0.5)x(1/4)~0.05;
 - Requires intense radiation at ε_{γ} > A keV;
 - Comparable particle/anti-particle content,

 v_e excess if dominated by Δ resonance (dlog n_y/dlog ε_y <-1).

WB bound: p and v production

Log E

[M95: Mannheim 1995 P97: Protheroe 1997 HZ97: Halzen & Zas 1997]

Bound implications: >1Gton detector (natural, transparent)

AMANDA & IceCube

Looking up: Vetoing atmospheric neutrinos

[Schoenert, Gaisser et. al 2009]

- Look for: Events starting within the detector, not accompanied by shower muons.
- Sensitive to all flavors
 (for 1:1:1 ν_µ induced µ~20%).
- Observe 4π .
- Rule out atmospheric charmed meson decay excess:

Anisotropy due to downward events removal (vs isotropic astrophysical intensity).

Event 20 Date: 3-Jan-12

Energy: 1140.8 TeV Topology: Shower

with $v_e:v_{\mu}:v_{\tau}=1:1:1$ (π deacy + cosmological prop.).

Chris Weaver-April APS Meeting 2014

Lower energy: a ~30 TeV 'excess'?

- Excess at ~30TeV point →
 d log n_v/d log ε=-2.46+-0.12;
 softer than 2.2 at 90% cl.
- >50 TeV spectrum d log n,/d log ϵ =-2 (-1.9+-0.2)
- A new low E component?
- Note:
 - Binning,
 - Southern hemisphere only,
 - (- Fermi XG γ bgnd limit).

IceCube's detection: Implications

• DM decay?

The coincidence of 50TeV<E<2PeV v flux, spectrum (& flavor) with the WB bound is unlikely a chance coincidence.

- Unlikely Galactic: Isotropy, and $\varepsilon^2 \Phi_{\gamma} \sim 10^{-7} (E_{0.1 TeV})^{-0.7} GeV/cm^2 s sr$ [Fermi] $\rightarrow \varepsilon^2 \Phi_{\nu} \sim 10^{-9} (E_{0.1 PeV})^{-0.7} GeV/cm^2 s sr \leftrightarrow \Phi_{WB}$ If Galactic: New, unknown sources; Chance coincidence with WB.
- \rightarrow XG sources.
- Recall: known UHECR sources cannot account for IC's flux ($\tau_{\gamma p(pp)}$ <1) [e.g. Murase et al. 2014].

IceCube's detection: XG CR pion production (a) UHE CR sources reside in (<10¹⁷eV) "Calorimeters", or (b) Q>>Q_{UHE} sources (unknown) with $\tau_{\gamma p(pp)} \ll 1$ (ad-hoc) & Coincidence over a wide energy range. $dQ/d \log E$ b $\tau_{\gamma p(pp)} <$ p UHE (a) $\tau_{\gamma p(pp)} >$ ν IC v's $Log_{10} E[eV]$ 15 17 19

Candidate CR calorimeters: Starburst galaxies

- Radio, IR & γ-ray (GeV-TeV) observations
 → Starbursts are calorimeters for E/Z reaching (at least) 10PeV.
- Most of the stars in the universe were formed in Starbursts.

If:

CR sources reside in galaxies and

Q~Star Formation Rate (SFR), Then:

 $\Phi_{v}(\varepsilon_{v} < 1 \text{PeV}) \sim \Phi_{WB}$.

 (And also a significant fraction of the γ-bgnd).

A note on Fermi's XG diffuse γ-ray upper limit

- Fermi diffuse XG: $\epsilon^2 \Phi_{\gamma}(0.1 \text{TeV}) < 10^{-7} \text{ GeV/cm}^2 \text{s sr.}$
- IceCube diffuse XG: $\epsilon^2 \Phi_v$ (100TeV)~0.3x10⁻⁷GeV/cm²s sr.
- → Flat proton generation spectrum, d log n/d log ϵ >-2.2, with significant contribution to the diffuse XG γ -bgnd.

IceCube's detection: XG CR pion production

 (a) UHE CR sources reside in (<10¹⁷eV) "Calorimeters": Starbursts. Implications:

G-XG transition @ 10¹⁹eV;

The (G) > $10^{6.5}$ eV flux is suppressed due to propagation.

or

(b) Q>>Q_{UHE} sources (unknown) with $\tau_{\gamma p(pp)} \ll 1$ (ad hoc, fine tuning) & Coincidence over a wide energy range:

- AGN jets in Galaxy clusters,
 - dQ/dlog ϵ ~10⁴⁷erg/Mpc³yr, τ_{pp} ~10⁻²

[Murase, Inoue & Nagataki 2008]

- Low L GRBs;

Low Energy, ~10GeV

$$\frac{dQ}{d\log \varepsilon} \approx \frac{\left(\frac{dQ}{d\log \varepsilon}\right)_{\text{Galaxy}}}{\left(SFR\right)_{\text{Galaxy}}} \times \langle SFR/V \rangle_{z=0}$$

• Our Galaxy- using "grammage", local SN rate

$$\frac{dQ}{d\log\varepsilon} \sim [3 - 15] \times 10^{44} \left(\frac{\varepsilon}{10Z \text{ GeV}}\right)^{-\delta} \text{erg}/\text{Mpc}^3\text{yr}, \quad \delta \approx 0.1 - 0.2$$

• Starbursts- using radio to γ observations

$$\frac{dQ}{d\log\varepsilon} (\varepsilon \sim 10 \text{GeV}, z = 0) \approx 5 \left(\frac{0.3}{f_{synch.}}\right) \times 10^{44} \text{ erg} / \text{Mpc}^3 \text{ yr}$$

→ Q/SFR similar for different galaxy types, dQ/dlog ε ~Const. at all ε !

The cosmic ray spectrum

[From Helder et al., SSR 12]

The cosmic ray generation spectrum

Constraints on source density

$$n_{s}L_{\nu_{\mu}} \approx 0.6 \times 10^{43} \left(\frac{\zeta}{3}\right)^{-1} \text{erg/Mpc}^{3} \text{ yr} \implies L_{\nu_{\mu}} \approx 2 \times 10^{42} \left(\frac{\zeta}{3} \frac{n_{s}}{10^{-7} \text{ Mpc}^{-3}}\right)^{-1} \text{erg/s}$$

$$f_{\lim} \approx \frac{E_{\nu}}{AtP_{\nu\mu}} \approx 10^{-12} \text{ erg/cm}^{2}\text{s} \implies d_{\lim} \equiv \left(\frac{L_{\nu_{\mu}}}{4\pi f_{\lim}/2.4}\right)^{1/2} \approx 150 \left(\frac{\zeta}{3} \frac{n_{s}}{10^{-7} \text{ Mpc}^{-3}}\right)^{-1/2} \text{ Mpc}$$

$$N_{s} (\text{multiple} \quad \nu_{\mu} \quad \text{events}) = \frac{2\pi}{3} n_{s} d_{\lim}^{3} \approx 1 \left(\frac{\zeta}{3}\right)^{-3/2} \left(\frac{n_{s}}{10^{-7} \text{ Mpc}^{-3}}\right)^{-1/2}$$

• The absence of multiple- v_{μ} -event sources implies: $n_s > 10^{-7} (\zeta/3)^{-3} / \text{Mpc}^3$, $N_s > 10^6$, $\frac{N_s}{4\pi} > 30 / \text{deg}^2$, $L_v < 3 \times 10^{42} \text{ erg/s}$

Implications:

- Source identification by angular correlation unlikely (dΘ~0.5deg, N_v(z<0.1)/N_v~1/20).
- Bright AGN (FSRQ, BL Lac, n~10⁻¹¹(10⁻⁸)/Mpc³)- Ruled out.
- Starbursts, n~10⁻⁵/Mpc³- a few should be detected with A X 10. [Murase & EW 15]

Identifying the CR sources

- IC's v's are produced by the "calorimeters" surrounding the sources.
- $\Delta \Theta \sim 1 \text{deg} \rightarrow \text{Identification by angular distribution impossible.}$
- Our only (realistic) hope: Identification of transient sources by temporal $v-\gamma$ association.
- * UHE CR source must be transient:
 L>10⁴⁷erg/s, GRBs or bright (yet to be detected) AGN flares.
- Requires:

Wide field EM monitoring,

Real time alerts for follow-up of high E ν events,

and

Significant increase of the v detector mass at ~100TeV

 $[\Phi_{v}(\text{source}) \text{ may be } \leftrightarrow \Phi_{v}(\text{calorimeter}) \sim \Phi_{WB} [e.g. \Phi_{v}(GRB) \sim 0.1 \Phi_{WB}]].$

Source candidates & physics challenges

- Electromagnetic acceleration in astrophysical sources requires
 $\begin{array}{l} L > 10^{14} L_{Sun} \left(\Gamma^2 / \beta \right) \left(\epsilon / Z \ 10^{20} eV \right)^2 & [Lovelace 76; EW 95, 04; Norman et al. 95] \\ \hline GRB: 10^{19} L_{Sun}, M_{BH} \sim 1M_{sun}, M_{N-1}M_{sun}/s, \Gamma \sim 10^{2.5} \\ \hline AGN: 10^{14} L_{Sun}, M_{BH} \sim 10^{9} M_{sun}, M_{N-1}M_{sun}/yr, \Gamma \sim 10^{1} \end{array}$
- No steady sources at d<d_{GZK} \rightarrow Transient Sources (AGN flares?),

A note on GRBs

What will we learn from $v-\gamma$ associations?

- Identify the CR sources.
 Resolve key open Qs in the accelerators' physics (BH jets, particle acceleration, collisionless shocks).
- Study fundamental/v physics:
 π decay → v_e:v_µ:v_τ = 1:2:0 (Osc.)→ v_e:v_µ:v_τ = 1:1:1
 → τ appearance,
 GRBs: v-γ timing (10s over Hubble distance)
 - $\rightarrow LI \text{ to } 1:10^{16}; \text{ WEP to } 1:10^{6}.$ [EW & Bahcall 97; Amelino-Camelia, et al. 98; Coleman & Glashow 99; Jacob & Piran 07]
- Optimistically (>100's of v's with flavor identification): Constrain δ_{CP} , new phys.

[Blum, Nir & EW 05; Winter 10; Pakvasa 10;... Ng & Beacom 14; Ioka & Murase 14;Ibe & Kaneta 14; Blum, Hook & Murase 14]

Summary

- IceCube detects extra-Galactic v's. $\Phi_v = \Phi_{WB}$ at 50TeV-2PeV.
- * The flux is as high as could be hoped for.
- * $\Phi_v = \Phi_{WB}$ implies a connection with UHECRs.
- * Explained if UHECR sources reside in "calorimeters"- starbursts, implying a single transient source for all >1PeV (>1GeV?) CRs.
- * Strongly suggests UHECRs are p, G/XG transition at 10^{19} eV.
 - \rightarrow Closing in on the origin of Cosmic-Rays.
- Open Questions:
- * Uncertainties in v flux, spectrum, isotropy, flavor ratio.
- * The CR/v sources not identified [not unexpected].
- Temporal $v-\gamma$ association is key to: CR sources identification, Cosmic accelerators' physics, Fundamental/v physics.

What is required for the next stage of the v astronomy revolution?

- IceCube's detection rate

 (~1/yr @ E>1 PeV, ~10/yr @ E>0.1PeV)
 insufficient for precision
 spectrum, flavor ratio and (an)isotropy,
 and for source identification.
 - → Expansion of v telescopes M_{eff} @ ~1PeV to ~10Gton (NG-IceCube, Km3Net).
- Wide field EM monitoring.

- Adequate sensitivity for detecting the ~10¹⁰GeV GZK v's.
- HE γ -ray telescopes will play a key role

Backup Slides

Auger 2014: Fe out, He in

Where is the G-XG transition?

@ E<10¹⁸eV ?

dQ/dlog ε =Const \rightarrow @ E~10¹⁹eV

[Katz & EW 09]

• Fine tuning

Collisionless shock acceleration

- The only predictive model.
- No complete basic principles theory, but
 - Test particle + elastic scattering assumptions give v/c<<1: dQ/d log ε=Const., v/c~1: dQ/d log ε=Const.xε^{-2/9} (Γ>>1, isotropic scattering). [Keshet & EW 05]

Supported by basic principles plasma simulations,

[Spitkovsky 06, Sironi & Spitkovsky 09, Keshet et al. 09, ..., Sironi, Spitkovsky & Arons 13]

 dQ/d log ε=Const Observed in a wide range of sources (lower energy p's in the Galaxy, radiation emission from accelerated e⁻).

Particle acceleration in collisionless shocks

- No basic principles theory.
 - Challenges: Self-consistent particle/B, Non linear with a wide range of temporal/physical scales.

[Sironi, Spitkovsky & Arons 13]

UHE: Do we learn from (an)isotropy?

[Kashti & EW 08]

[EW, Fisher & Piran 97]

Anisotropy @ 98% CL; Consistent with LSS

[Kotera & Lemoine 08; Abraham et al. 08... Oikonomou et al. 13]

TA 3(?) σ 20-degree "hotspot"?

[Abbasi et al. 14]

Anisotropy of Z at 10^{19.7}eV implies Stronger aniso. signal due to p at $(10^{19.7}/Z)$ eV, since acceleration & propagation of p(E/Z) = Z(E). Not observed \rightarrow No high Z at $10^{19.7}$ eV

[Lemoine & EW 09]

Are SNRs the low E CR sources?

So far, no clear evidence.
 Electromagnetic observations- ambiguous.

E.g.: " π decay signature" [Ackermann et al. 13]:

IceCube's GRB limits

 $^{2}{}^{2}\Phi_{v}$ (GeV cm 2 s⁻¹ sr⁻¹)

- No v's associated with ~200 GRBs (~2 expected).
- IC analyses overestimate GRB flux predictions, and ignore model uncertainties.
- IC is achieving relevant sensitivity.

Future experimental developments

- IC extension
- Mediterranean
 Km3Net (~5x IC)

ARA & ARIANNA: Coherent radio Cerenkov, 10⁸ to 10¹⁰ GeV

