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My view of the present state of research on computational enzyme design 
Enzymes are typically engineered for catalytic activity, enantioselectivity, 
thermodynamic stability, substrate specificity, stability in non-aqueous solvents and co-
solvents. Available enzyme design approaches can be classified into rational design, and 
Directed Evolution (DE).[1] DE is able to provide highly active tailor-made enzymes at 
the expense of experimentally generating and screening tens of thousands of variants. 
However, the high economic cost associated with DE limits the broad application of 
enzyme-catalyzed processes for chemical manufacture. Most importantly, it is also 
unknown how the introduced mutations contribute to enzyme proficiency. Different 
rational design approaches exist that range from multiple sequence alignments (MSA), 
structural evaluation of the active site pocket and available tunnels, to the application of 
sophisticated computational tools such as Quantum Mechanics (QM), hybrid QM and 
Molecular Mechanics (QM/MM), Empirical Valence Bond (EVB), Molecular Dynamics 
(MD), and Monte Carlo simulations.[2] One of the most popular approaches is the inside-
out strategy based on modelling the transition state(s) (TS) of the desired transformation 
(defined as theozyme) with Quantum Mechanics (QM) and grafting this ideal 
arrangement into an existing protein scaffold with Rosetta.[3] These rational approaches 
hold the promise of providing a comprehensive understanding of the relationship between 
mutations and its impact into enzymatic activity, yet none of the existing computational 
approaches is able to generate highly proficient enzymes rivalling natural ones and those 
generated with DE. In my view, the low activity of rationally designed enzyme variants 
can be attributed to the following limitations: (1) the high complexity of enzymatic 
catalysis and the lack of a computational approach able to accurately consider the 
multiple chemical steps and associated conformational changes taking place along the 
catalytic itinerary,[2] (2) the need for reducing the sequence space, which is often solved 
by introducing mutations only in the active site pocket or entry/exit channel (as opposed 
to DE that introduces mutations throughout the structure),[2] (3) the lack of fast yet 
accurate computational screening protocols for estimating the catalytic activity.   
 
My recent research contributions to computational enzyme design  
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Understanding enzymatic function requires the evaluation of the chemical steps along the 
mechanism, but also the exploration of the ensemble of thermally accessible 
conformations that enzymes adopt in solution. The ensemble of both reactive and 
unreactive conformations presenting different relative stabilities can be represented in the 
so-called free energy landscape (FEL, see Fig. 1A). We computationally reconstructed 
the FEL of some natural and laboratory evolution (DE) pathways using extensive MD 
simulations, Markov state modelling (MSM), and enhanced sampling techniques.[4-6] 
These studies demonstrated that increased enzymatic activity is often achieved by 
introducing mutations that alter the enzyme conformational ensemble. The introduced 
mutations located at the active site and often at distal positions induce a long-range effect 
that impacts the enzyme active site pocket and thus catalysis. This is achieved by 
favouring the catalytically productive conformational states and disfavouring the non-
productive ones for the novel functionality, thus converting computational enzyme design 
into a population shift problem.[2] However, computational enzyme design seen as a 
population shift problem requires the reconstruction of a FEL for each generated variant, 
which is computationally too expensive for allowing the fast routine design of enzymes.[7] 
Most importantly the reconstructed FELs do not provide any clue on which positions 
either located at the active site or distal might be responsible for stabilizing a desired 
conformational change. We hypothesize that by using graph theory coupled to the 
extensive MD simulations for FEL reconstruction the existing long-range allosteric 
network of interactions can be revealed and used for predicting distal and active site 
mutations (Fig. 1C).[2, 8] To that end, we developed the Shortest Path Map (SPM) tool that 
relies on the construction of a graph based on the computed mean distances and 
correlation values obtained along MD simulations.[2, 6] SPM decreases the sequence space 
to a smaller number of conformationally relevant positions, and has the potential of 
identifying the challenging distal activity-enhancing positions. Indeed, we successfully 
applied SPM to identify DE mutations in retro-aldolase, monoamine oxidase, and 
tryptophan synthase enzymes.[2]  
 
In a recent publication, we combined SPM and ancestral sequence reconstruction to 
rationally design new stand-alone tryptophan synthase B (TrpB) variants (see Fig. 1A-
C).[8] Tryptophan synthase (TrpS) is a heterodimeric enzyme complex composed of two 
subunits: TrpA and TrpB that are allosterically connected. The tight allosteric 
communication between subunits involves, in the case of TrpB, open-to-closed 
transitions of the rigid COMM domain that forms a lid covering the active site (see Fig. 
1B). The existing allosteric communication between subunits makes both TrpA and TrpB 
much less efficient when isolated, i.e. their stand-alone activity is low. [5, 8] However, the 
ancestral reconstruction of TrpB enzymes (LBCA TrpB) revealed a high stand-alone 
activity for the ancestral variants, which was lost along evolution.[9] The Arnold lab 
applied DE on pfTrpB and generated a new enzyme 0B2-pfTrpB that presented higher 
catalytic activity when isolated.[10]  
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Fig. 1. A. Computationally reconstructed Free Energy Landscape (FEL) of the laboratory evolved 0B2-pfTrpB 
tryptophan synthase B that displays stand-alone activity (data from reference[5]) at several reaction intermediates 
along the catalytic itinerary (shown in panel B). TrpB adopts a different conformation of the catalytically-
relevant COMM domain along the process: open (O, dark blue) states are adopted in the resting state E(Ain), 

partially closed (PC, teal) at the reaction intermediates E(Aex1) and E(A-A), and closed (C, light blue) at E(Q2) 
states. Most stable conformations are represented in blue, whereas least stable ones in red. B. Reaction 
mechanism of TrpB and detail of the COMM domain conformation along the cycle.[11] Overlay of the COMM 
domain conformation as shown by X-ray data: O highlighted in dark blue, PC in teal, and C in light blue. C. 
The mutations introduced with DE to generate 0B2-pfTrpB are marked with blue spheres. Computational 
pipeline developed for rationally designing new stand-alone enzyme variants based on the combination of 
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shortest path map (SPM) and ancestral sequence reconstruction. D. Development of an X-ray template-based 
AF2 approach for estimating the conformational heterogeneity of TrpB systems.[12] AF2 predictions are 
represented on the 2D-FEL representation using vertical lines colored from orange to dark blue depending on 
the number of sequences provided in the MSA. From these AF2 structures short nanosecond timescale MD 
simulations were run for FEL reconstruction (shown on top of the computationally expensive FELs (in gray) 

obtained by means of extensive metadynamics simulations).  
 
We computationally reconstructed the FEL of the ancestrally reconstructed LBCA TrpB, 
as well as the wild-type pfTrpS complex, isolated pfTrpB, and laboratory-evolved stand-
alone 0B2-pfTrpB enzyme.[5, 8] These works elucidated the conformational ensemble that 
a stand-alone catalyst has to display for being efficient. We developed a rational 
computational protocol for achieving stand-alone activity of TrpB subunit based on the 
following steps (summarized in Fig. 1C): (1) reconstruction of the FEL of the ancestral 
LBCA TrpB displaying stand-alone activity, (2) application of the SPM methodology to 
detect the conformationally-relevant positions, (3) sequence comparison at the 
conformationally-relevant SPM positions between the reference ancestral scaffold and 
the target ANC3 TrpB variant that had no stand-alone activity, (4) transfer of the 6 non-
conserved SPM mutations to the target ANC3 TrpB scaffold for generating the new 
SPM6-TrpB variant.[8] Interestingly the experimental validation of the SPM6 TrpB 
design indicated a 7-fold increase (in terms of kcat) of stand-alone activity. Although we 
did not reach the isolated activity of the reference LBCA TrpB, it is worth highlighting 
that by testing only one single variant the fold increase in kcat was similar to the 9-fold 
obtained by DE that required the generation and screening of more than 3000 variants.[10] 
This study therefore provides evidence for the potential of our SPM methodology for 
computational enzyme design.  
 
The recent success of the Alphafold2 neural network (AF2) in predicting the folded 
structure from the primary sequence with high levels of precision has revolutionized the 
field of protein design.[13] Despite AF2’s impressive performance, application of AF2 for 
understanding and engineering function directly from the obtained single static picture is 
not straightforward. However, in this direction we recently tested the applicability of AF2 
for elucidating the conformational heterogeneity of several TrpB enzymes.[12] We 
developed a template-based AF2 approach for estimating TrpB ability to adopt multiple 
conformations of the catalytically relevant COMM domain, which is required for 
enhanced stand-alone activity. Our results revealed the potential of AF2, especially if 
combined with short nanosecond timescale MD simulations, for estimating the changes 
induced by mutation in the FEL at a rather reduced computational cost. 
 
Outlook to future developments of research on computational enzyme design 
Inspired by the AF2 approach, some deep learning techniques have also recently been 
developed for protein design that can potentially mitigate some of the limitations 
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mentioned above. The combination of the convolutional neural network trRosetta[14] and 
Rosetta was shown to be successful for the design of new stable proteins.[15] The 
AlphaDesign based on AF2 was also developed to predict novel proteins.[16] These 
examples show the potential of deep learning techniques to generate new functional 
variants within the allowed biological constraints. The application of AF2 (or other deep 
learning strategies) to computational enzyme design for any target reaction and substrate 
still remains largely underdeveloped. In the near future I anticipate that many hybrid 
biophysical and deep learning strategies will be developed to solve the mentioned 
limitations and allow the fast routine rational design of efficient enzymes.  
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