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Error Correction vs. Fault Tolerance

Alice Bob

Errors

Error correction: Alice and Bob have perfect quantum computers and errors only occur in 
transmission.

Fault tolerance: Errors occur during gates and we want to perform computations on 
qubits encoded in a quantum error-correcting code.

We want to avoid error propagation 
that causes errors to spread beyond 
our control.

[S96]



Threshold theorem

Threshold theorem: If the error rate per gate and time step is below some threshold 
value pt, then reliable quantum computation is possible with overhead which is a 
polynomial in the log of the size of the computation.

The threshold depends on choice of fault-tolerant protocol, but also it is not a single number: 
There are many parameters in an error model because different gates having different errors 
and there are many possible types of error in each gate.

Instead, the threshold is actually a 
surface in a high-dimensional space.  

[KLZ96,  AB96, K97, AGP05]



Surface Codes

Surface codes are today’s standard approach to fault tolerance for large quantum computers.

A surface code is based on a graph covering a surface.  The codewords are +1 eigenstates 
of operator constraints based on the graph:

Each edge of the graph has a 
qubit associated with it.

Each face (plaquette) has a 
constraint

X⊗X⊗X⊗X

Each vertex has a constraint 
too

Z⊗Z⊗Z⊗Z

Logical qubits are associated with topological non-trivial loops in the surface -- e.g., a surface 
code on the torus has 2 logical qubits.

[K97, DKLP01, RH06]



Low-Density Parity Check Codes

LDPC codes are quantum error-correcting codes with two additional properties:

• Each constraint involves only a constant number of qubits
• Each qubit is in only a constant number of constraints

Surface codes are an example of LDPC codes.  

The advantage of LDPC codes for fault tolerance is that to 
perform error correction, one only needs to touch a small number 
of qubits.  There are fault-tolerant methods of error correction for 
many other codes, but they generally involve lots of extra 
overhead.  An LDPC code does not need that.

In order to get low overhead, we should work with LDPC codes which encode qubits 
at a high rate.  High-rate LDPC codes allow a threshold for fault tolerance with a 
constant qubit overhead as the computation gets larger.

[G13]



Better LDPC Codes?

There are families of LDPC codes that have constant rate 
(ratio logical qubits/physical qubits) and correct typical errors, 
such as hypergraph product codes.

In the past two years, we have finally resolved a 
long-standing open question with the discovery of 
good LDPC codes, i.e., ones with a constant rate 
which can correct worst-case errors on a constant 
fraction of qubits.

It remains unclear if these new codes will lead to 
better fault-tolerant protocols or not.

[TZ09, LTZ15, PK21, LZ22]



LDPC Codes vs. Surface Codes

• Threshold: Surface codes have a threshold of about 0.7%, whereas LDPC codes have 
been shown to work with threshold of about 0.3%.

• Overhead: Surface codes require an overhead of hundreds or thousands of physical 
qubits per logical qubit, whereas LDPC codes could reduce this by an order of magnitude 
or more.

• Decoding: There are many different polynomial-time decoders known for surface codes, 
but in practice they may not be quite fast enough.  Some polynomial-time decoders are 
known for LDPC codes as well, but this area needs active development.  Some decoders 
may be faster than for surface codes.

• Connectivity: Surface codes can easily be arranged in 2D, whereas LDPC codes cannot.
• Logical Gate Constructions: Logical gates can be done in a variety of ways for surface 

codes, for instance through lattice surgery.  We have some mediocre ways of doing gates 
in LDPC codes.

• Logical Parallelism: Surface code gates allow parallelism compatible with the geometric 
constraints.  Existing LDPC gate constructions require sequential logical circuits.

Gates: [D13, KP19, CKBB21, QWV22]Decoding: [GK18, FGL18, GGKL20]Overhead: [TDB21,CKBB21]



Hardware-Specific Fault Tolerance

Most of our existing fault tolerant protocols are fairly generic and can work with a wide 
variety of different hardware systems.  As we move to building actual fault tolerant 
systems, we will want to tailor the protocols to the properties of the specific systems.

• Use the full Hilbert space: e.g., bosonic codes such as 
the GKP code.

• Use more information about the error models: e.g., fault 
tolerance for dominant phase errors.

• Deal with more general types of errors: e.g., cross-talk 
and leakage.

• Adapt codes to specific features of the hardware: e.g., 
adapt to connectivity of the hardware.

Bosonic codes: [GKP00, AND+17, FNM+19,CET+20] 

Dephasing codes: [AP08,PSG+19,GM19,ATB+20]



New Approaches to Fault Tolerance

We still have plenty of room for improvement of fault tolerant protocols.  New 
techniques and new ways of thinking about fault tolerance would be helpful.

One such new approach would be to think about fault-tolerant protocols in a picture 
treating space and time on a more equal footing.  Consider the following fault-tolerant 
tools:

• Flag fault tolerance
• Code deformation
• Floquet codes
• Nickerson-Bombin states

Together they point the way to this idea.



Flag Qubits

Traditional approaches to fault tolerance insist that we should arrange our circuits so 
one faulty gate can only cause one error in a block of the code.

Flag fault tolerance relaxes that constraint, instead allowing gates which cause error 
propagation within a code block but adding extra checks so that we can identify the 
location which originally caused the error.  If we know where the error began, we know 
what kind of propagation it has undergone and we can correct it even though it is on 
multiple qubits.

[CR17, SYK+22]

Lesson: Error propagation is OK if we know the faulty gate.

|0⟩ |0⟩
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Code Deformation

What does it mean to do gates via code deformation?

Qubits are 
encoded as 
lattice defects

To perform 
gates, we move 
the defects

Eventually, the 
defects return 
to their starting 
location

To move a defect, 
we rearrange the 
local stabilizer 
generators.

We deform through a 
series of codes, eventually 
returning to the original 
code.  By doing a 
topologically non-trivial 
path, we can do an 
encoded gate.

This example shows how to 
do it for surface codes, but in 
fact, any fault tolerant gate can 
be thought of as a code 
deformation.

[RH06, GZ13]



Floquet Codes

If we are doing gates by shifting between a sequence of codes, why do we insist that 
one of them is the “right” code and the others are just temporary stopping points?

Floquet codes dispense with the idea of a 
single home code and instead cycle 
through a sequence of codes.

[HH21]

For instance, the honeycomb code 
implements something equivalent to a 
surface code by measuring sequences of 
two-qubit operators to learn error 
syndromes and shift between codes.

Lesson: The code can change with time.



Nickerson-Bombin States

[NB18]

In measurement-based computation, we 
start with a large entangled state (a 
cluster state) and make a sequence of 
single-qubit measurements.  We can 
convert any quantum circuit into an 
appropriate measurement pattern, with 
the measurements arranged into layers, 
one for each time step in the circuit.

But in the measurement-based model, there is no 
requirement to have such layers, and Nickerson and 
Bombin found states and measurement patterns with 
improved fault tolerance that do not have a natural 
breakdown into time steps.

Lesson: Look at space and time together.
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Figure 8: The construction of the diamond fault tolerant cluster state. a) Splitting procedure to obtain a diamond-lattice
syndrome graph. The primal lattice is shown in the upper row, and the corresponding dual lattice at each stage is shown in the
lower row. We begin with the cubic lattice, in the first step a dual split is applied dividing each dual vertex into two 4-valent
vertices. In the primal syndrome graph this corresponds to a face being added that bisects the primal cell. In the second step
primal splitting divides each primal vertex into two 4-valent vertices. In the dual lattice, each new primal edge corresponds
to a face. b) The resulting structure is self-dual and is made up of identical cells that each have 4 hexagonal faces. A section
of the primal syndrome graph generated from splitting is shown, along with one of the cells of the new geometry which is
highlighted in blue. Each cell has four hexagonal faces, but is not a convex polyhedron. (c) The cluster state corresponding
to the geometry in (b). (d) The cluster state can also be presented in a symmetric configuration corresponding to the more
familiar representation of the diamond lattice. Here all bonds have equal length, and each cell is identical.

The construction is shown in Figure 10. Starting with a cubic syndrome graph, we can modify a single dual edge
by adding a new vertex dividing it into two halves. In the primal lattice this corresponds to adding a duplicate face
on one side of the cubic cell. By applying this transformation to every edge in the dual lattice, and every edge in
the primal lattice we find the structure shown in Figure 10b). Every face is octagonal, such that the cluster state is
made up of qubits with 8 bonds, and the cell complex is again self-dual. Unlike our previous examples the cells are
not all identical, there are two differently shaped types of cell as shown in the figure. A cell with 6 octagonal faces
is associated with each cell of the original cubic lattice, and since each face has been doubled, there is also a bubble-
shaped cell with just two octagonal faces associated with each face of the original lattice. We call this construction
the doubled-edge cubic FTCS. An interesting observation about this state is that it can also be thought of as encoding
each qubit of the original cubic FTCS in a 2-qubit parity code according to the "crazy-graph" construction described
in [28].

The erasure threshold of this state can be inferred by considering how it relates to the original cubic lattice. For
each edge of a cubic syndrome graph, there are now two edges, both of which must be erased in order to form a

(from arXiv:1810.09621)



Putting it Together

Let us take these lessons to heart.  When we do, what is left?  What do we really want 
out of a fault-tolerant circuit?  

We’d like to identify which gates had errors and 
what those errors are.

Can we do that?  Suppose we are using n qubits 
to encode the information and have m additional 
qubits.  We do a circuit containing T gates, each 
of which could have a possible errors.

If we measure all ancillas, we have up to m bits 
of information about the errors.

If the error rate is p, we expect pT faulty gates.  To find the exact error, we need

T[h(p) + p log2 a] bits of information, where h(p) = − p log2 p − (1 − p)log2 p

But if we have a circuit of depth d, we have T = d(n+m), so we require constant d.  It is 
not clear if it possible to make fault tolerant circuits with constant depth.



Putting It Together II

We can therefore think of a fault-tolerant protocol as a space-time code: Its goal is to 
find the locations in space and time that have faults.

• But how is fault tolerance possible with non-constant depth circuits?  The 
design of most fault-tolerant circuits ensures that many different faults will have 
the same effect on the data.  They are degenerate space-time codes.

• What is the quantum code?  If we stop at any time slice, the data must be 
encoded in a quantum error-correcting code (or we wouldn’t be able to 
correct faults occurring then).  But the code changes with time.

• How do we do logical gates if the code keeps changing?  As we continually 
update the code, we also update what we consider to be the logical basis states.  
The relative relationship between the current logical state and the logical basis 
states may change over time, implying logical gates have been performed.

• How do we design fault-tolerant protocols in this picture?  Beats me.
• Is this space-time code also a regular code on a larger space?  I don’t know.
• …?  I don’t know that either.


