#### **Particle Physics with Neutrons at the ESS**

ESS – a long-pulse spallation source
Particle physics proposals
A cold beam line:

Interest of pulsed beams
Design criteria

Summary

Torsten Soldner Institut Laue Langevin

# **ESS – A long-pulse spallation source**



#### **ESS moderators**



## **ESS moderators**

Ø22cm × 3cm

Ø22cm × 3cm



#### Preferred: One flat (3 cm), one intermediate (6 cm)

Small perturbation for flat moderator: 2×120° extraction possible 6 cm only for instruments that need larger moderator



6 cm moderator: 70% of integral brightness of TDR moderator

Luca Zanini (ESS)

#### Fallback: Only one flat

#### **ESS instruments**



## **Neutron particle physics at the ESS**

#### Advantages:

- 1. Same time average flux as ILL *and* pulsed
- Not yet built: Optimisation at/of green-field facility (if we are fast)

#### Presently discussed proposals:

- Search for neutron-antineutron oscillations (2)
- Beam UCN source (2, 1)
- Cold neutron beam line (1)

#### nnbar at ILL



#### nnbar at ESS?



#### nnbar @ ESS – Status

- Would be outside the standard ESS instrument suite (costs and scope)
- Enthusiasm @ ESS. However, limited time window for design optimisation.
- Attempts to form a collaboration (G. Brooijmans et al.):
  - Workshop at CERN (June 2014)
  - Strong interest from US nnbar, engagement in neutronics simulations (Y. Kamyshkov et al.)
  - Small interest in European neutron community

#### UCN source at ESS



10

#### **UCN source at ESS – Physics programme**

- Gravitational spectroscopy
- Cryogenic EDM experiment
- Neutron beta decay

#### Proposers to ESS:

• H. Abele, P. Fierlinger, O. Zimmer

## **Pulsed neutron beams**

**Wavelength information without statistics loss** 

- Velocity dependence of signal and systematics
- Loss-free monochromatisation
- **τ**Time localisation of neutron pulse
  - Signal/background
  - Suppression of background with different time constant
- Spatial localisation of neutron pulse
  - Separation of beam-related background
  - Separation of undefined spectrometer response



## **NEDM with a cold beam**

F. Piegsa, ETH



Different velocity dependence of signal and systematics – separation for free

- Main systematics  $\propto v$
- Signal  $\propto 1/v$
- →Gain in systematics re-enables beam experiments

L = 50 m Source-detectors 75 m Neutrons 6-10 Å (660-400 m/s) Sensitivity:  $5 \cdot 10^{-28} e$ cm

F. Piegsa, Phys Rev C 88 (2013) 045502

Solvay Beta Decay – 09/2014

# **Proton spectrum with** *a***SPECT: Background**





#### **Background from Traps**





$$\frac{dN}{dt} = kF - \frac{N}{\tau} \quad \frac{1}{\tau} \equiv a + b$$

$$F > 0: \quad N(t) = \left(N_0 - kF\tau\right) e^{-\frac{t}{\tau}} + kF\tau$$

$$F = 0: \quad N(t) = N_0 e^{-\frac{t}{\tau}}$$

#### **Background from Traps at ESS**



Cont

bN

Sg

Bg

# Don't worry for aSPECT 2013...



R. Maisonobe, PhD thesis (2014)

Mean count rate evolution, shutter open, AP at 780 V, Pad 2





# Perkeo II A – Background





#### Background

**Best materials:** 

- $\rightarrow$  Scattering: ~10<sup>-3</sup>
  - $\rightarrow \gamma$ , fast *n*: ~10<sup>-4</sup>

Decay

 $A = -0.11972^{+53}$ -65

Lifetime 900 s

D. Mund et al, PRL 110 (2013) 172502

- Velocity 800 m/s
- $\rightarrow$  Decay probability 10<sup>-7</sup>

Particle physics with neutrons at the ESS



# **E**Solution – Improve acceptance – Perkeo III















Spatial localisation of pulsed beam: ✓ Background ✓ "Solid angle" ✓ Magnetic mirror ✓ Edge effects
But: Acceptance of diluted beam

→Large detectors **Solution: PERC** 

H. Mest, PhD thesis, Uni Heidelberg 2011

22









Solvay Beta Decay – 09/2014

Particle physics with neutrons at the ESS

# **EVALUATE:** EVALUATE: EVAL



#### → Substantial gain in intensity possible

C. Klauser et al, Phys. Proc. 51 (2014) 46





#### **Status – First MC simulations**



C. Theroine et al, Beamline proposal, in preparation

## **Beamline design – requirement 1**



#### **Beamline design – requirement 2**

Well-pronounced pulse structure (see aSPECT)



Particle physics with neutrons at the ESS

# **Beamline design – requirement 3**

Reasonable wavelength resolution (instantaneous bandwidth)



Particle physics with neutrons at the ESS

#### **Fits well for PERC**



#### **Guide optimisation**

Long instruments (PERC) best for long-pulse source → Use moderator brilliance to parallelize beam?



#### Looks similar to UCN cold guide design but:

- UCN source should reach larger acceptance
- UCN: No reason for short cold guide better gain in background & space

Solvay Beta Decay – 09/2014

## **Physics case**

- No European strategy (in contrast to the US)
- Strong groups & projects in cold neutron decay – Strong physics programme with PERC
- This workshop?

# Benchmark experiments:Example PERC (guide)Example PERKEO II (low divergence)τ aSPECT (large diverg.)npdγ (target)

#### Summary

• The ESS is going to be! First pulsed source with same time-averaged flux as ILL Particle physics can profit from -Green-field features (still) -Pulse structure: Wavelength information for free Time and spatial localisation of pulse →Cleaner systematics Proposals in next round: -Beam UCN source with optimised cold neutron extraction -Cold beamline of about 35 m length • You are welcome to join! Solvay Beta Decay – 09/2014 Particle physics with neutrons at the ESS