β spectrum shape measurements

Motivation

- $\mathcal{F}t^{0^+ \to 0^+}$ & correlations (*a*, *A*, ...) in β decay
 - Scalar/tensor current searches (sensitivity limited by induced terms; weak magnetism)

 e^+

 v_{e}

nucleus

- 1. induced terms (by strong interaction)
 - existing information
 - theoretical study (in coll. with I.S. Towner and F. Glück)
- 2. (new) experimental observable: β -spectrum shape
 - → miniBETA spectrometer and Si detector based spectrometer

(in coll. with K.Bodek et al., Jag. Univ. Krakow)

correlations and Ft-values in β decay

Ft value of $0^+ \rightarrow 0^+$ superallowed pure Fermi transitions

$$\mathcal{F}t^{0^+ \to 0^+} = \frac{K}{2G_F^2 V_{ud}^2 C_V^2 (1 + \Delta_R^V)} \frac{1}{(1 + b_F^+)} \text{ with } b_F^+ = \frac{\gamma m_e}{\langle E_e \rangle} \left(\frac{C_s + C_s^-}{C_V} \right) \text{ (Fierz term)}$$

$$\int_{3000}^{10} \frac{1}{2} \frac{1}{2}$$

2. β -v correlation to probe scalar/tensor weak currents

(assuming maximal P-violation and T-invariance for V and A interactions)

!!! for pure transitions weak interaction info independent of nuclear matrix elements **!!!**

recoil corr. (induced form factors) $\approx 10^{-3}$; radiative corrections $\approx 10^{-4}$

Overview of β -v correlation projects

Parent	Technique	Team, laboratory	Remarks	
⁶ He	Spectrometer	ORNL	a = -0.3308(30)	
³² Ar	Foil; p recoil	UW-Seattle, ISOLDE	$\tilde{a} = 0.9989(52)(39)$	
^{38m} K	MOT	SFU, TRIUMF	$\tilde{a} = 0.9981(30)(34)$	
²¹ Na	MOT	Berkeley, BNL	a = 0.5502(38)(46)	
⁶ He	Paul trap	LPC-Caen, GANIL	$\tilde{a} = -0.3335(73)(75)$	
⁶ He	Paul trap	LPC-Caen, GANIL	Analysis under way	
⁸ Li	Paul trap; $\beta \alpha$	ANL	a = -0.3307(60)(67)	
³⁵ Ar	Paul trap	LPC-Caen, GANIL	First data June 2011	
³⁵ Ar	Penning trap	Leuven, ISOLDE	First data June 2011	
¹⁹ Ne	Paul trap	LPC-Caen, GANIL	Ready to take data	
⁶ He	EIBT	Weizmann, SOREQ	In progress	
⁶ He	MOT	ANL, CENPA	In progress	
Ne	MOT	Weizmann, SOREQ	In progress	
²¹ Na	MOT	KVI-Groningen	In progress	
³² Ar	Penning trap	Texas A&M	In preparation	
⁸ He	Foil; $\beta \gamma$	NSCL	In preparation	

N.S. & O. Naviliat-Cuncic, Physica Scripta T152 (2013) 014018

3. β-asymmetry parameter in nuclear beta decay (KU Leuven, NICOLE-ISOLDE, NPI Rez-Prague, Uni Bonn)

$$A_{exp} ({}^{60}Co) = -1.014 (12)_{stat} (16)_{syst} (A_{SM} = -0.987(9))$$

F. Wauters et al., Phys. Rev. C 82 (2010) 055502
$$A_{exp} ({}^{114}ln) = -0.990 (10)_{stat} (10)_{syst} (A_{SM} = -0.996(3))$$

F. Wauters et al., Phys. Rev. C 80 (2009) 062501(R)
$$A_{exp} ({}^{67}Cu) = 0.584 (6)_{stat} (11)_{syst} (A_{SM} = 0.5993(2))$$

G. Soti et al., submitted
$$M_{exp} ({}^{67}Cu) = 0.584 (6)_{stat} (11)_{syst} (A_{SM} = 0.5993(2))$$

7.46 mK (13 T)

tematic errors:

- ance of GEANT code (scattering)
- nation of nuclear polarization
- (recoil) terms

Constraints on tensor type weak couplings

Precision measurements in nuclear/neutron β decay in the LHC era

nuclear and neutron decay, pion decay

O. Naviliat-Cuncic and M. Gonzalez-Alonso Annalen der Physik 525 (2013) 72.

V. Cirigliano, et al., J. High. Energ. Phys. 1302 (2013) 046

limits on scalar/tensor couplings obtained by CMS collaboration in $pp \rightarrow e + MET + X$ channel

S. Chatrchyan et al. (CMS Collab.)
 J. High. Energ. Phys. 1208 (2012) 023;
 CERN Rep. nr. CMS-PAS-EXO-12-060 (2013)

 $A_{\mu}(q^{2}) = \bar{p}[g_{A}(q^{2})\gamma_{\mu}\gamma_{5} + g_{T}(q^{2})\sigma_{\mu\nu}\gamma_{5}\frac{q_{\nu}}{2M} + ig_{P}(q^{2})\frac{q_{\mu}}{m_{e}}\gamma_{5}]n$

weak magnetism (CVC)

T = 1/2 $J^{\pi} \rightarrow J^{\pi}$ mirror β transitions

$$b(\beta^{\mp}) = A \sqrt{\frac{J}{J+1}} M_F^0 \mu^{\mp}$$
$$\mu^{\mp} = \mp (\mu_M - \mu_D)$$

e.g. F.P. Calaprice and B.R. Holstein Nucl. Phys. A 273 (1976) 301

$$\mathcal{F}t^{mirror} \equiv f_V t (1 + \delta'_R) (1 + \delta^V_{NS} - \delta^V_C) = \frac{2\mathcal{F}t^{0^+ \to 0^+}}{\left(1 + \frac{f_A}{f_V}\rho^2\right)}$$
$$\rho \cong g_A M^0_{GT} = c$$

N. Severijns, I.S. Towner et al., Phys. Rev. C 78 (2008) 055501

weak magnetism (CVC)

weak magnetism (CVC) - experimental data

V. De Leebeeck, I.S. Towner, N.S., et al., to be published

weak magnetism (CVC) - mirror β transitions

V. De Leebeeck, I.S. Towner, N.S., et al., to be published

weak magnetism (CVC) - β decays of triplet states

TABLE I. Gamow-Teller decays and the associated parameters needed for a computation of the weak-magnetism slope parameter using									
the CVC hypothesis. P. Huber, Phys. Rev. C 84, 024617 (2011) and Phys. Rev. C 85, 029901(E) (2012)									
								dN/dF	
Decay	$J_i \rightarrow J_f$	E_{γ} (keV)	$\Gamma_{M1} (\mathrm{eV})$	b_{γ}	<i>ft</i> (s)	С	b_{γ}/Ac	$(\% \text{ MeV}^{-1})$	Ref.
$^{6}\text{He} \rightarrow {}^{6}\text{Li}$	$0^+ \rightarrow 1^+$	3563	8.2	71.8	805.2	2.76	4.33	0.646	[28]
$^{12}\mathrm{B} \rightarrow {}^{12}\mathrm{C}$	$1^+ \rightarrow 0^+$	15.7		Т	11640	0.726	4.35	0.62	[38]
$^{12}\mathrm{N} \rightarrow {}^{12}\mathrm{C}$	$1^+ \rightarrow 0^+$	dN	_ 4	b	13120	0.684	4.62	0.6	[29]
$^{18}\mathrm{Ne} ightarrow ^{18}\mathrm{F}$	$0^+ \rightarrow 1^+$	$\frac{1}{dF}$	$=\frac{1}{3M}$	$\overline{\Lambda c}$	1233	2.23	6.02	0.8	[30]
$^{20}\text{F} \rightarrow ^{20}\text{Ne}$	$2^+ \rightarrow 2^+$	uL		Πί	93260	0.257	8.9	1.23	[31]
$^{22}Mg \rightarrow ^{22}Na$	$0^+ \rightarrow 1^+$				4365	119	5.67	0.757	[55]
$^{24}\text{Al} \rightarrow ^{24}\text{Mg}$	$4^+ \rightarrow 4^+$	dN		T T T T	8511	0.85	6.35	0.85	[56]
$^{26}\text{Si} \rightarrow ^{26}\text{Al}$	$0^+ \rightarrow 1^+$	$\frac{1}{\sqrt{L}} = 0.$	/(3)% [viev	3548	1.32	3.79	0.503	[32]
$^{28}\text{Al} ightarrow ^{28}\text{Si}$	$3^+ \rightarrow 2^+$	aE			73280	0.29	2.57	0.362	[57]
$^{28}\mathrm{P} \rightarrow {}^{28}\mathrm{Si}$	$3^+ \rightarrow 2^+$	$\frac{dN}{-5}$	1 1)0/ \ /	\mathbf{V}^{-1}	70790	0.295	2.53	0.331	[57]
${}^{14}\mathrm{C} \rightarrow {}^{14}\mathrm{N}$	$0^+ \rightarrow 1^+$	$\frac{dE}{dE}$ - $J($	1 1)/0 IV.		1.096×10^{9}	0.00237	276	37.6	[38]
${}^{14}\mathrm{O} \rightarrow {}^{14}\mathrm{N}$	$0^+ \rightarrow 1^+$				1.901×10^{7}	0.018	36.4	4.92	[26]
$^{32}P \rightarrow ^{32}S$	$1^+ \rightarrow 0^+$	7002	0.3	26.6	7.943×10^{7}	0.00879	94.4	12.9	[39]
<u>Note</u> : shift of dN/dE by +0.5% MeV ⁻¹ Could indicate breakdown of impulse approx.									
causes a shift of the if log <i>ft</i> is large, or be due to electromagnetic									
interaction which is then very much amplified									
because of the hindrance of the decays.									

The Reactor Antineutrino Anomaly

The effect mostly comes from the detailed physics involved in the nuclear beta-decay of fission fragments in the reactor

β spectrum shape measurements

$N(p)dp = Kp^2(W - W_0)^2 \cdot F(Z, p) \cdot L_0 \cdot C \cdot R_n \cdot RC \cdot S(E)dp$

- phase space factor x constants
- F(Z,p): Fermi function
- L₀ & C: finite size of nucleus
- *R_n*: finite mass of nucleus
- RC: radiative corrections
- S(E): spectrum shape factor

$$S(E) \approx 1 + \frac{2}{3M_n} \left(5 \pm 2 \frac{b}{Ac} \right) E_e \propto 1 \% \text{ MeV}^{-1}$$

(for a pure GT transition and neglecting terms \propto 1/M² and \propto m_e^2/E)

$$\Rightarrow \quad d\Gamma \propto G_F \ F(Z,E) \left[1 + k' b_{WM} \ E_{\beta} + k'' \frac{b_{Fierz}}{E_{\beta}} \right]$$

β spectrum shape measurements with the miniBETA spectrometer

miniBETA spectrometer

- 80 hexagonal cells

(10 planes with 8 signal wires $[\phi = 25\mu m, NiCr 8020]$)

- X-Y space resolution 0.5mm
- Z position from charge division
- energy resolution <10keV.

commissioning ongoing

Test of the electronics

β spectrum shape measurements with the miniBETA spectrometer

Brussels, 3-5 Sept. 2014 - Solvay Workshop on Beta Decay Studies in the Era of the LHC - Nathal Severijns

electron scattering / transmission studies with miniBETA

transmission

- measure the angular distribution of electrons after transmission through thin foils
- provide high precision data for the Geant4 collaboration to tune the electron multiple scattering models
- conversion electrons or electron accelerator

- initial electron energy from detector + track curvature
- conversion electrons for high precision measurement of the backscattering probability

KU LEUVEN

⁴⁵Ca Beta spectrum, up

Brussels, 3-5 Sept. 2014 - Solvay Workshop on Beta Decay Studies in the Era of the LHC - Nathal Severijns

nuclear β decay:

form factor	formula Imp. App.	remark
Vector type		
a	$a \cong g_V M_F$	$g_V = 1 \ (\text{CVC})$
		NA: $a = 0$
e	$e \cong g_V(M_F \pm Ag_S)$	e = 0 (CVC, scc) [37]
b	$b \cong A(g_M M_{GT} + g_V M_L)$	$g_M \cong 4.706$
f	$f \cong g_V \sqrt{\frac{2}{3}} M \frac{\Delta}{\hbar c^2} M_Q$	A: $f = 0 \; (\text{scc}) \; [37]$
g	$g \cong -\frac{4}{3}M^2 g_V \frac{M_Q}{\hbar c^2}$	$g \cong -\sqrt{\frac{8}{3}} \frac{M}{\Delta} f$ [37]
		A: $g = 0$ [37]
Axial vector type		
c	$c \cong g_A M_{GT}$	$g_A \to g_{A,eff} = 1$ [63]
d	$d \cong A(g_A M_{\sigma L} \pm g_{II} M_{GT})$	A: $g_{II} \sim g_T \cong 0 \; (\text{scc}) \; [37]$
		A: $d = 0$ (scc)
h	$h \cong \frac{-2}{\sqrt{10}} M^2 g_A \frac{M_{1y}}{\hbar c^2} - A^2 g_P M_{GT}$	$g_p = -(2m_p/m_\pi)^2 g_A \cong -220$
j_2	$j_2 \cong \frac{-2}{3} M^2 g_A M_{2y}$	A: $j_2 = 0 \; (\text{scc}) \; [37]$
j_3	$j_3 \cong \frac{-2}{3} M^2 g_A M_{3y}$	

for a pure GT transition, and neglecting terms \propto 1/M² and \propto m_e^2/E :

$$H_0(E) = c^2 - \frac{2}{3} \frac{E_0}{M} c(c + d \pm b) + \frac{2}{3} \frac{E}{M} c(5c \pm 2b)$$

$$H_0(E) = f_1 + f_2 E$$

$$S(E) \equiv \frac{H_0(E)}{H_0(E=0)}$$

$$S(E) \approx 1 + \frac{2}{3M} \left(5 \pm 2\frac{b}{c} \right) E_e$$

TRINAT MOT trap at TRIUMF-ISAC – ^{38m}K - scalar

LPCTrap @ GANIL - ⁶He / ³⁵Ar - tensor / scalar

weak magnetism

$$V_{\mu}(q^{2}) = \bar{p}[g_{V}(q^{2})\gamma_{\mu} + g_{M}(q^{2})\sigma_{\mu\nu}\frac{q_{\nu}}{2M}] + ig_{S}(q^{2})\frac{q_{\mu}}{m_{e}}]n$$

$$A_{\mu}(q^{2}) = \bar{p}[g_{A}(q^{2})\gamma_{\mu}\gamma_{5} + g_{T}(q^{2})\sigma_{\mu\nu}\gamma_{5}\frac{q_{\nu}}{2M} + ig_{P}(q^{2})\frac{q_{\mu}}{m_{e}}\gamma_{5}]n$$

nuclear β decay:

form factor	formula Imp. App.		
Vector type			
a	$a \cong g_V M_F$	Matrix element	Operator form
		M_F	$\langle \beta \ \Sigma \tau_i^{\pm} \ \alpha \rangle$
e	$e \cong g_V(M_F \pm Ag_S)$	M_{GT}	$\langle \beta \ \Sigma \tau_i^{\pm} \overrightarrow{\sigma}_i \ \alpha \rangle$
b	$b \cong A(g_M M_{GT} + g_V M_L)$	M_L	$\langle \beta \ \Sigma \tau_i^{\pm} \overrightarrow{l}_i \ \alpha \rangle$
f	$f \cong g_V \sqrt{\frac{2}{3}M \frac{\Delta}{\hbar c^2} M_Q}$	$M_{\sigma r^2}$	$\langle \beta \ \Sigma \tau_i^{\pm} \overrightarrow{\sigma}_i r_i^2 \ \alpha \rangle$
g	$g \cong -\frac{4}{3}M^2 g_V \frac{M_Q}{\hbar c^2}$	$M_{\sigma L}$	$\langle \beta \ \Sigma \tau_i^{\pm} i \overrightarrow{\sigma}_i \times \overrightarrow{l}_i \ \alpha \rangle$
		M_Q	$\left(\frac{4\pi}{5}\right)^{\frac{1}{2}} \left<\beta \right \Sigma \tau_i^{\pm} r_i^2 Y_2(\hat{r}_i) \ \alpha\right>$
Axial vector typ	e	M_{ky}	$\left(\frac{16\pi}{5}\right)^{\frac{1}{2}} \left\langle \beta \right\ \Sigma \tau_i^{\pm} \sigma_i^2 C_{12k}^{nn'k} \sigma_{in} Y_2^{n'}(\hat{r}_i) \ \alpha \right\rangle$
c	$c \cong g_A M_{GT}$		·
d	$d \cong A(g_A M_{\sigma L} \pm g_{II} M_{GT})$		
		B. R. Holsteir	n, Rev. Mod. Phys. 46 (1974) 789
h	$h \cong \frac{-2}{\sqrt{10}} M^2 g_A \frac{M_{1y}}{\hbar c^2} - A^2 g_P M_{GT}$	F.P. Calaprice	e et al., Phys. Rev. C 15 (1977) 2178
j_2	$j_2 \cong \frac{-2}{3} M^2 g_A M_{2y}$		
j_3	$j_3 \cong \frac{-2}{3} M^2 g_A M_{3y}$		

effect on e.g. ⁶⁰Co asymmetry parameter (log ft = 7.5)

F. Wauters et al., Phys. Rev. C 82 (2010) 055502

βas	ymmetry	v param	eter: $A_{SI}^{\beta^2}$	$_{M,GT}^{+} =$	$\mp \frac{\gamma_{JJ'}}{J+1} [1$		
Form fa	actor	l	Effect on A _{SM}	(%)	$+\frac{1}{4}\left[\frac{E+2m_{e}^{2}/E}{2M}\right]$		
$b \\ d \\ f \text{ and } g \\ h \\ j_2 \\ c_2$	3		+0.33 -0.05 +1.27 0.00 -0.13 0.00		$= \frac{\frac{A}{Ac_1}}{\frac{b}{Ac_1}} \left[\frac{3M_n}{2M_e/E} \right] \\ + \frac{d}{Ac_1} \left[\frac{-E + m_e^2/E}{3M_n} \right]$		
A	_{sм} (⁶⁰ Сс) = -0.	987(9)		$\mp \frac{f}{Ac_1} \left[\frac{\lambda_{JJ'}}{\gamma_{JJ'}} \frac{5}{N} \right]$	$\frac{\partial E}{M_n}$]] +	
eraction	$ c_{1,exp} $	b/Ac_1	d/Ac_1	f/Ac_1	j_2/Ac_1	g/Ac_1	A _{SM}
3 MI3	0.0138 0.0138	-7.6 -6.8	4.4 3.4	-5.0 -5.0	-4.4×10^{5} -4.6×10^{5}	5.6×10^5 5.6×10^5	-0.9779 -0.9767
PF1A	0.0138	-6.4	-4.3	-3.1	-3.0×10^{5}	3.5×10^{5}	-0.9868

with experimental precisions ~ 0.5 to 1%

→ precision has reached the level where the induced terms have to be included and quite well known, to further gain sensitivity to new physics

β spectrum shape measurements with a Si detector

