Beta-decay correlations in ⁸Li/⁸B

Solvay Workshop on "Beta-Decay Weak Interaction Studies in the Era of the LHC" September 4, 2014

Nicholas Scielzo Experimental Nuclear Physics Group

Lawrence Livermore National Laboratory

LLNL-PRES-?????

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Nuclear β decay correlations

The form of the interaction results in correlations between the β and ν ...

$$dW \sim \left[1 + \frac{a}{e} \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + \frac{b}{E_e} \frac{m_e}{E_e}\right]$$

Compare experimental values to SM predictions

Put limits on terms "forbidden" by SM Today, precise measurements of the beta-neutrino correlation search for scalar or tensor contributions from exotic weak bosons

For a pure Gamow-Teller transition

$$a = -\frac{1}{3} \frac{|C_A|^2 + |C_A|^2 - |C_T|^2 - |C_T|^2}{|C_A|^2 + |C_A|^2 + |C_T|^2 + |C_T|^2}$$

Experimental searches for $|C_T/C_A|^2$ have been made at the ~1% level...

...aiming for 0.1% (beyond perhaps) in the upcoming years...

Lawrence Livermore National Laboratory

Beta-decay spectroscopy using trapped ions

Ion traps provide a "massless" sample of radioactive nuclei suspended in vacuum

- Nuclear recoil available for study

 → reconstruct particles from
 energy/momentum
- Collect sample in ~1-mm³ volume
 → excellent geometry for radiation detection
- Make efficient use of rare nuclei
 → high statistics needed for precision measurements

Element independent
 →many isotopes available for study and calibrations

Lawrence Livermore National Laboratory

New opportunities for precise studies of:

 β + recoil \rightarrow neutrino

G. Li et al., Phys. Rev. Lett. 110, 092502 (2013)

(2) Neutrons recoil \rightarrow neutron

R.M. Yee et al., Phys. Rev. Lett. 110, 092501 (2013)

Beta-decay spectroscopy using trapped ions

However, have to contend with certain challenges:

- No guarantee of sample purity
- Challenging detector environment
- Have to contend with EM fields

Best to choose experiments minimally impacted by the disadvantages... New opportunities for precise studies of:

 β + recoil \rightarrow neutrino

G. Li et al., Phys. Rev. Lett. 110, 092502 (2013)

(2) Neutrons

recoil \rightarrow neutron

R.M. Yee et al., Phys. Rev. Lett. 110, 092501 (2013)

The Beta-decay Paul Trap

- Confine up to ~10⁶ ions at once
- Hold for >200 sec
- Accessible half-life > 50 ms
- Confine in ~1-mm³ volume
- DC fields of ~100V
- RF fields of 200-1000 V_{pp} at 0.2-1.3 MHz
- He buffer gas cools ions to ~0.1 eV

Lawrence Livermore National Laboratory

N.D. Scielzo et al., NIM A 681, 94 (2012)

5

Why is ⁸Li a promising candidate for improvement?

⁸Li
$$\rightarrow$$
 ⁸Be* + β^- + ν
 $\downarrow \rightarrow \alpha + \alpha$

Q ≈ 13 MeV (broad ⁸Be* state at 3 MeV)

 $t_{1/2} = 0.840 \text{ sec}$

$2^+ \rightarrow 2^+$ decay is essentially pure allowed Gamow-Teller

- only axial vector and tensor contribute
- Fermi admixture is only $(5.0 \pm 1.5) \times 10^{-4}$
- R.B. Wiringa *et al.*, PRC **88**, 044333 (2013).

Large Q value and small nuclear mass

- 12-keV nuclear recoils
- Large kinematic shifts imparted to break-up α particles
 - E_{α} difference ±400 keV
 - angle deviation from 180^o by up to 7^o

$t_{1/2}$ ~840 ms convenient for traps

Additional $\beta - \nu - \alpha$ correlation

Delayed- α emission in a Gamow-Teller decay: The β - ν - α triple correlation

⁸Li
$$\rightarrow$$
 ⁸Be* + β^- + ν
 $\downarrow \Rightarrow \alpha + \alpha$

The lepton emission leaves the daughter ⁸Be nucleus oriented, and for a spin sequence of $2^+ \rightarrow 2^+ \rightarrow 0^+$ in delayed α emission:

$$dW \sim \left[1 \mp \frac{1}{3} \frac{v}{c} \cos \theta_{ev} + b \frac{m_e}{E_e} \mp \frac{v}{c} \left(\cos \theta_{e\alpha} \cos \theta_{\alpha v} - \frac{1}{3} \cos \theta_{ev}\right)\right]$$

where the "-" is for A and the "+" for T.

For parallel p_e and p_{α} simplifies to:

$$dW \sim \left[1 \mp \frac{v}{c} \cos \theta_{ev} + b \frac{m_e}{E_e}\right]$$

Sensitivity to difference between A and T increased by 3 × !

Correlations determined from β - α - α coincidences

Ion cloud surrounded by array of double-sided silicon strip detectors (DSSDs)

- Determine β momentum direction
- Determine momentum and energy for both α particles

This is sufficient to fully reconstruct the decay kinematics

- $E_{\alpha 1} + E_{\alpha 2}$: ⁸Be excitation energy
- $p_{\alpha 1}+p_{\alpha 2}$: nuclear recoil

Additional measurement of β energy not required... but overconstrains the kinematics

trapped ions surrounded by DSSDs and plastic scintillators

Imaging the ion cloud with back-to-back coincidences

 Looking at the strip differences over time we can watch the ion cloud cool

- Slight broadening due to resolution of strips & angular broadening of α's from recoil
- Image is consistent with ion cloud ${\sim}1~mm^3$
- Finer strips will provide more precise imaging

1st results: $\beta - \alpha - \alpha$ coincidences from ⁸Li held in the ion trap

trapped ions surrounded by $50 \times 50 \times 0.3 \text{ mm}^3 \text{ DSSDs}$ (with 3.2-mm strips) backed by $50 \times 50 \times 1 \text{ mm}^3 \text{ SD}$

G. Li et al., Phys. Rev. Lett. 110, 092502 (2013)

"Pure" Gamow-Teller decay $a_{SM} = -1/3$ $a = -0.3307 \pm 0.0090$

 $|C_T/C_A|^2 = 0.004 \pm 0.009_{\text{stat}} \pm 0.010_{\text{syst}}$

(note: fractional uncert. on *a* is 2 × worse that of $|C_T/C_A|^2$)

Improvements: 10 × statistics

2nd Campaign

Finer segmentation on DSSD Thinner dead layer on DSSD

trapped ions surrounded by 64 × 64 × 1 mm³ DSSDs (with 2.0-mm strips and 100-nm dead layer)

Analysis depends on detailed simulations...

Beta-decay event generator

- Beta-decay phase space and angular correlations N.D. Scielzo *et al.*, Phys. Rev. Lett. 93, 102501 (2004)
 B.R. Holstein, Rev. Mod. Phys. 46, 789 (1974)
 H. Behrens and J. Janecke (1969)
- Final-state distribution of ⁸Be* M. Bhattacharya *et al.*, Phys. Rev. C 73, 055802 (2006)
- Recoil-order terms and radiative corrections
 B.R. Holstein, Rev. Mod. Phys. 46, 789 (1974)
 F. Gluck, Comp. Phys. Comm. 101, 223 (1997)
 - Estimated size of radiative corrections for β-ν-α correlation term (need theory help to do this right!)
- Ion cloud distribution
 - Imaged cloud dimensions are ~1.8 mm

Analysis depends on detailed simulations...

Beta-decay event generator

- Beta-decay phase space and angular correlations
- Final-state distribution of ⁸Be*
- Recoil-order terms and radiative corrections
- Ion cloud distribution

GEANT4 Simulation

Selects coincident events

Reconstruct β s using algorithms used for data

- Beta scattering in experimental geometry PENELOPE physics package full 3D model of trap, detector array, and chamber
- Detector response

energy loss in dead layers energy resolution Lawrence Livermore National Laboratory

Systematic effects – still to be finalized

Source	$\Delta C_T/C_A ^2 TB$	$\Delta C_T/C_A ^2 LR$
Energy Calibration	0.0009	0.0025
Dead Layer Thickness	0.0020	0.0020
Dead Layer Uniformity	0.0014	0.0014
β Scattering	0.0015	0.0015
Energy Cuts	0.0012	0.0012
α Line Shape	0.0018	0.0018
Rare Backgrounds	0.0011	0.0011
Induced Tensor Currents	0.0006	0.0006
Bremsstrahlung Emission	0.0006	0.0006
Total	0.0040	0.0046

 $|C_T/C_A|^2 = 0.0018 \pm 0.0036_{stat} \pm 0.0041_{syst}$ $a_{\beta\nu} = -0.3321 \pm 0.0036$

M.G. Sternberg, PhD Thesis, UChicago (2013) M.G. Sternberg *et al.*, to be submitted to Phys. Rev. Lett. (2014)

Further reduction of systematic effects

Source	$\Delta C_T/C_A ^2 {}_{TB}$	$\Delta C_T/C_A ^2_{LR}$
Energy Calibration	0.0009	0.0025
Dead Layer Thickness	0.0020	0.0020
Dead Layer Uniformity	0.0014	0.0014
β Scattering	0.0015	0.0015
Energy Cuts	0.0012	0.0012
α Line Shape	0.0018	0.0018
Rare Backgrounds	0.0011	0.0011
Induced Tensor Currents	0.0006	0.0006
Bremsstrahlung Emission	0.0006	0.0006
Total	0.0040	0.0046

Reduce β scattering

- lower-Z materials
- modified electrode structure
- guidance from GEANT4 simulations

Better understanding of detector response

- better dead-layer measurement
- calibration with ²⁰Na β -delayed α emission

Towards $|C_T/C_A|^2 \sim 0.001$

Higher statistics

- Improved beam tuning diagnostics
- Optimized gas target geometry
- High-frequency gas catcher

Towards $|C_T/C_A|^2 \sim 0.001$

Higher statistics

- Improved beam tuning diagnostics
- Optimized gas target geometry
- High-frequency gas catcher

Achieved ~10 × increase in efficiency for ⁸B

β-α-α coincidences from ⁸B decay from July 2014

Addition of plastic scintillator detectors for direct β energy measurement

trapped ions surrounded by DSSDs and plastic scintillators

Overconstrain decay kinematics for systematic checks

Select events that are most sensitive to difference between A and T

On the horizon... pursuing even higher precision ⁸Li/⁸B measurements

β-decay angular correlations

- Further improve limits on $\beta \nu$ correlation
- Search for Fierz interference term

Recoil-order terms (small *E*_e **dependence)**

- CVC hypothesis weak vector current is related to the isovector EM current for analog γ decay
- Second-class currents do induced terms obey same symmetries as strong interaction

⁸B neutrino spectrum

- Neutrino spectrum calculated once E_x known
- Resolve disagreement between recent measurements (~20 keV calibration shifts)

Lawrence Livermore National Laboratory

On the horizon... pursuing even higher precision ⁸Li/⁸B measurements

β-decay angular correlations

- Further improve limits on $\beta \nu$ correlation
- Search for Fierz interference term

Sensitivity to Fierz interference term is ~10 × less than for tensor contribution

Systematics need to be carefully investigated

On the horizon... pursuing even higher precision in mirror ⁸Li/⁸B decays

Recoil-order terms (small E_e dependence)

- Weak magnetism term b_{wm} (change sign with β^{\pm})
- Second-class current term d (independent of β^{\pm})

Fully-reconstructed decay allows determination of *b_{wm}* and *d* from several correlations

Lawrence Livermore National Laboratory

 ⁸Li/⁸B has many favorable features for precision tests of fundamental symmetries

- Large Q value and small M yield recoil energies and easy to measure kinematic shifts in delayed α particles
- β -v- α correlation gives additional contrast between A and T currents
- Measurement technique has different systematic uncertainties than TOF measurements
- Program well underway with $|C_T/C_A|^2$ already determined to ~0.005 and a sensitivity of 0.001 on the horizon...
- Additional terms accessible

Ion Trap Collaborators

Graduate Students

Postdoctoral Researchers

N.D. Scielzo, A. Czeszumska, E.B. Norman, S. Padgett, B.S. Wang, R.M. Yee

G. Savard, M. Burkey, S. Caldwell, J.A. Clark, A.F. Levand, A. Perez Galvan, P. Mueller, M.G. Sternberg

W McGill

F. Buchinger, J. Crawford, **R.** Orford

R. Segel

A. Aprahamian, S. Marley, N. Paul, S. Strauss, K. Siegl

K.S. Sharma, G. Morgan, T. Hirsch

Lawrence Livermore National Laboratory

