

Measuring $a_{\beta\nu}$ in ⁶He using an Electrostatic Ion Trap

Guy Ron Hebrew University of Jerusalem for the WIRED/WISETrap/NeA Collaboration

Ernshaw's Theorem

S. Earnshaw, Trans. Cambridge Philos. Soc. 7, 97 (1842)

A collection of point charges cannot be maintained in a stable stationary equilibrium configuration solely by the electrostatic interaction of the charges.

Restatement of Gauss' Law (for free space)

$$\nabla \cdot E \propto \nabla \cdot F = -\nabla^2 \phi = 0$$

No local minima or maxima in free space (only saddle points). Naively speaking \rightarrow No electrostatic ion traps

Non Electrostatic: Time varying ("Paul trap", MOT) & Magnetic fields ("Penning trap"). Electronic correction.

But what about moving ions...

Ernshaw's theorem talks about stationary charges. Moving charges in an electrostatic field actually "see" changing fields. Trap design very similar to a resonant cavity for laser light.

But what about moving ions...

Ernshaw's theorem talks about stationary charges. Moving charges in an electrostatic field actually "see" changing fields. Trap design very similar to a resonant cavity for laser light.

Realized at the Weizmann Institute (Israel). Also used in a cryogenic setup in Heidelberg. Our setups exist at WI and LBL.

Trap selective in g/E. Different isotopes have a different oscillation frequency in the trap.

The B-Decay EIBT Scheme

Trap moving ions in Electrostatic Ion Beam Trap.

Simple, cheap setup. No need for acceleration of products - simple detection scheme. Kinematic focusing. Decay in field free region.

Moving system - position of decay harder to infer. Large initial spatial extent (bunch).

- Recoil ion detected in MCP.
- β detected in position detectors.
- Need bunch position for full reconstruction (multiple scattering of β in detectors).
- Large solid angle + kinematic focussing \rightarrow detection efficiency > 50%.
- No need for electrostatic acceleration (ions at ~keV). Decay in field free region.

- Recoil ion detected in MCP.
- β detected in position detectors.
- Need bunch position for full reconstruction (multiple scattering of β in detectors).
- Large solid angle + kinematic focussing \rightarrow detection efficiency > 50%.
- No need for electrostatic acceleration (ions at ~keV). Decay in field free region.

- Recoil ion detected in MCP.
- β detected in position detectors.
- Need bunch position for full reconstruction (multiple scattering of β in detectors).
- Large solid angle + kinematic focussing → detection efficiency > 50%.
- No need for electrostatic acceleration (ions at ~keV). Decay in field free region.

Where are we now @ WI?

WIRED

<u>Weizmann</u> <u>Institute</u> <u>Radioactive</u> <u>Electrostatic</u> <u>Device</u> <u>Experimental scheme</u>

Neutron Generator

WIRED

Weizmann Institute Radioactive Electrostatic Device Experimental scheme

 $D + T \rightarrow n + {}^{4}\text{He} \quad E_n = 14.2 \text{ MeV},$

Production rate ~10¹⁰ n/s Supplied and commissioned at WI

Furnace + BeO Target

WIRED

<u>Weizmann</u> <u>Institute</u> <u>Radioactive</u> <u>Electrostatic</u> <u>Device</u> <u>Experimental scheme</u>

Buncher / Accumulator

WIRED

Weizmann Institute Radioactive Electrostatic Device Experimental scheme

EBIT - **DREBIT** (Dresden, Germany) Neutral ⁶He enter the EBIT, ionized, accumulated and bunched. Custom made for efficient ⁶He injectio.. Waiting at WI for commissioning

Trap

WIRED

Weizmann Institute Radioactive Electrostatic Device Experimental scheme

Trap

Trap

LAPS Calibration Maps

- Recoil ion detected in MCP.
- β detected in position detectors.
- Need bunch position for full reconstruction (multiple scattering of β in detectors).
- Large solid angle + kinematic focussing \rightarrow detection efficiency > 50%.
- No need for electrostatic acceleration (ions at ~keV). Decay in field free region.

Production Tests - 23 Ne

²³Ne production and transport demonstrated. Currently replacing heating element to increase yield.

Production Tests - 23 Ne

New production chamber containing evaporation source heater + crucible installed over the last week.

Should allow us to melt the NaCl.

First run planned for next week.

Direct $cos(\theta)$ reconstruction

LBL setup almost identical.

SARAF

- New, (very) high current p/d accelerator (5mA/up to 40MeV) under construction at SOREQ.
- Neutron production also possible with Liquid-Li (for eg., but under construction).
- Currently running d beams on LiF target (SARAF/WI) for neutron beam production (very similar energy to NG).

SARAF Projected Yields

SARAF Projected Yields

SARAF Phase-I Target Area

- ~2MEuro project approved by IAEA + Support from Pazy Foundation.
- Construction of dedicated beam line, 2 production targets, and 4 experimental areas.
- Experimental areas for: Laser lab, EIBT, Neutron activation, Positron production.
- * Target date labs open end of 2015.

SARAF Phase-I Target Area

- ~2MEuro project approved by IAEA + Support from Pazy Foundation.
- Construction of dedicated beam line, 2 production targets, and 4 experimental areas.
- Experimental areas for: Laser lab, EIBT, Neutron activation, Positron production.
- * Target date labs open end of 2015.

SARAF Phase-I Target Area

Lab Areas: Electrostatic trap MOT Trap Activation measurements Slow positron beam

Production area: 2 production targets (LiLiT + Replaceable)

Polarízation Dependent Observables

$$\begin{aligned} \frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}} & \propto \xi \left\{ 1 + a\frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} + b\frac{m}{E_e} + c\left[\frac{1}{3}\frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} - \frac{(\vec{p_e} \cdot \vec{j})(\vec{p_{\nu}} \cdot \vec{j})}{E_e E_{\nu}}\right] \right. \\ & \left. \left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)}\right] + \left[\frac{<\vec{J}>}{J} \cdot \left[A\frac{\vec{p_e}}{E_e} + B\frac{\vec{p_{\nu}}}{E_{\nu}} + D\frac{\vec{p_e} \times \vec{p_{\nu}}}{E_e E_{\nu}}\right]\right\} \end{aligned}$$

- Requires polarization of initial sample.
- Measurement typically of position asymmetry.
- Usually flip field for systematic control.

Neat trick

- Add on-axis magnetic field for Zeeman splitting.
- On-axis field does not effect the trajectories (V X B = 0).
- Polarize ions with circularly polarized lasers.
- Due to large doppler shift (high energy ions) → two independent ion populations (parallel/anti-parallel).
- MCP hit is determined by direction of ion → each MCP sees only one population.
- Need polarizable ions (usually singly ionized alkaline earth metals which look like alkali metals when singly ionized).

EXAMPLE ³⁹K

$$\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}} \propto \xi \left\{ 1 + a\frac{\vec{p}_{e} \cdot \vec{p}_{\nu}}{E_{e}E_{\nu}} + b\frac{m}{E_{e}} + c\left[\frac{1}{3}\frac{\vec{p}_{e} \cdot \vec{p}_{\nu}}{E_{e}E_{\nu}} - \frac{(\vec{p}_{e} \cdot \vec{j})(\vec{p}_{\nu} \cdot \vec{j})}{E_{e}E_{\nu}}\right] \right\}$$
$$\left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^{2} >}{J(2J-1)}\right] + \frac{<\vec{J}>}{J} \cdot \left[A\frac{\vec{p}_{e}}{E_{e}} + B\frac{\vec{p}_{\nu}}{E_{\nu}} + D\frac{\vec{p}_{e} \times \vec{p}_{\nu}}{E_{e}E_{\nu}}\right]\right\}$$
Translates to TOF

3/2 +

Decay Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

on MCPs $^{39}Ca \rightarrow ^{39}K + \beta^+ + \nu_e$ Mirror decay $3/2^+ \rightarrow 3/2^+$ Combination GF and F but calculable Q = 6.532 MeV $\tau_{1/2} = 860 \text{ ms}$ For 4.2keV ~360GHz doppler shift →

720GHz separation.

"High Energy" Chemistry An experiment looking for a theorist

- Production of radioactive molecules/ dimer/clusters is fairly trivial (usually a side effect of the production of radioactive atoms/ions).
- Ionization of such molecules also trivial.
- ES trap can easily trap molecules of hundreds of amu (also used for bio-molecules).

- Radioactive decay dumps a lot of energy and momentum into the decay products.
- Time scale for decay/emission of shakeoff products is effectively instantaneous.

- Detect molecular decays in ES trap.
- Energy/Momentum sharing between decay products (electronic interaction timescales?).
- Angular correlation in decays (potential?).
- High detection efficiency.
- Mass resolution good enough for selection of different numbers of radioactive atoms in clusters ²³Na₄ - ²¹Na²³Na₃ 2

$$\frac{\frac{2^{3}\text{Na}_{4} - 2^{1}\text{Na}^{23}\text{Na}_{3}}{4\text{Na}_{23}} \sim \frac{2}{92}}{\frac{2^{3}\text{Na}_{4} - 2^{1}\text{Na}_{2}^{23}\text{Na}_{2}}{4\text{Na}_{23}}} \sim \frac{4}{92}$$

Future Studies

(Undergraduate/Graduate Projects/Theses)

- Production methods.
- Transverse/Longitudinal cooling of ion bunch.
- Detection Schemes.
- Ion beam polarization.
- Detector designs.

4 Slides about atom traps

Ne Atop Trap Setup @ HUJI NeAT Facility

- * Stable isotope trap complete (once laser fixed...).
- * Science chamber being designed.
- * New source installed and tested.
- * Rare neon production tested.
- Isotope shift experiment being set up.
- Moving to new lab
 @SARAF end of
 2015.

Ne Atop Trap Setup @ HUJI

Moving to new lab
 @SARAF end of
 2015.

Ben Ohayon and GR, JINST 8, PO2016 (2013) B. Ohayon, Y. Shalibo, and GR, In preparation

Summary

- It is possible to circumvent Ernshaw's theorem by electrostatic trapping of a moving bunch of ions.
- Trap design is extremely simple and cheap (much more so than conventional ion or optical traps).
- Trap design is almost a "black box" which can be easily transported to different experimental facilities.
- Ongoing development at LBL/WI.
- On track for ⁶He measurements (and possibly $^{23}Ne/^{19}Ne$).
- New facility/labs planned for end of 2015 w/very high yields.

Graduate/postdoc positions available!!!

In collaboration with:

WI: Micha Hass Daneil Zajfman Oded Heber Sergey Vaintrub Tsviki Hirsch (NRCN) David Melnik Yigal Sachar

MPIK Heidelberg: Klaus Blaum Andreas Wolf **Dirk Schwalm** LBL: Stuart Freedman (deceased) Yuan Mei Yury Kolomensky Brian Fujikawa

HUJI: Guy Ron Tom Segal