

The MTV T-Violation Experiment with 8Li

for the MTV collaboration

Solvay Workshop on "Beta-Decay Weak Interaction Studies in the Era of the LHC" Brussels, 3 - 5 September 2014

INTERNATIONAL SOLVAY INSTITUTES BRUSSELS

Rikkyo J. Murata, Y. Nakaya, Y. Totsuka, S. Tanaka, R. Tanuma, T. Iguri E. Seitaibashi, J. Onishi, T. Toyoda, M. Ikeda, R. Kishi, K. Ninomiya, S. Saiba, T. Yoshida, Y. Sakamoto Tohoku-CYRIC H. Kawamura / RIKEN H. Baba TRIUMF J. Behr, M. Pearson, P. Levy, R. Openshaw

Measurement = *R*-Correlation Searching P-odd & T-odd New Interaction

Past Studies

Experimental Sensitivity >> CKM (Standard Model) Predictions

Search of New Physics beyond the Standard Model
Suppression of CKM effect is desired
u, d system = Normal Nuclear is rather better system

Polarized 8Li Beam Facilities

Transverse Polarization Measurement

Utilizing Analyzing Power of Mott Scattering

UP/DOWN Asymmetry in Mott Scattering

Principle and Experimental Setup

KEK-TRIAC Experiment

Sdays Physics Run performed Sep. 2008

Confirm V-Track reconstruction !

Apr 2008 Unpol. 10⁴pps Sep 2008 8% pol. 10⁵pps

0.6M V-Track events obtained with 8% pol. 10⁵pps 8Li beam

7

Results of KEK-TRIAC Experiment

40% precision for (8% pol.), 1.3x10⁵pps x 2days (37hours)

First Results from Reliable Tracking Measurement !

H. Kawamura, PhD Thesis, (2010) Rikkyo-U

MTV Run-I Commissioning at TRIUMF-ISAC

Shipping from Japan in July 2009 100MBq 90Sr Commissioning in August First Test Beam in Nov. 2009 Physics Run : 2010

MTV Run-II : First Physics Run 2010

tion exp.

Run-II achievement

Achieved Statistical Precision

(only 37 hours from 5.5days data taking was effective due to beam spot problem ..)

Systematics –I: N-correlation

Source = Tilting of beam polarization angle

Axial-Symmetric detector is desired

Systematics – II : Detector Asymmetry

Source = Detector Asymmetry + Parity Violation

Resolved in two dimensional analysis

Symmetric detector is desired

Systematics-III : Efficiency

Run-II result

Still has difficulty in unpol. data

Remaining Systematics : Asymmetric Acceptance + Beta Asymmetric Emission >> Offline restoration analysis using Tracking Information

To Remove Systematics : N-correlation, Asymmetric Acceptance

To Remove Systematics : N-correlation, Asymmetric Acceptance

Geometrical Systematics Reduction

MTV-CDC

KEK 2011

Anode (20µm Au-W) × 400 > signal readout Cathode (100µm Au-Al) × 1000 > applied voltage Shield (100µm Au-Al) × 400 > shut down noise Field (100µm Au-Al) × 400 > applied voltage

Designed in 2009 – 2010, Fabricated in 2011

Cell size 4mm x 400 anode 10 mm x 104 anode (MWDC)

High rate capability, Large and symmetric acceptance

MTV-CDC Performance Test Run-IV 2012

Beam test Run-III : CDC commissioning2011Run-IV : Full setup test2012

MTV-Tracking

CDC performance

Same event rate achieved (thanks to fast full FPGA-DAQ)

Should be robust to the efficiency un-stability systematics (by reducing 1-st level counting rates)

CDC systematics

Calibration & Systematics Check

The MTV experiment Activity Summary

2008 Test Experiment at KEK-TRIAC

RIUMF

R~40% precision for (8% pol.), 1.3x10⁵pps x 37hours (0.6M V-tracks)

2009 – 2010 MTV exp. at TRIUMFTRIAC using MWDC

2011 CDC construction

R ~ 0.2% precision for (80% pol.), 1 x10⁷pps x 11shifts (250M V-tracks)

Achieved the Highest Statistics

2011 CDC Commissioning 2012 MTV-CDC Full Setup Test 2013 CDC Systematics Test (physics) 2014 CDC Systematics Test (source) 2015 -16 Physics Production

0.01% precision, 107pps x 16 shifts remaining

Systematics Reduction

using Symmetric Detector

- 1. N-correlation (symmetric)
- 2. asymmetric acceptance (symmetric)
- 3. Efficiency non-stability (wide acceptance)

We are almost ready to the next run !

Formalism

$$D\xi = \delta_{J'J}M_F M_{\rm GT} \sqrt{\frac{J}{J+1}} \bigg[2 \, {\rm Im}(C_S C_T^* - C_V C_A^*) + C'_S C'_T^* - C'_V C'_A^*) \mp 2 \frac{\alpha Zm}{p_e} \, {\rm Re}(C_S C_A^* - C_V C_T^*) + C'_S {C'_A}^* - C'_V {C'_T}^*) \bigg], \qquad (B7)$$

$$R\xi = |M_{\rm GT}|^2 \lambda_{J'J} \bigg[\pm 2 \, \mathrm{Im} (C_T C_A'^* + C_T' C_A^*) \\ - 2 \frac{\alpha Zm}{p_e} \, \mathrm{Re} (C_T C_T'^* - C_A C_A'^*) \bigg] \\ + \delta_{J'J} M_F M_{\rm GT} \sqrt{\frac{J}{J+1}} \bigg[2 \, \mathrm{Im} (C_S C_A'^* + C_S' C_A^*) \\ - C_V C_T'^* - C_V' C_T^*) \mp 2 \frac{\alpha Zm}{p_e} \, \mathrm{Re} (C_S C_T'^* + C_S' C_T^*) \\ - C_V C_A'^* - C_V' C_A^*) \bigg].$$
(B10)

$$\begin{split} N\xi &= 2 \operatorname{Re} \left\{ |M_{\mathrm{GT}}|^2 \lambda_{J'J} \left[\frac{1}{2} \frac{\gamma m}{E_e} (|C_T|^2 + |C_A|^2 + |C_T'|^2 + |C_A'|^2) \pm (C_T C_A^* + C_T' C_A'^*) \right] \\ &+ |C_A'|^2) \pm (C_T C_A^* + C_T' C_A'^*) \right] \\ &+ \delta_{J'J} M_F M_{\mathrm{GT}} \sqrt{\frac{J}{J+1}} \left[(C_S C_A^* + C_V C_T^* + C_S' C_A'^* + C_V' C_T') \pm \frac{\gamma m}{E_e} (C_S C_T^* + C_V C_A^* + C_S' C_T'^* + C_V' C_A') \right] \right\}, \end{split}$$

$$(B9)$$

$$N_{8Li} \approx \frac{1}{3} \frac{m_e}{E_e}$$

N ~ 3%

$$R_{8Li} \approx \frac{1}{3} Im \left[\frac{C_T + C_T'}{C_A} \right] + \frac{1}{3} \frac{\alpha Z_F m_e}{p_e}$$
 FSI ~ 0.07 %

Theoretical Calculation of Final State Interaction

$$R\xi = |M_{\rm GT}|^2 \lambda_{J'J} \bigg[\pm 2 \, \mathrm{Im} (C_T C'_A^* + C'_T C^*_A) \\ - 2 \frac{\alpha Zm}{p_e} \, \mathrm{Re} (C_T C'_T^* - C_A C'_A^*) \bigg] \\ + \delta_{J'J} M_F M_{\rm GT} \sqrt{\frac{J}{J+1}} \bigg[2 \, \mathrm{Im} (C_S C'_A^* + C'_S C^*_A) \\ - C_V C'_T^* - C'_V C^*_T) \mp 2 \frac{\alpha Zm}{p_e} \, \mathrm{Re} (C_S C'_T^* + C'_S C^*_T) \\ - C_V C'_A^* - C'_V C^*_A) \bigg].$$
(B10)

J. D. Jackson, et. al., NP4 (1957) 206

Fig. 1. Feynman graphs describing radiative corrections.

Fig. 4. The expression (26), divided by its point Coulomb limit, for $p_e = 0.6m_ec$ and the indicated Z-values. The position of the nuclear radius is indicated by an arrow.

$$\xi R^{(\mathrm{rad})} = \frac{Z\alpha^2 m_{\mathrm{e}}}{\pi p_{\mathrm{e}}} \langle M \rangle \left[\langle \sigma \rangle^2 \frac{C_{\mathrm{A}}^2}{M_{\mathrm{S}}} \left(\frac{3+3/\lambda}{2} \ln \frac{\Lambda}{M_{\mathrm{N}}} + \frac{1+5/\lambda}{8} + g(\beta) \right) \right. \\ \left. \pm \delta_{II'} \langle 1 \rangle \langle \sigma \rangle \frac{2C_{\mathrm{V}}C_{\mathrm{A}}}{\sqrt{I(I+1)}} \left(\frac{6+3\lambda+3/\lambda}{4} \ln \frac{\Lambda}{M_{\mathrm{N}}} + \frac{-2+9\lambda+5/\lambda}{16} + g(\beta) \right) \right].$$

P. Vogel and B. Werner, NPA404 (1983) 345

Final State Interaction is really comes from Charge ?

Future

Nucleus

Non-zero signal ~ 0.01% ?

FSI or New Physics ?

Check Electron Momentum Dependence
 Systematic Study over various Nuclei

$$R_{8Li} \approx \frac{1}{3} \operatorname{Im} \left[\frac{C_T + C_T'}{C_A} \right] + \frac{1}{3} \frac{\alpha Z_F m_e}{p_e}$$

Systematic study of FSI itself is an interesting subject ..

Application of MTV to mu-TRV at J-PARC ?

Need different polarimer for high energy electron (Mott analyzing power is small)

MTV-G : Gravity Experiment

Test of Gravitational inverse square law at nuclear scale,

to search large extra-dimension

Low energy tests vs the LHC

J. Murata arXiv:1408.3588

Review of short-range gravity experiments in the LHC era (Topical Review in Classical and Quantum Gravity)

10

Stanford

 M_D [TeV]

10²

Casimir

10⁻¹

10⁻³

 10^{-2}

10⁻⁴

10⁻⁵

10⁻⁶

Summary

The finest precision test of T-Violation at 10⁻⁴ level will be performed very soon.

We will see something non-zero effect, for the first time.

We hope that theoretical model calculations are triggered !

Dirac Particle Approximation ?

Point Charge = Electric Monopole Moment = No Quantum Axis

CDC Performance

MTV-DAQ/Trigger History

