

Lil' a with laser trapped ⁶He

Peter Müller

⁶He Collaboration

P. Mueller, A. Leredde, T.P. O'Connor, K. Bailey Physics Division, Argonne National Laboratory

A. Garcia, M. Sternberg, F. Wauters, D. Zumwalt, R. Hong,
Y. Bagdasarova, D. Storm, H.E. Svanson, G. Harper
CENPA, University of Washington

X. Flechard, E. Liennard LPC Caen

O. Naviliat-Cuncic NSCL, Michigan State University

\$ PM DOE Early Career Research Grant, DOE CENPA, LPC \$

PhD, Postdoc

Weak Interaction Studies: $\beta - \nu$ Angular Correlations

The Case for ⁶He

- β^{-} decay, pure Gamow-Teller decay to g.s. ⁶Li
- Suitable half-life and Q-value
- Produced and transferred with high yield (noble gas)
- Simple nuclear and atomic structure
- Small branch of ~10⁻⁶ for ⁶He $\rightarrow \alpha$ +d

Current experiments searching for tensor cpl. in β decay

Parent	Observable	Group/Lab	Technique
n	b	Nab/SNS	Mag. Spect.
n	b	UCNb/LANL	4π detector
⁶ He	а	LPC+/GANIL	Paul trap
⁶ He	а	ANL+/CENPA	МОТ
⁶ He	а	WIS/Soreq	Electrostatic
⁸ Li	$g \approx 3 a_{GT}$	ANL	Paul trap

Beta-Decay Study with Laser Trapped ⁶He

Atom trap properties

- Highly selective capture
- No RF fields or space charge
- Low temperature sample (<mK)
- Tight spatial confinement (< 100μm)

- ~5x10⁹ ⁶He/s production yield
- trapping rate ~1x10³ ⁶He/s
- ~0.1% statistics in ~8 weeks beam time

Production of ⁶He @ CENPA

David Zumwalt

- ⁶He produced using the ⁷Li(d,³He)⁶He reaction on molten lithium
- Deuteron currents up to 10 µA @ 18 MeV using tandem Van de Graaff accelerator at CENPA/UW
- ⁶He extracted to vacuum and transported to low background environment

electrical isolation

lithium cup

collimator

cooling

⁶He Production and Transfer

Precision 6He Lifetime

Source	Shift [ms]	Uncertainty [ms]
Deadtime correction	-	0.037
⁶ He Diffusion	0	$< {}^{+0.12/0.22}_{-0}$
Gain shift	-0.19	0.19
⁸ Li contamination	0	$< ^{+0}_{-0.007}$
Background	0.046	0.004
Data correction	0	< 0.01
Deadtime drift	0	0.009
Afterpulsing	0	< 0.003
Clock accuracy	0.006	0.011
Total	-0.14	$^{+0.23}_{-0.19}$ / $^{+0.29}_{-0.19}$

Compare with *ab-initio* calculations of $|M_{GT}|$ to obtain g_A in nuclear medium

A. Knecht *et al.*, PRL **108**, 122502 (2012) A. Knecht *et al.*, PRC **86**, 035506 (2012)

Atomic Energy Levels of Helium

He energy level diagram

Atom Trapping of ⁶He

Helium MOT Setup @ CENPA

MOT Imaging

- On-line MOT imaging
- 2 cameras for x/y/z control
- Trap diameter
 - < 200 µm
- Trap stability
 - < 10 µm *

12

MOT to MOT transfer

- Reduce background from un-trapped ⁶He through diff. pumping
- Separate MOT functions capture vs. detection
- Optical "push" beam
- Transverse cooling
- ~40% transfer in 15 ms

Beta and Recoil Ion Detectors

Scintillator **Proportional counter** Beryllium window 2 kV/cm electrode structure Atom cloud MCP es

Beta Detector System

Ran Hong

Electrode System

Yelena Bagdasarova

- Deflect recoil ions (1.4 keV max.) onto 8 cm dia. MCP
- Variable, uniform electric field with 0.05% relative stability and accuracy
- 1.5 2.0 kV/cm -> 80 99% coll. eff.

Electrode, MCP and HV Supply

- Stacked HV supplies
- Control each electrode separately
- Enable variable field geometries

Recoil Ion Detector

Xavier Flechard, Etienne Liennard

MCPs (micro channel plates)

Digital readout of signals, FPGA processing (LPC FASTER DAQ system)

On test flange with calibration mask

Recoil Ion Detector

Position calibration with mask, Na⁺ beam

- DAQ system for beta and recoil detectors works
- MCP efficiency 52 % (70%)
- MCP uniformity 95.5 99.8%
- Timing resolution ~100 ps
- Position resolution ~100 μm
- Position reconstruction ~ 1 mm

Need to do

- In situ calibration with ⁶He BG
- Timing calibration with ⁴He Photo-ions (337 nm pulsed N₂ laser)

⁴He trap diagnostics with MCP

 $He^* + X -> He + X^+ + e^ He^* + He^* -> He + He^+ + e^-$

MCP Image of Trapped ⁶He

Results: First coincidences

- 75 ⁶He/s in MOT 2
- ~0.15 Hz trapped ⁶He
- ~0.15 Hz background (untrapped ⁶He)

Systematic Uncertainties

- Detailed MC simulation
- Geant4 for beta tracking and detector response
- COMSOL for E-field calculation, recoil ion tracking

	<i>да/д</i> х	(∂a/∂x)/a	1% goal	0.1% goal	notes
Z-Position	<-3e-4 /0.1mm	<0.1%/0.1mm	$\delta z = 1 mm$	δt = 100 μm	
Timing (res)	-7e-4/1ns	0.2%/1ns	$\delta\sigma$ = 5.0 ns	$\delta\sigma$ = 500 ps	
MCP: radius cut	-0.02 /mm	6.5%/mm	δr = 150 μm	δr = 15 μm	r=37 mm βThresh = 200 keV
MCP: position	1.5e-3 / mm	0.3%/mm	δ pos = 3 mm	δ pos = 0.3 mm	offset in x-y plane
Beta threshold	2e-4/ 10 keV	0.065%/ 10 keV	δTh = 150 keV	δ Th = 15 keV	r=37 mm βThresh = 200 keV
E-Field Stability	1e-4/V	0.03%/V	δV = 30 V	$\partial V = 3 V$	
Untrapped Decays	-0.003 / 1% of background	-1% / 1% of background			

Outlook

Short term

- Install recirculating discharge source and guide beam
- Aim for initial ~1% statistics (300k coincidences)
 - 1 Hz coincidence rate, ~ 1 week
- Compare with numerical simulations

Medium term

- Upgrade trap / detector
 - Improve discharge, recirculation, trap and transfer efficiency
 - Multilayer MWPC for tracking
- High statistics (0.1%) runs
 - 10 Hz coincidence rate, ~ 8 weeks

Longer term

- Lil' b at 10⁻³: beta spectrometer (PxR, CRES, traps, ...)
- Lil' a at 10⁻⁴: shake-off electrons, dipole traps, large MCPs, ...

⁶He Collaboration

P. Mueller, A. Leredde, T.P. O'Connor, K. Bailey Physics Division, Argonne National Laboratory

A. Garcia, M. Sternberg, F. Wauters, D. Zumwalt, R. Hong,
Y. Bagdasarova, D. Storm, H.E. Svanson, G. Harper
CENPA, University of Washington

X. Flechard, E. Liennard LPC Caen

O. Naviliat-Cuncic NSCL, Michigan State University

\$ PM DOE Early Career Research Grant, DOE CENPA, LPC \$ PhD, Postdoc

Limits with 0.1% ⁶He Experiment

90% C.L.

The "Classic" ⁶He Experiment

C.H. Johnson, F. Pleasonton, T.A. Carlson, Phys.Rev. 1963

with radiative correction from F. Glueck, Nucl. Phys A, 628, 493 (1998)

Systematic Uncertainty Estimates

		ða x 10⁻³
Trap position stability	10 µm	0.15
Electric field stability	4x10 ⁻⁴	0.15
MCP timing resolution	100 ps (200 ns)	0.15
MCP efficiency calibration	rel. 0.04%	
	30 µm	0.15
Beta detector calibration		0.30
		0.42 (0.13%

- Need more detailed simulations on E-field distortions, beta detector response and beta backscattering
 - Calibration with ⁶He background gas
 - Photoionization of ⁴He
- Study different range for beta scattering parameters in GEANT4
 - Few % backscattering events, need to understand to rel. ~ 5%
 - Tracking in MWPC for fiducial cuts

Beta Detector System

Scintillator energy calibration, ²⁰⁷Bi

PMT Energy Spectrum bkg-subtracted

- MWPC 94% efficiency
- New double-layer frames for position resolution + angle under construction
- Be window leads to 150 keV loss + large angle straggling
- Explore other window materials

First coincidence signals

October 2013

