

β–v correlation measurements in nuclear decays with LPCTrap

E. Liénard

LPC Caen, University of Caen

Development of LPCTrap : context in 1997

- Exotic couplings in weak interaction : situation of "a" measurements
 - GT : ⁶He (Johnson *et al.* PRC 1963) $\rightarrow a_{GT}$ = -0.3308 (30)
 - F: ³²Ar (project Adelberger *et al.*) $\rightarrow a_F = 0.9989$ (65) published in 1999 ^{38m}K (project Gorelov *et al.*) $\rightarrow a_F = 0.9981$ (48) published in 2005

 $\left(\longrightarrow \text{ Current limits : } C_T / C_A < 9\% \quad C_S / C_V < 7\% \right)$

- SPIRAL project @ GANIL
 - Light n-rich beams (noble gases) : ⁶He, ⁸He, ¹⁸Ne, ¹⁹Ne, ³²Ar, ³⁵Ar, ... with high intensities
 - First beam in 2001

Aim of LPCTrap : improvement of *a*_{GT} precision using up-to-date technologies

The LPCTrap setup

• Decay source confined in a transparent Paul trap

- β recoil ion detection
 in coincidence
- a deduced from recoil time-of-flight distribution

- ⁶He : good candidate
 - Pure GT transition
 - 100% G.S. to G.S.
 - Reasonable T_{1/2} = 806.7 ms
 - High $Q_{\beta} = 3.51$ MeV, $T_{max} = 1.4$ keV
 - High production rate: 2 10⁸ ions/s

Simulation for ⁶He⁺ decay

LPCTrap @ GANIL

LPCTrap @ LIRAT

~1.5 10⁸ ⁶He⁺/s

Buffer-gas: H₂ (He for heavier nuclei)
accumulation: 200ms (cycle)

~4 10^4 ⁶He⁺ /cycle Total efficiency: ~ 10^{-3}

LPCTrap : the detection setup

• < 2010

E. Liénard et al., NIMA551(2005)

- β energy
 β position
- recoil ion ToFrecoil ion position
- + timestamp in cycle & trap RF phase
- Time of flight of RI
- BG suppression
- Control of systematic effects
- Control of results consistency

RI charge state distribution (shakeoff) 5

⁶He : first results

• First experiment in 2006

 $a_{\beta\nu}$ = - 0.3335 (73) _{stat} (75) _{syst}

Fléchard et al., J.Phys.G 38 (2011)

- Best precision on a_{GT} using coincidence technique (*Aa/a* = 3%)
- Good control of experimental & simulation parameters

Systematic error budget

Source	Uncertainty	$\Delta a_{\beta v}$ (x 10 ⁻³)	Method
Cloud temperature	6.5%	6.8	off-line measurement
$\theta x_{\rm MCPPSD}$	0.003 rad	0.1	present data
θy_{MCPPSD}	0.003 rad	0.1	present data
MCPPSD offset (<i>x</i> , <i>y</i>)	0.145 mm	0.3	present data
MCPPSD calibration	0.5 %	1.3	present data
d _{DSSSD}	0.2 mm	0.3	present data
E _{scint}		0.8	present data
E _{si}	10%	0.8	GEANT4
Background		0.9	present data
β Scattering	10%	1.9	GEANT4
Shake off	0 - 0.05	0.6	theoretical calculation
V _{RF}	2.5%	1.7	off-line measurement
total		7.5	

<u>First need</u>: data on β scattering ! possible @ Bordeaux electron spectrometer (⁹⁰Sr source)

⁶He : first results

• Last experiment in 2010

 Analysis performed to extract P_shakeoff (complete simulation @ low statistics : ~ 4x10⁵)

 $P_{shake-off} = 0.02339(35)_{stat}(07)_{syst}$

- High precision : $\Delta P_{\text{shake-off}} = 3.6 \ 10^{-4}$
- Excellent agreement : theoretical value 0.02322 Couratin et al., PRL108 (2012)
- About a_{GT} :
 - $(\Delta a_{GT} / a_{GT})_{\text{expected}} \sim 0.63 \%$
 - difficulties to properly reproduce different
 experimental distributions → bad Chisquare !
 - Improvement of ion cloud modelling including gas cooling & space charge effects (GPU's, CUDA) → Xavier Fabian

<u>Second need</u>: extraction of "a" requires dedicated simulations including systematic parameters under perfect control...

Measurements in the mirror decays of ³⁵Ar & ¹⁹Ne

• Mirror decays = source of data to determine V_{ud}

Naviliat et al., PRL102(2009)

$$V_{ud}^{2} = \frac{K'}{(f_V T_{1/2} / BR)(1 + C\rho^2)}$$

parameters to be measured :

M (f_V), $T_{1/2}$, BR and ρ

- Status for some decays
- $\rho = GT/F$:
- the least or even not known quantity !
- precisely determined from correlation measurements

$$a_m = \frac{(1 - \frac{\rho^2}{3})}{(1 + \rho^2)}$$

$$B_{m} = -\frac{\rho^{2} + 2\rho\sqrt{J(J+1)}}{(1+\rho^{2})(J+1)}$$

Update of data in 2014: *M*, *T*_{1/2}, *BR*

 $V_{ud}(2009) = 0.9719(17)$

Update of data in 2014: *M*, *T*_{1/2}, *BR*

> <u>Third need</u>: for V_{ud} determination, ρ improvements are necessary ...

- ρ precisely determined from correlation measurements

 $a_m = \frac{(1 - \frac{\rho^2}{3})}{(1 + \rho^2)}$

 $A_{m} = \frac{\rho^{2} - 2\rho \sqrt{J(J+I)}}{(I+\rho^{2})(J+I)}$

Severijns & Naviliat PST152(2013)

a or A @ 0.5%?

"A" more sensitive than
"a" in a few cases
and it is more difficult
to measure precisely...

		a			Α	
Parent nucleus	ΔV_{ud}	$(\Delta V_{ud})^{\text{limit}}$	Factor $\Delta \mathcal{F}t$	ΔV_{ud}	$(\Delta V_{ud})^{\text{limit}}$	Factor $\Delta \mathcal{F} t$
³ H	0.0011	0.0010	2.1	0.0011	0.0009	2.3
¹¹ C	0.0025	0.0016	4.0	0.0207	0.0207	0.3
¹³ N	0.0017	0.0017	1.0	0.0123	0.0123	0.1
¹⁵ O	0.0020	0.0016	2.4	0.0023	0.0020	1.9
¹⁷ F	0.0019	0.0013	3.1	0.0341	0.0341	0.1
¹⁹ Ne	0.0011	0.0010	1.5	0.0011	0.0011	1.5
²¹ Na	0.0022	0.0017	2.7	0.0036	0.0034	1.3
²³ Mg	0.0025	0.0018	3.1	0.0034	0.0030	1.9
²⁵ Al	0.0019	0.0018	1.7	0.0056	0.0056	0.5
²⁷ Si	0.0029	0.0018	4.1	0.0068	0.0066	1.1
²⁹ P	0.0026	0.0018	3.4	0.0024	0.0014	4.3
³¹ S	0.0038	0.0018	5.9	0.0068	0.0061	1.8
³³ Cl	0.0021	0.0018	2.0	0.0013	0.0006	6.0
³⁵ Ar	0.0019	0.0018	1.1	0.0007	0.0004	4.8
³⁷ K	0.0034	0.0017	5.8	0.0050	0.0041	2.3
³⁹ Ca	0.0024	0.0016	3.5	0.0032	0.0027	2.2
⁴¹ Sc	0.0029	0.0022	2.7	0.0299	0.0299	0.2
⁴³ Ti	0.0076	0.0018	13.2	0.0167	0.0151	1.6
⁴⁵ V	0.0112	0.0020	17.7	0.0115	0.0032	11.2

A part of job could be achieved with LPCTrap....

Update of data in 2014-2015 : ρ ?

LPCTrap @ GANIL (LIRAT)

• Measurements of $a_{\beta\nu}$ and shakeoff probabilities in decay of ³⁵Ar¹⁺ & ¹⁹Ne¹⁺

Analysis of data in progress (development of new simulation tools...)

Update of data in 2014-2015 : ρ ?

11

LPCTrap @ GANIL (LIRAT)

• Measurements of $a_{\beta\nu}$ and shakeoff probabilities in decay of ³⁵Ar¹⁺ & ¹⁹Ne¹⁺

Analysis of data in progress (development of new simulation tools...)

~ 18 % (a ~ 0...)

- <u>Expected results (⊿a /a)</u> : ~ 0.25 %
- Factor gained on $\Delta \rho / \rho$: ~ 4.5

 V_{ud} (2009) = 0.9719 (17) \longrightarrow V_{ud} (expected) = 0.9734 (10) !!

Future @ GANIL ?

• Development of new beams @ SPIRAL

lon	T _{1/2} (s)	Expected rate (pps)
²¹ Na	22.49	1.8E+08
²³ Mg	11.32	4.3E+07
³³ Cl	2.51	1.8E+07
³⁷ K	1.22	1.1E+07

- Contact : Pierre Delahaye
- Available in 2016 ?

• DESIR @ SPIRAL2 φ 1+

(Lol 2011, 2014)

In 2018 ?

DESIR layout (draft version)

Ion with rate > 1E+07 pps

lon	T _{1/2} (s)	Expected rate (pps)	Expected nb of coinc.	Estimated $a \pm \sigma_a$	New $ ho\pm\sigma_{\! ho}$	Gain factor
²¹ Na	22.49	1.8E+08	1.7E+06	0.5587(18)	-0.7041(20)	3.6
²³ Mg	11.32	4.3E+07	8.1E+05	0.6967(26)	0.5426(30)	new
³³ Cl	2.51	1.8E+07	1.5E+06	0.8848(19)	0.3075(27)	new
³⁷ K	1.22	1.1E+07	1.9E+06	0.6580(17)	0.5872(19)	14.2

- Estimation of coinc. (1 week):
 - Based on ³⁵Ar experiment
 - T_{1/2} taken into account
 - LPCTrap → LPCTrap2
 - phoswich for β detection
 - detectors number X 2
 - FASTER DAQ system

Gain in stat: factor of ~ 4

• Ion with rate > 1E+07 pps

lon	T _{1/2} (s)	Expected rate (pps)	Expected nb of coinc.	Estimated $a \pm \sigma_a$	New $ ho\pm\sigma_{\! ho}$	Gain factor
²¹ Na	22.49	1.8E+08	1.7E+06	0.5587(18)	-0.7041(20)	3.6
²³ Mg	11.32	4.3E+07	8.1E+05	0.6967(26)	0.5426(30)	new
³³ Cl	2.51	1.8E+07	1.5E+06	0.8848(19)	0.3075(27)	new
³⁷ K	1.22	1.1E+07	1.9E+06	0.6580(17)	0.5872(19)	14.2

- Estimation of coinc. (1 week):
 - Based on ³⁵Ar experiment
 - T_{1/2} taken into account
 - LPCTrap → LPCTrap2
 - phoswich for β detection
 - detectors number X 2
 - FASTER DAQ system
 - Gain in stat: factor of ~ 4

• Error estimation on *a* :

 $-\sigma_{stat} = \sigma_{syst}$

- Based on ⁶He experiment
- Fléchard et al., JPG38(2011)

 $\rho^2 = (1-a)/(a+1/3)$ + combination with existing results

What can we expect from *a* measurements ?

2009

LPCTrap2 @ GANIL

Test of CVC @ 3.6×10⁻³ level

What can we expect from *a* measurements ?

What can we expect from *a*, $T_{1/2}$, *BR* & *M* measurements ?

LPCTrap2 @ GANIL

+ $T_{1/2}$, BR & M improvements

- ²¹Na, expected gain: 10 ($T_{1/2}$) Finlay et al @ TRIUMF 2014
- ²³Mg, expected gain: 3.7 (*BR*) Blank et al @ JYFLTRAP (performed)
- ³³Cl, expected gain: 2.2 ($T_{1/2}$), 2 (*BR*) Kurtukian et al @ SPIRAL1 ?
- ³⁵Ar, expected gain: 2.8 (*T*_{1/2}), 6.6 (*BR*), 4.7 (*M*) Finlay et al @ TRIUMF 2015 ?
- ³⁷K, expected gain: 6.1 ($T_{1/2}$), 14 (*BR*) Kurtukian et al @ ISOLDE 2015?

What can we expect from *a*, $T_{1/2}$, *BR* & *M* measurements ?

LPCTrap2 @ GANIL

+ T_{1/2}, BR & M improvements

- Gain of a factor 1.4
- To be compared to $V_{ud} = 0.97425$ (22) from pure Fermi
- Best cases: ³⁵Ar, ³³Cl and ³⁷K

What can we expect from a, $T_{1/2}$, BR & M measurements ?

LPCTrap2 @ GANIL

+ $T_{1/2}$, BR & M improvements

• Gain of a factor 1.4

- To be compared to $V_{ud} = 0.97425$ (22) from pure Fermi
- Best cases: ³⁵Ar, ³³Cl and ³⁷K

with only these 3 cases: $V_{ud} = 0.97402$ (55) ³³Cl, ³⁷K: good candidates for first experiments

Further development : cloud polarization

New chamber, lasers & detectors

RI detector

> Beta phoswich

> > Laser

Laser

Example : measurement of D in the decay of ²³Mg

© P. Delahaye 2014

- ²³Mg = "good" candidate :
 - Expected yield @ SPIRAL : 4.3×10⁷ pps
 - Can be laser polarized as ions : optical pumping → 80%
 - Trapping : 5×10⁴ ions / cycle
 - Optimized solid angle of detection

 $\sigma_D < 5 \times 10^{-4}$ (assuming $\sigma_{syst} = \sigma_{stat}$) is accessible in 1 week of beam time Final aim $\rightarrow \sigma_D < 1 \times 10^{-4}$

Current best results in nuclear decays :

¹⁹Ne decay → *D*=0.0001 ±0.0006 Calaprice et al., Hyp. Int. 22 (1985)

n decay $\rightarrow D=$ (-0.94 ±1.89±0.97) 10⁻⁴ Mumm et al., PRL 107 (2011), Chupp et al., PRC 86 (2012)

Conclusion

- LPCTrap
 - Transparent Paul trap for $\beta \nu$ correlation measurements
 - Measurements performed in ⁶He, ³⁵Ar, ¹⁹Ne
 - charge state distributions : unique in 1+ ions decay
 - β - ν correlation coefficient :
 - development of new dedicated simulation tools (CUDA & GPU's)
 - need for data on β scattering (e⁻ spectrometer in Bordeaux)
 - ⁶He pure GT decay → $(\Delta a_{GT}/a_{GT})_{\text{expected}} \sim 0.6$ %
 - ³⁵Ar mirror decay $\rightarrow (\Delta a_m / a_m)_{\text{expected}} \sim 0.25 \%$
- Perspectives
 - "Short"- range plan : measurements of "a" in mirror decays at LIRAT & DESIR with LPCTrap2 using the new beams provided by SPIRAL (²¹Na, ²³Mg, ³³Cl, ³⁷K)
 - required to improve $\rho \& V_{ud}$ deduced from mirror transitions
 - with M, T & BR improvements \rightarrow "only" a factor 2.2 worse than "pure" Fermi
 - ³³Cl & ³⁷K : good candidates for first experiments
 - "Mid"- range plan : measurement of the triple correlation *D* in ²³Mg decay
 - cloud polarization with laser in LPCTrap of second generation
 - final aim : $\sigma_D < 1 \times 10^{-4}$

LPC Caen:

Gilles Ban Dominique Durand Xavier Fabian Xavier Fléchard Etienne Liénard François Mauger Gilles Quéméner

- GANIL: Pierre Delahaye Jean-Charles Thomas
- CIMAP: Alain Méry
- <u>CELIA:</u> Bernard Pons Baptiste Fabre

NSCL MSU:

IKS KUL:

Oscar Naviliat-Cuncic

Claire Couratin Paul Finlay Tomica Porobic Nathal Severijns Philippe Velten

and the LPC & GANIL technical staffs

LPCTrap2 = minimal upgrade of LPCTrap

β phoswich:

- association of 2 plastic scintillators (thin & thick) with ≠ decay constants and read by a single PM
 → β-γ discrimination
- thick plastic = scintillating fibers and PM sensitive to position
 → β location
- First tests will start soon ...

Position E : fast ΔE : slow sensitive PM fibers plastic $(\tau = 3.2 \text{ ns}) (\tau = 285 \text{ ns})$ 16

In the current chamber

• Further tests: with scintillating fibers

• Which beam for a day-1 experiment ?

Lol 8: Status in 2011

 $M(f_V), T_{1/2}, a(\rho)$ measurements

LoI to DESIR March 2014

Test of the Time reversal symmetry in the beta decay of ²³Mg and ³⁹Ca using an in-trap polarization method at DESIR

P. Delahaye, E. Lienard, D. T. Yordanov, N. Severijns, P. Chauveau, JC Thomas, F. De Oliveira, G. F. Grinyer, N. Lecesne, R. Leroy, X. Fléchard, G. Ban, X. Fabian, G. Neyens **et al**

GANIL – LPC Caen – IPN Orsay – IKS Leuven collaboration

Precision measurements of the triple correlation D

- A non-zero D can arise from CP violation
 - CP violation observed in the K and B meson decays is not enough to account for the large matter – antimatter assymetry
 - T-odd correlations in beta decay (*D* and *R*) and n-EDM searches are sensitives to larger CP violations by 5 to 10 orders of magnitude

Precision measurements of the triple correlation D

- A non-zero *D* can arise from CP violation
 - CP violation observed in the K and B meson decays is not enough to account for the large matter – antimatter assymetry
 - T-odd correlations in beta decay (*D* and *R*) and n-EDM searches are sensitives to larger CP violations by 5 to 10 orders of magnitude
- *D* correlation measurements
 - Best values
 - neutron decay, Dn= (-0.94 ±1.89±0.97) 10⁻⁴, emiT collaboration, PRL 107, 102301 (2011), Phys. Rev. C 86 (2012) 035505
 - ¹⁹Ne decay, D=0.0001 ±0.0006 Calaprice et al, Hyp. Int. 22 (1985) 83, limited by statistics
- Aim of the experiments: $\sigma_D \leq 10^{-4}$

Making use of intense RIBs at SPIRAL, polarized by LUMIERE, and of a specific arrangement of LPCtrap!

Possible candidates

Isotope	Yield SPIRAL (pps)	D _{FSI}
²¹ Na	>1e8pps	6.7 10 ⁻⁵
²³ Mg	>1 ^e 8 pps	-1.3 10 ⁻⁴
³⁷ K	>1 ^e 8 pps	-1.9 10 ⁻⁴
³⁹ Ca	5.7 ^e 5pps (estimated!)	4.7 10 ⁻⁵

Can be laser polarized as ions!

Experimental setup

In trap optical polarization of ²³Mg⁺ and ³⁹Ca⁺

Possible upgrades of the LPCtrap detector and trapping setup

Upgrade of the detector setup 3 telescopes instead of 1 from 5‰ to 1‰ precision on $a_{\beta v}$

Simpler beta and recoil ion detectors may be used

Statistical considerations

- 5.10⁴ ions trapped / 200ms
 - Ok for ²³Mg⁺
 - Some R&D for ³⁹Ca⁺
- 80% polarization
- Upgraded / suitable detector setup
 - 8 detectors instead of 2 \rightarrow 16x higher solid angle coverage
- Sensitivity on D: $\sigma_D \approx \frac{4}{\sqrt{2N}}$ with N the number of coincidences

30% time for interruptions

1 week of beam time:

$$\sigma_{D} \approx 4.310^{-4} \ ^{23} \text{Mg}$$

Stat+syst (both equal)
$$\sigma_{D} \approx 1.310^{-4} \ ^{39} \text{Ca}$$