g_A, g_S, g_T from Lattice QCD

Rajan Gupta Theoretical Division Los Alamos National Lab

Brussels, September 3-5, 2014

PNDME Collaboration:

T Bhattacharya, S. Cohen, R. Gupta, A. Joseph, H-W Lin, B. Yoon

PRD 85:5 (2012) 054512 PRD 89:9 (2014) 094502 arXiv:1110.6448 arXiv:1306.5435

Acknowledgements

Received Data From

Gunnar Bali	(RQCD Regensburg)
Martha Constantinou	(ETMC)
Jeremy Green	(LHPC)
• Keh-Fei Liu	(xQCD)
Shigemi Ohta	(RBC/UKQCD)
Hartmut Wittig	(Mainz)

Discussions with

- Boram Yoon, T. Bhattacharya, V. Cirigliano (LANL)
- Huey-Wen Lin, Saul Cohen

(U. Wash.)

Probing New Interactions: M_{BSM} >> M_W >> 1 GeV

Many BSM possibilities for novel Scalar & Tensor interactions: Higgs-like, leptoquark, loop effects, ...

[Ultra] Cold Neutron Decay: Terms sensitive to new physics

Neutron decay can be parameterized as

$$d\Gamma \propto F(E_e) \left[1 + \frac{\mathbf{b}}{E_e} \frac{m_e}{E_e} + \left(B_0 + \frac{\mathbf{B}_1}{E_e} \frac{m_e}{E_e} \right) \frac{\vec{\sigma}_n \cdot \vec{p}_\nu}{E_\nu} + \cdots \right]$$

- *b:* Deviations from the leading order electron spectrum: Fierz interference term
- B_1 : Energy dependent part of antineutrino correlation with neutron spin

At leading order, contributions from BSM physics arise due to interference of A_{SM} and A_{BSM} and contribute to b and B_1 only through ϵ_S and ϵ_T

Physics Case: (BSM/SM) ~ O(1)

- Couplings $\varepsilon_{P,S,T} \sim (\Lambda_{BSM})^2/G_F \sim (v/\Lambda_{BSM})^2 \sim 10^{-3}$
- Recoil corrections: $q/M_N \sim 10^{-3}$
- Radiative corrections: $\alpha_{em}/\pi \sim 10^{-3}$
- Isospin-breaking: $(M_N M_P)/M_N \sim q/M_N \sim 10^{-3}$
- UCN: small Doppler broadening of *e* spectrum
- SM contribution is O(10⁻³) and known to (~10⁻⁵): It is controlled by 2 small parameters (M_n-M_p)/M_n and α_{em}/π
- Unique: scalar and tensor BSM interactions involve helicity-flip (m_e/E_e suppression) and are hard to detect in high energy experiments

Relating
$$b$$
, B_1 to $g_{S,T}$ & BSM couplings $\varepsilon_{S,T}$
 $H_{eff} \supset G_F \Big[\varepsilon_S \overline{ud} \times \overline{e} (1 - \gamma_5) v_e + \varepsilon_T \overline{u} \sigma_{\mu\nu} d \times \overline{e} \sigma^{\mu\nu} (1 - \gamma_5) v_e \Big]$
 $g_S = Z_S \langle p | \overline{u} d | n \rangle \quad g_T = Z_T \langle p | \overline{u} \sigma_{\mu\nu} d | n \rangle \quad Lattice$
QCD

Linear order relations from $n \rightarrow p \ e \ \overline{v}$ decay

$$b^{BSM} \approx 0.34 g_{S} \varepsilon_{S} - 5.22 g_{T} \varepsilon_{T}$$
$$b^{BSM}_{v} = B_{1}^{BSM} = E_{e} \frac{\partial B^{BSM} (E_{e})}{\partial m_{e}} \approx 0.44 g_{S} \varepsilon_{S} - 4.85 g_{T} \varepsilon_{T}$$

DOI

What we know

- Experiment
 - $g_A = 1.2701(25)$ Neutron decay
- Phenomenology: CVC

$$\frac{g_S}{g_V} = \frac{(M_N - M_P)^{QCD}}{(m_d - m_u)^{QCD}} = 1.02(8)(7) \qquad \text{Gonzalez-Alonso \& Camalich}_{Phy. Rev. Lett. 112 (2014) 04250}$$

Lattice QCD can provide precise estimates of nucleon structure

- Charges (g_A, g_{S, g_T})
- Vector and axial form factor
- Generalized Parton Distribution functions

Low energy constraints

• Current: $0^+ \rightarrow 0^+$ and $\pi \rightarrow e \vee \gamma$

Allowed region in ε_S and ε_T are being constrained as estimates of g_S and g_T improve

Target Precision for g_S , g_T : 10-20%

Allowed region in [ε_S , ε_T] (90% contours)

Precision Lattice QCD calculations: $\langle p|\overline{u} \Gamma d|n \rangle$

- Achieving 10-20% uncertainty is a realistic goal but requires:
- High Statistics (O(15000) measurements)
- Controlling all Systematic Errors:
 - Contamination from excited states
 - Non-perturbative renormalization of bilinears (RI_{smom} scheme)
 - Finite volume effects

- Chiral extrapolation to physical m_u and m_d (simulate at physical point)
- Extrapolation to the continuum limit (lattice spacing $a \rightarrow 0$)

Reducing excited state contamination 2-point correlation function $\rightarrow M_N$

Current data are fit by including 1 "excited" state

Reducing excited state contamination: 3-pt fn. Assuming 1 excited state, the 3-point function is given by $\Gamma^{3}(t_{f},t,t_{i}) = |A_{0}|^{2} \langle 0|O|0 \rangle e^{-M_{0}\Delta t} + |A_{1}|^{2} \langle 1|O|1 \rangle e^{-M_{1}\Delta t} +$

 $A_0 A_1^* \langle 0 | O | 1 \rangle e^{-M_0 \Delta t} e^{-M_1 (\Delta t - t)} + A_0^* A_1 \langle 1 | O | 0 \rangle e^{-M_1 \Delta t} e^{-M_0 (\Delta t - t)}$

Where M_0 and M_1 are the masses of the ground & excited state and A_0 and A_1 are the corresponding amplitudes.

Need simultaneous fit to data at multiple $\Delta t = t_{sep} = t_f - t_i$

Simultaneous fit to multiple *t*_{sep}

Data for g_S on the M_{π} =220 MeV ensemble at a=0.09fm

Excluding $\langle 1|O|1\rangle$ Term

Renormalization of bilinear operators

- Non-perturbative renormalization factors Z_{Γ} using the RI-sMOM scheme $(p_1^2 = p_2^2 = q^2)$
 - Need quark propagator in momentum space
- Basic Assumption: there exists a window $\Lambda_{QCD} << p << \pi/a$
- HYP Smearing introduces artifacts
 - Gluon momentum above $(\sim 1/a)$ are averaged out

- $\Lambda_{OCD} << p << \pi/a$ window may not exist on coarse lattices

• No detectable dependence of Z's on m_q

$$\frac{Z_{A,S,T}}{Z_V} \left(\overline{MS}, 2 \ GeV\right)$$

Fit data to: A/p + Z + Cpin the range { $1 }$ <math>OrChoose Z at $p^2 = 5 GeV^2$ & errors from { $4 < p^2 < 6 GeV^2$ }

Renormalized Charges

$$\frac{Z_{A,S,T}}{Z_V} \times \frac{g_{A,S,T}}{g_V}$$

Ward identity: $Z_V g_V = 1$

Observations and Lessons Learned

- For given statistics: σ(g_S) ~ 5 σ(g_A) [or 5 σ(g_T)]
 Need O(15000) independent measurement (Configs × Sources)
- Excited state contamination is significant but controlled Need: data at multiple t_{sep} with good signal for $t_{sep} > 1.2$ fm fits including at least one excited state to data $t_{sep} > 1.0$ fm
- Renormalization (RI-sMOM): Smearing introduces artifacts Impose a prescription with a well-defined continuum limit

Analyzing lattice data: Extrapolations in *a*, M_{π}^{2} , *L*

Using lowest order corrections when fitting lattice data w.r.t.

- Lattice spacing a
- Dependence on quark mass $m_q \sim M_{\pi}^2$
- Finite volume $M_{\pi}L$

$$g(a, M_{\pi}, L) = g + A a + B M_{\pi}^{2} + C e^{-M_{\pi}L} + \dots$$

Lattice QCD Calculations are ongoing and collaborations are addressing all sources of systematic errors

 \mathbf{g}_T

lattice data: combined plots 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.3 g_A g_A 84 1.2 1.2 1.2 1.1 1.1 1.1 1.0[±].... 1.0 1.0 0.05 0.10 0.15 0.05 0.10 0.15 0.00 8 3 5 6 7 4 M_{π}^2 (GeV²) $M_{\pi}L$ a (fm) 1.5 1.5 1.5

0.05

0.10

1.0 8S

0.5

0.0

So 1.0

0.5

0.0

0.00

0.05

a (fm)

0.10

0.15

24

8

7

Towards Physical Estimates

- g_T : 1.05(5)
 - Estimate of Z_T is reliable
 - Small dependence on *a*, M_{π}^2 , $M_{\pi}L$ (Caution: see g_A)
- g_A :
 - Estimate of Z_A is reliable
 - Extrapolations in *a*, M_{π}^2 , $M_{\pi}L$ are not yet resolved
- g_S :
 - Statistical errors are large
 - $-Z_S$ is not well-determined
 - Extrapolations in *a*, M_{π}^2 , $M_{\pi}L$ are not stable

Constraining ϵ_S and ϵ_T

• Measurements of *b* and B_1 at 10⁻³ to 10⁻⁴ will probe multi-TeV scale and place stringent constraints on novel scalar and tensor interactions

•
$$G_{F*}\epsilon_{S,T} = (1/\Lambda_{S,T})^2$$

• $\epsilon_{S,T} = v^2/\Lambda^2_{S,T} \sim 10^{-3}$ $\Lambda_{S,T} \sim 5 \text{ TeV}$

- Constraints on ε_s and ε_T from [U]CN experiments combined with improved g_s and g_T will be more stringent than existing probes $(0^+ \rightarrow 0^+; \pi \rightarrow ev\gamma)$.
- Collider experiments are not competitive until $\sqrt{s}=14$ TeV & 100 fb⁻¹

Constraints from β-decay versus LHC

Improving low energy bounds further depend on improvements in nuclear experiments for b and B_1