$\mathfrak{CTRIUMF}$ β decay correlations with TRIUMF's neutral atom trap

- ^{38m}K β - ν correlation plans
- Polarized atoms and their in-situ measurement (Melconian will detail ³⁷K correlations)
- Detection of shakeoff electrons

Possible Futures:

- Gardner's \mathcal{T} in ³⁷K and ⁹²Rb
- D correlation in ³⁷K

・ロト ・ 同ト ・ ヨト ・ ヨト

What elements can be laser cooled?

WTRIUMF TRIumf Neutral Atom Trap collaboration

*A. Gorelov

J.A. Behr

- **S. Behling
- **B. Fenker
- **M. Mehlman
- * P. Shidling
- nlman M.R. Pearson ling K.P. Jackson
- D. Melconian ** Grad student * PDF

UNIVERSITY <u>™ MANITOBA</u> ****M. Anholm** G. Gwinner

D. Ashery * I. Cohen

・ロト ・ 日本 ・ 日本 ・ 日本

Supported by NSERC, NRC through TRIUMF, WestGrid, Israel Science Foundation, DOE, State of Texas

 $0^+ \rightarrow 0^+ \beta$ - ν

$\mathfrak{C}^{\mathsf{TRIUMF}}$ $a_{\beta\nu}$ and Scalar bosons

spin

 helicity argument independent of isospin mixing Radiative corrections (Glück) 2×10^{-3} recoil order term is 3x10⁻⁴ \Rightarrow S.M. prediction for a does not depend on nuclear structure

・ロ と く 厚 と く 思 と く 思 と

For scalar exchange, lepton helicities are same: a= -1

j.a. behr

WTRIUMF Constraints on scalar interactions

• The best constraints on scalars coupling to ν with standard helicity are from the superallowed *Ft* values.

One goal is to achieve similar sensitivity within one experiment

• LHC constraints ($\mathbf{p} \ \mathbf{p} \xrightarrow{\nu} \mathbf{e} \nu$ X Cirigliano, González-Alonso, Graessler JHEP02(2013)046 have improved on scalars coupling to wrong-handed ν

 $\pi \to {\rm e}\nu$ (Campbell Murray NPB 04) will have more accuracy from TRIUMF and PSI soon.

Lighter boson with weaker coupling evades EFT?

j.a. behr

\mathcal{C}^{TRIUMF} ^{38m}K β - ν correlation

spin

 β -recoil coincidences

- Gorelov PRL 2005 a = 0.9981 ± 0.0030±0.0032 0.0037
- New geometry goal is to collect all recoils
- To go to lower E_{β} , reconstruct it \rightarrow

 $0^+ \rightarrow 0^+ \beta$ - ν

spin

RIUMF In-situ calibrations

E_{β} detector response for "monoenergetic" β 's from kinematics of other

observables (β -recoil angle and recoil momentum)

^{38m}K β-recoil error budget

Error \vec{E} field/trap width : E field nonuniformity β^+ backscattering bkgd E a. Detector Response:	PRL 0.17% 0.14% None	Future 0.04% 0.03% None	Planned Improvements: ● Larger MCP and Ĕ field ● larger ISAC yields 1/√5 statistical
$E_{\beta+}$ Detector Response.	0.000/	0.000/	error
Lineshape tail/total	0.06%	0.03%	
511 keV Compton sum	0.09%	0.04%	• E_{β} calibration from
Calibration, nonlinearity	0.17%	0.08%	interwoven background-free ³⁷ K
MCP Eff[E _{Ar+}]	0.07%	0.03%	
MCP Eff[θ]/XY position	0.08%	0.04%	
e^- shakeoff [E_{recoil}]	0.18%	0.08%	
Sum systematics	0.37%	0.14%	
Total error	0.48%	0.19%	
 Most systematic error data evaluation. 	ors dete	rmined by	y statistics-limited

[⊗]TRIUMF ^{38m}K recoil – shakeoff e−

SIMULATION Recoil momentum spectrum Sensitive to a or b (highly correlated) Can extract momentum-dependent shakeoff separately

 $\sigma_b \sim 0.003$ per day High statistics, though $\Delta a/a$ is smaller Look for dimers, as Vetter PRC (2008)

> < ≣ >

j.a. behr

э.

RIUMF ³⁷K spin-polarized experiments

spin

TOF w.r.t. scintillator (Run 423)

- 10,000 atoms trapped at a time
- AC MOT for fast
- switching of Bquad of MOT
- Spin polarization measured in-situ on ³⁷K by atomic method
- Position-sensitive electron detector shows shakeoff electrons contained

・ロト ・ 日本 ・ 日本 ・ 日本

spin

TRIUMF Helicity-driven null in mirror decay ν can't go with I if β is against; 2 hrs data 'online' cut

which is why $1 - (A_{\beta} - B_{\nu}) - a_{\beta\nu} + 2c/3 = 0$ Reconstructing ν direction will help

trinat correlations

[®] ³⁷K shakeoff e[−] energy

● |**Ē**|=150 V/cm $(B_z = 2G),$ $E_{shokeoff} \rightarrow radius$ distribution • \sim 1% above 25 eV threshold for double DNA strand breaks average energy makes $< 10^{-5}$ contribution to Ft value

イロト イポト イヨト イヨト

xtras

spin

&TRIUMF AC MOT

Adapted from Harvey and Murray PRL 101 173201 (2008)

Turns off MOT's 7G/cm Bquad field quickly, with eddy currents near 0

B quad off to 1% of its value in 100 μ s:

・ロ と く 厚 と く 思 と く 思 と

spin

RIUMF Coherent Population Trapping in ⁴¹K

We test such systematics with ⁴¹K

m=-2 -1 0 1 2

- Atoms trapped in the coherent dark state have $P \sim 0$
- \bullet Can trap \sim 30% on purpose, but easy to eliminate by detuning + retroreflected beams

 $0^+ \rightarrow 0^+ \beta$ - ν

A new method for an old observable (Treiman '58)

Final nuclei angular distribution wrt initial spin $W[\theta] = (1 + \frac{1}{3}cTx_2) - x_1(A_\beta + B_\nu)P\cos\theta - x_2cT\cos^2\theta$ $x_1 \xrightarrow{Q>>m} 5/8; P = \frac{\langle M \rangle}{I}; T = \frac{I(I+1)-3\langle M^2 \rangle}{I(2I-1)}$ 34 s • For pure Gamow-Teller, Arecoil = 0 in SM 80_Rr **Relatively clean** Gamow-Teller decay ∣⇒ 5.9 1.9% ≥ 2.1% 59 21.6% 2+ 616.6 5.2 $\mathbf{A}_{\beta} + \mathbf{B}_{\nu} = \lambda_{J'J} (-2\mathbf{C}_T \mathbf{C}_T' + \langle \frac{m}{E_{\beta}} \rangle (\mathbf{C}_T + \mathbf{C}_T'))$ 74.4 % 4.9 Challenge: constrain \sim 0.01 recoil-order ⁸⁰Kr Q=4.698 correction イロト 不得 とくほ とくほう 二日

j.a. behr

TOF of ⁸⁰Kr daughter, atomic e⁻ trigger

j.a. behr

Distinguishing new tensors from S.M. corrections

(Systematics from b/AM_{GT} =4.7±4.7, nucleon value)

 $^{38\mathrm{g}}\mathrm{K}\,\mathrm{I}$ = 3 \rightarrow 2 but is in SD shell

B b

[®]TRIUMF</sup> *T* no spin, no EDM constraints

Gardner and He PRD 87 116012 (2013) $\xi \; (\vec{I_e} \times \vec{k_\gamma}) \cdot \vec{I_\nu}$

 \bullet inner bremss Z=18 3% > 100 keV; 6% > 10 keV

- Bremsstrahlung is forward-peaked. sin(35°)=0.57
- 37 K 10,000 atoms, 7000 events/week $\Rightarrow \sigma_{\xi} \sim$ 0.02

• the new 'c5' term needs Fermi or Fermi+GT transition

 \mathcal{T} increases with E_0

 \bullet Final state effects $\propto 1\text{-}\lambda^2/3$

 $\sigma_{
m SYST}$? No spins to flip... \sim 0.5% like $a_{eta
u}$?

4 E b

$\mathcal{C}^{\text{TRIUMF}}$ $D \vec{l} \cdot \vec{v_{\beta}} X \vec{v_{\nu}}$ Constraints

- ¹⁹Ne (Hallin et al. Princeton): D = (1 \pm 6) x 10⁻⁴
- n (TRINE) PLB 2004 D = (-2.8 \pm 6.4 \pm 3.0) x 10⁻⁴
- n (emiT) PRL 2011: D = (-1.0 \pm 1.9 \pm 1.0) x 10⁻⁴

• 'Final state' effects for ³⁷K are smaller than ¹⁹Ne, weak magnetism is smaller [Holstein PRC 1972]

・ロト ・ 雪 ト ・ ヨ ト・

EDM constraints: Ng,Tulin PRD 2012 D could still be 10^{-4} to 10^{-5}

spin

WTRIUMF TRINAT and D

P is not along β detection axis, so dedicated geometry: statistics $\sim 2x10^{-4}$ in 2 weeks

Transparent β detectors? Kapton > 85% transmission to NIR

ヘロト 人間 とくほとう ほとう

$4\pi \beta^+$ detector passing 100 eV nuclear recoils

M. Jerkins, J.R. Klein, J.H. Majors, F. Robicheaux, M. G. Raizen New Journal of Physics 12 (2010) 043022

 β excites optical lattice of Rydberg atoms from N=53 to a state that gets field ionized and swept out 1 keV β has v= 0.06c; need N~160, $|\vec{E}|$ =0.4 V/cm to get 10 ions/cm for MeV β s

・ロト ・ 日本 ・ 日本 ・ 日本

$\mathfrak{CTRIUMF}$ β decay correlations with TRIUMF's neutral atom trap

- Tools for β - ν include reconstruction of lower E_{β} s
- Polarization measured in-situ: old and new observables
- Shakeoff e⁻ are useful
- considering time reversal in future

イロト 不得 トイヨト 不良 ト

spin

xtras

Theory: constraints from EDM's

 \bullet Ng+Tulin PRD 2012 EFT approach to constraints from other experiments \to D $\leq 10^{-5}$

- most terms contributing to D are constrained by null neutron EDM experiments
- leptoquark exchange was thought to be unconstrained by EDM null results, and it is still true: Ng and Tulin constrained this possibility by combining other experiments like atomic PNC
- \bullet In EFT all terms ${\sim}1;$ since more than 1 term contributes, there can always be cancellations

イロト 不得 とくほ とくほう 二日

Systematic errors for D in atom trap

- Point source: we know where it is (by sampling photoionization) and it doesn't move when we flip the polarization
- Polarization along wrong axis is deadly: Measure with singles asymmetry for recoils and β 's
- Collect recoils going into 4 pi with electric field of 1 kV/cm
- Full reconstruction of recoil and beta momenta

イロト 不得 とくほ とくほう 二日

$a_{\beta\nu}$ in spin-polarized geometry

- \bullet Position info \sim TOF in Gorelov 2005 \rightarrow
- Cloud size is critical for position resolution
- β -recoil + e⁻-recoil

trinat correlations

Methods I and II agree: I: recoil TOF $[T_{\beta}]$, $T_{\beta} > 2.6$ MeV C.L. of total fit is 52%

II: Angular distribution determined from other observables (except E_{β}). Can simultaneously fit \mathbf{E}_{recoil} -dependent shakeoff

 $egin{aligned} ilde{a} = 0.9981 \pm 0.0030 (ext{stat}) \ \pm 0.0037 (ext{syst}) \end{aligned}$

 $\begin{array}{l} (\text{Adelberger } ^{32}\text{Ar PRL } 1999\\ \tilde{a}{=}0.9989 \pm 0.0052(\text{stat})\\ \pm 0.0039(\text{syst})\\ \text{still being re-evaluated}) \end{array}$

Excited-state branch known to be negligible

(Ground state makes a background in β singles: we can deal with this better)

-

Theory: SUSY contributions to β decay

FIG. 2. Feynman diagrams relative to supersymmetric contributions giving rise to anomalous amplitudes in β decay processes.

SUSY can produce up to 0.001 changes in nuclear β decay observables. Not direct exchange of leptoquarks but higher-order 'box' diagram with two particles exchanged at once.

This corner of SUSY is hard to constrain and hard to eliminate. Profumo et al. considered \tilde{d} , \tilde{u} masses 1-10 times the lightest SUSY particle mass, not actually using Tevatron constraints. Some such masses are ruled out by LHC but a full reanalysis would have to be done.

Sub-Doppler cooling of I=0 alkali

Cohen-Tannoudji Nobel lecture "Lin \perp Lin" molasses. Order of magnitude lower T The textbook example has never been done. Needs I=0 alkali.

A MOT does NOT use Lin \perp Lin molasses.

FIG. 2. Sisyphus cooling. Laser configuration formed by two

 $\sigma^+ \sigma^-$ molasses \rightarrow linear polarization rotation in space, needs AC Stark shift dependence on m². No effect for m=1/2

So we used Doppler-limited cooling in 38mK before, achieving poor temperatures but tight 0.7 mm cloud with high power. We have since achieved 0.25 mm ⁸⁵Rb like everyone else. We want a) smaller cloud; b) less intensity to minimize dimers 1) Add optical pumping light for Lin \perp Lin molasses 2) Flip between trapping and Lin \perp Lin with the MOT beams

RIUMF TRIUMF's Neutral Atom Trap(s)

- Isotope/Isomer selective
- \bullet Evade 1000x untrapped atom background by \rightarrow 2nd MOT
- 75% transfer; 5×10⁻⁴ capture
- 0.7 mm cloud for ^{38m}K
- 99.X% polarized, known atomically (in progress)
- manipulate atoms separately from capture (reduce intensity → fewer dimers)

spin

WTRIUMF 'TRINAT3D'

 Shakeoff e⁻ triggers optical lattice dump Switch \sim 50V/cm 0.5 V/cm field on in \sim 100 ns **TPC for** β without straggling $\hat{\boldsymbol{p}}_{\beta}, \boldsymbol{p}_{\text{recoil}} \Rightarrow \vec{\boldsymbol{p}_{\text{beta}}}$ • \rightarrow 1x10⁻⁴ stat error on D in 1 week

・ロト ・ 同ト ・ ヨト ・ ヨト

j.a. behr

⁸⁰ Rb decay: Tensor constraints

xtras

spin

xtras

WTRIUMF Nice things to have

Ion detection independent of angle and energy

SiPM readout of plastic

Elastomer-sealed windows to minimize birefringence (PCTFE)

Thinner mirror substrates than 0.25 mm SiC

UHV-compatible gas detector

 β detectors transparent to NIR

Resistive rods for electric fields

Heavimet conflat flanges

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト