

M. Beck

Institut für Physik, Johannes Gutenberg-Universität Mainz und Helmholtz-Institut Mainz

The aSPECT experiment

- Experimental principle
- Set-up

The beamtime 2013

- Detector saturation
- Electric potential
- Magnetic field ratio
- Background

Status

The next steps

 β -v correlation in neutron decay n \rightarrow p + e⁻ + \overline{v}

Mixed Fermi and Gamow Teller decay.

$$\boldsymbol{a} = \frac{1 - |\boldsymbol{\lambda}|^2}{1 + 3|\boldsymbol{\lambda}|^2} \quad \boldsymbol{A} = -2\frac{|\boldsymbol{\lambda}|^2 + |\boldsymbol{\lambda}|\cos\phi}{1 + 3|\boldsymbol{\lambda}|^2}$$

$$\lambda = |g_{\rm A}/g_{\rm V}|e^{i\phi}$$

JOHANNES GUTENBERG

Accuracy of best previous experiments: $\Delta a / a \sim 5\%$ Our final aim: $\Delta a / a \sim 0.3\%$

For the physics see e.g. H. Abele, Prog. Part. Nucl. Phys. 60 (2008) 1

Measurement of the β -v angular correlation via the energy spectrum of the decay protons

Overview *a***SPECT**

Schematic and set-up at PF1b at the Institut Laue Langevin

Recoil energy spectrum 2008

The systematic errors have to be understood.

M. Simson, PhD thesis, ILL 2010M. Borg, PhD thesis, Mainz 2011G. Konrad, PhD thesis, Mainz 2011F. Ayala Guardia, PhD thesis, Mainz 2011

JOHANNES GUTENBERG

Solvay Workshop 2014

Recoil energy spectrum 2008

A new beamtime of ~100 days has been completed successfully at the cold neutron beam line PF1B at ILL in 2013!

JOHANNES GUTENBERG

Data taking for small a and for systematic investigations:

- 1 day of data $\leftrightarrow \Delta a/a \sim 1.3\%$, typical length of one data set 2-3 days
- \rightarrow Systematic investigations for different conditions with the full statistics 2 different detector electronics Different background conditions E15 dipole on/off, different focussing on the detector β -source in the DV 2 different beam profiles Measurement of the beam profile directly inside the DV Check of field leakage into the DV Emphasis on the understanding of the background. (variable components and retardation voltage dependence).

No catastrophic systematic effect observed. The data look good!

Goal of this beam time: $\Delta a/a \sim 1-2\%$

The Test Set-Up

After e-event: Preamplifier saturates Shaper saturates Shaper undershoots

Modified detector electronics

- Preamplifier with reduced amplification New shaper with
- log amplification for large signals
- proton-electron separation

Modified detector electronics

Check with neutrons:

Problem solved!

Small a is highly sensitive to the retardation potential U_A :

- \rightarrow PhD thesis G. Konrad 2011
- $\Delta a/a = 0.3\% \iff \Delta U_{A} \approx 10 \text{ mV}$ $\Delta a/a = 1\% \iff \Delta U_{A} \approx 30 \text{ mV}$
- $\rightarrow \Delta U_A^{}/U_A^{}$ = 1.10⁻⁵ necessary

Solutions:

DHANNES GUTENBERG

- Precision power supply
- Measure the voltage applied between DV and AP with a precision DVM

So, what is the problem?

The applied potential is modified by the work function of the electrode(s)

Spatial variation across a surface Au: 100 5.47eV 110 5.37eV 111 5.31eV various 5-5.5eV

Measurement of the WF-fluctuations using a **Kelvin probe**.

Required precision for the retardatdion potential:

10 mV

Typical WF-fluctuations of our electrodes:

$$\sigma_{_{\rm RMS}} = O(30 \text{ meV})$$

New decay volume and analyzing plane electrode Goal: Well-defined WF

Flat surfaces, 1 μm Au on 10 μm Ag on polished Cu surface

 \rightarrow well defined surface properties \rightarrow WF can be measured easily

Diploma thesis Ch. Schmidt, Mainz 2012

Preliminary results:

Average rms-fluctuation of WF of all electrodes 19 meV Average rms-deviation of WF between electrodes 35 meV

Field leakage: Beam collimation

Solution: A new compact NMR-system!

Nuclear Magnetic Resonance measurement

Discharges can be catastrophic Small discharges can cause background Ret.-voltage dependent background has to be avoided and quantified < 0.1 1/s necessary

The situation 2011:

Examples of improvements of electrodes for the reduction of field emission and discharge suppression:

Remove sharp edges and points

Examples of improvements of electordes for the reduction of field emission and discharge suppression:

New Au-coating of all relevant electrodes

Dipole electrode above the main AP electrode

Some results regarding the retardation-voltage dependent background:

JGU JOHANNES GUTENBERG UNIVERSITÄT MAI

Effect of the E15 dipole electrode

 → All energy-dependencies (except maybe E15 symmetric) are fine for a measurement with ∆a/a = 1% (R. Maisonobe, PhD thesis 2014)

But: needs to be checked with simulations!

Measured integral proton recoil energy spectrum

Statistics available: 3 measurements, 2-3 days each, 2 detector pads

Integral proton spectrum 28/06/13

Status

Several support measurements are ongoing:

- Measurement of the **work function** of the DV and AP electrodes used.
- Detailed test measurements with the preamplifier and shaper used.

Detailed analysis ongoing

(Goal: quantitative determination of the systematic uncertainties, including simulations)

At present:

Check of the data integrity

Till mid of 2015:

- Investigation of systematic effects
 - analysis of a for different experimental settings
 - extensive simulation of decay protons

Till begining of 2016:

Quantitative determination of all systematic and statistical errors

We expect a total systematic uncertainty of $\Delta a/a \sim 1-2\%$

The next steps

Next step: the n-lifetime experiment τ SPECT

- Reduced losses due to magnetic storage
- Measure the decay curve: Online detection of the decay protons and eletrons
- Many components already available from aSPECT
- Pulsed UCN-source at TRIGA working, ideal for lifetime measurement

Initial funding from PRISMA

Development and component tests are ongoing!

What about small a?

- Determine the leading systematic uncertainties of aSPECT.
- Figure out ways to decrease them experimentally.
- Only after the "Standard Analysis".

The collaboration

From left to right

M. Simson, ILL T. Soldner, ILL O. Zimmer, ILL R. Virot, ILL R. Maisonobe, ILL A. Wunderle, Mainz W. Heil, Mainz G. Konrad, Wien, S. Baessler, U of Virginia M. Beck, Mainz Ch. Schmidt, Mainz

plus

F. Glück, KIT

Supported by DFG SPP1491

Solvay Workshop 2014

3.9.2014

M. Beck

Systematic uncertainties of 2008

Game killers: Detector saturation, charging collimation, discharges

Туре	∆a/a	PhD thesis
B-field Gradient	0.05%	GK
B-field ratio r _B	0.3%	GK, FAG
ΔU (MC)	0.11%	GK
Non-adiabaticity	0.3%	GK
Background U _A dependence	0.2%	Borg
Background peak 1	0.3%	Borg
Background peak 2	0.3%	Borg
Proton backscattering	0.16%	GK, Simson
Electronic noise	0.05%	GK
Dead time	0.145%	Borg, Simson
Edge effect	0.5%	GK
Work function AP	0.4%	GK
Work function DV	0.3%	GK
Work funciton p refelctions	0.4%	GK
Absolute work function	1.1%	GK

M. Beck

Systematic uncertainties

Applied potentials are modified by the work function

Two materials in contact: Fermilevels are connected

- \rightarrow additional potential difference in vacuum of $\Phi_2 \Phi_1$.
- \rightarrow measure the work function using a Kelvin probe

test-electrode and electrode surface form a capacitor,
mechanically vibrate test-electrode
→ capacitance changes → periodic current flows

Compensate contact potential with external voltage

External voltage $U_{comp} = \Delta \Phi / e$

Sensitivity achievable: 1-3 meV (KP Technology) Sensitivity needed for KATRIN: < 10meV

Fig.: KP Technology

The Kelvin probe

M. Beck

Solvay Workshop 2014

3.9.2014

New decay volume and analyzing plane electrode

Flat surfaces, 1 μm Au on 10 μm Ag on polished Cu surface

 \rightarrow well defined surface properties \rightarrow work function can be measured easily

Diploma thesis Ch. Schmidt, Mainz 2012

Decay volume:

Essential Improvements

Gold plated Cu-electrode surface for *a*SPECT

rms fluctuation σ = 34 mV

Au(111) on sapphire for the rear wall of KATRIN

rms fluctuation σ = 8.6 mV

WF time development

Stability of the work function fluctuations in time: Au(111)/sapphire sample II

JOHANNES GUTENBERG

Solvay Workshop 2014

Essential Improvements

Long-term drift of the B-fields:

Essential Improvements

Long-term stability of $r_{\rm B}$:

JOHANNES GUTENBERG

 \rightarrow Long-term drift of r_B well within a peak width, i.e. drift $\Delta r_B / r_B << 1.10^{-5}$

SPEC

The background at *a*SPECT consists of several components with potentially different dependence on the AP potential.

