High-resolution pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopic study of water

C. Lauzin, U. Jacovella, B. Gans and F. Merkt

March 11, 2015

1 Abstract

 H_2O^+ and its isotopologues are molecules subject to the Renner-Teller effect. In the linear configuration, the ground ${}^{2}\Pi_u$ electronic state is degenerate, giving rise to the $\tilde{X}^+ {}^{2}B_1$ and $\tilde{A}^+ {}^{2}A_1$ states in the bent configuration. Jet-cooled rotationally resolved photoelectron spectra near the origin of the photoionizing transitions, $\tilde{X}^+ \leftarrow \tilde{X}$ of D_2O^+ and HDO^+ , and $\tilde{A}^+ \leftarrow \tilde{X}$ of H_2O^+ following single photon ionization have been recorded.

For the $\tilde{X}^+ \leftarrow \tilde{X}$ transition, the analysis of the rotational structure of the origin band $(v_1^+ = 0, v_2^+ = 0, v_3^+ = 0) \leftarrow (v_1 = 0, v_2 = 0, v_3 = 0)$ and of the transitions to the (0,1,0), (0,2,0) and (1,0,0) levels of D_2O^+ and the first excited level of the O-D stretching mode of HDO⁺ provided new information on the energy level structure of HDO⁺ and D_2O^+ cations and on the photoionization dynamics of water.

For the $\tilde{A}^+ \leftarrow \tilde{X}$ transition, the sensitivity and the high resolution of PFI-ZEKE photoelectron spectroscopy allowed us to observe the rotational structure of low bending vibrational levels of the $\tilde{A}^+ {}^2A_1$ state despite unfavourable Franck-Condon factors. From our experiments we reconstructed the vibrational energy-level structure of H₂O⁺ with $v_{2,\text{linear}}^+$ in the range 1-8. These results will be compared with previous ab initio calculations [1] and spectroscopic measurements on levels with $v_{2,\text{linear}}^+$ in the range 6-8 [2,3,4].

References

- M. Brommer, B. Weis, B. Follmeg, P. Rosmus, S. Carter, N. C. Handy, H. J. Werner, and P. J. Knowles, *J. Chem. Phys.* 98, 5222 (1993).
- [2] T. R. Huet, I. H. Bachir, J. L. Destombes, and M. Vervloet, J. Chem. Phys. 107,5645 (1997).

- [3] Y. J. Gan, X. H. Yang, Y. C. Guo, S. H. Wu, W. Li, Y. Y. Liu, and Y. Q. Chen, *Mol. Phys.* **102**, 611 (1991).
- [4] B. Das and J. W. Farley, J. Chem. Phys. 95, 8809 (1991).