Buffer-gas cooled velocity selected molecular beams combined with ion trapping for studying cold chemistry

Edward Steer, Kathryn Twyman, Laura Pollum, Brianna Heazlewood and Timothy Softley

Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA United Kingdom E-mail: edward.steer@chem.ox.ac.uk

A source for translationally and internally cold polar molecules has been developed, using cryogenic (6 K) buffer gas cooling combined with a bent electrostatic quadrupole velocity-selecting guide, based on the work of C. Sommer et al. [1] and L. D. van Buuren et al. [2]. The apparatus has been characterised using ND₃ and CH₃F. The velocity distribution of the beam was obtained by pulsing the high voltages applied to the quadrupole guide and a translational temperature of 9 K established. REMPI spectroscopy on the guided beam established that, for ND₃, few rotational states ($J \le 4$) are populated; further analysis of the spectrum gave a rotational temperature of 10 K.

A small linear Paul trap has been constructed and combined with the cold molecule source. This will facilitate the study and analysis of cold ion-molecule reactions. The combined setup will enable us to determine the role of rotational temperature in the reaction dynamics of ionmolecule reactions.

[1] C Sommer et al. Faraday Discuss., 142, 203–220 (2009)

[2] L.D van Buuren et al. Phys. Rev. Lett, 102, 033001 (2009)