An assembly of spin 1 atoms: The simplest many-body system

- Jean Dalibard
- Solvay chair for Physics 2022

Lecture 4

Spinor gases and fluids

Continuous degrees of freedom

 $ec{r_i}, \ ec{p_i}$ *infinite Hilbert space*

Discrete degrees of freedom

 $\vec{s_i}$ finite Hilbert space

The existence of the spin provides a new degree of freedom, as well as a source for new types of interactions

The richness of spinor physics

Coherent spin oscillation, spin mixing, dynamical instabilities Georgia Tech, Hamburg, Hannover, Mainz-Munich, NIST, Paris,...

Spin squeezing & entanglement

Georgia Tech, Hannover, Heidelberg, Tsinghua, Paris...

Quenched dynamics and pre-thermalization phenomena Berkeley, Georgia Tech, Hamburg, Heidelberg,...

Topological defects

Boulder, MIT, Rochester, Seoul, Amherst...

Model for Heisenberg spin lattice systems, dipolar gases

Stuttgart, Hamburg, Innsbruck, Paris-Nord, Boulder, Stanford, ...

Stamper-Kurn & Ueda Rev. Mod. Phys. (2013)

The single mode approximation

In this lecture, we will assume that all external degrees of freedom are frozen: $k_B T$, $E_{int} \ll \hbar \omega$

In good approximation, all atoms occupy the ground state of a tight laser trap

Only spin degrees of freedom are relevant (Single Mode Approximation = SMA)

Corresponding interactions:

 $\hat{H}_{\text{interaction}} = \frac{\alpha}{N}$

All-to-all coupling

 $\frac{\alpha}{N} \sum_{i < j} \hat{\vec{s}}_i \cdot \hat{\vec{s}}_j \qquad \alpha > 0 : \text{antiferromagnetic}$

Outline of this lecture

1. An assembly of spin 1 particles

- 2. Experimental implementation
- 3. A mean-field analysis

- 4. Bogoliubov approach and reversible many-body dynamics
- 5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate

Symmetry and conserved quantity

Total spin:
$$\vec{S} = \sum_{i=1}^{N} \vec{s}_i$$

Single atom Hamiltonian: Zeeman effect with \overrightarrow{B} along the *z* axis Conservation of $S_z = \sum_{i,z}^{N} S_{i,z}$

Binary interaction:

$$\hat{H}_{\text{interaction}} = \frac{\alpha}{N} \sum_{i < j} \hat{\vec{s}}_i \cdot \hat{\vec{s}}_j = \frac{\alpha}{N} \sum_{i < j} \hat{\vec{s}}_i \cdot \hat{\vec{s}}_j$$

 S_z is also conserved by the interaction Hamiltonian

i=1

 $\sum_{i=1}^{n} \left| \frac{1}{2} \left(\hat{s}_{i}^{+} \hat{s}_{j}^{-} + \hat{s}_{i}^{-} \hat{s}_{j}^{+} \right) + \hat{s}_{i,z} \hat{s}_{j,z} \right|$

Which spin to get a non-trivial many-body dynamics?

No relevant dynamics can happen

$$\frac{\alpha}{N} \sum_{i < j} \left[\frac{1}{2} \left(\hat{s}_i^+ \hat{s}_j^- + \hat{s}_i^- \hat{s}_j^+ \right) + \hat{s}_{i,z} \hat{s}_{j,z} \right]$$

Assembly of spins 1

$$S_{z} = \hbar \left(N_{+1} - N_{-1} \right) \qquad \begin{array}{c} +1 & \longrightarrow \\ 0 & \longrightarrow \\ -1 & \longrightarrow \end{array} \qquad \begin{array}{c} & \longrightarrow \\ -1 & \longrightarrow \end{array}$$

A sufficiently complex system to illustrate several aspects of many-body physics

Where do we get our spin 1 atoms?

Alkali-metal atoms:

Coupling of the outer electron spin $s_e = \frac{1}{2}$ and the nuclear spin s_n

with for ⁷Li, ²³Na, ³⁹K, ⁸⁷Rb :
$$s_n = \frac{3}{2}$$

Hyperfine structure of the ground state of a single atom:

Plays no role, except for inducing a non-linear Zeeman effect for s = 1 (next slides)

The state of interest in this lecture

	14 IVA 6 13,000 C NOM DE L'ELEMENT : CARBONE NUMERO ATOMOQUE : 6 MASSE ATOMOQUE : 12,000 GROUPE : 14 (JUPAC) - IVA (CAS) PERIODE : 2 MASSES ATOMOQUES DES ISOTOPES LES PLUS STABLES ENTRE ACCOLADES		NON MÉTAUX METAUX ALCALINS MÉTAUX ALCALINO-TERREUX MÉTAUX DE TRANSITION		MÉTALLOIDES HALOGÈNES GAZ NOBLES LANTHANIDES	13 100A 14 1VA 5 100011 5 12/030 B C East Charles	15 VA 16 7 141.067 8 N Solution CA
	A DVD B VB 22 4-DC 23 90.940 Ti V 72-D D DV	$ \frac{6}{Cr} \frac{7}{25} \frac{100}{25} \frac{100}{100} \frac{100}{100$	9 VIID 9 26 3676 27 Fe C	VIIIB 10 VEHE DRUID 28 DRUID CO Ni	астывея 11 пр 12 пр 29 одно 30 окао Cu Zn	Al Si Ga Ge	P 790equilion 34 33 -400 6 34 AS S
Rb Gr Y	10 11 224 11 92 1064 Zr Nb Gardener Marken 72 17349 73 130,946	42 03.96 43 (95) Mo Tc Molyklas 75. Sollan 74 183.84 75 180,232	44 101,37 45 Ru F Redificant 73 76 90,20 77	102,935 46 136,42 th Pd Eduar Frelkduar 192,217 78 196,014		10 50 1127 (In) Sn Elas 81 00 82 2002	51 (21.76 52 Sb 7 Actimus 76 83 203.00 84
E Ca	HI IA Naferture Tartele 104 1216 105 1218 Ref Db Rellehferdian Zindnina	W Re Virgetion Policium 106 (209) 107 (209) Scolegium Bulture	OS Obstars II 108 (2001 109 HS N Hstation M	Ir Pt Weizer 12761 110 (279) Mt Ds Weizer Directation	Au Hg 111 1281 112 12851 Rg Cn Rentgement Capatrilities	Uut Fl Uut Fl	B1 P Bouch PH (115 (200) 116 Uup I Haaperlies star
	57 135.000 55 140.110 La Cee Stretherer Cerson 69 1227 90 202.000	59 (10,000 60 (101,00) Pr Prostadyne Malyne 91 201,006 92 200,005	61 (1.451) 62 Production 500 93 (2071) 94	52442 95 (2001	64 12020 65 2201020 Gelddorawn Tordwon 96 1247 97 12473	Dy Ho	
7	Ac Th	Pa U Pretadoren Utronian	Np P	Pu Am	Con Bk	Cf Es Colifornia Castinua	Fm N

The Hilbert space of the problem

Occupation number basis 4,0,0 $|N_{-}, N_{0}, N_{+}\rangle$

with $N_{-} + N_{0} + N_{-} = N$

Hilbert space with dimension *d*

 $S_{z} = -4$ Total spin basis $|N, S, S_{7}\rangle$

If S_{τ} is a conserved quantity, we work along a given column of these two diagrams

Drawing for N = 42,0,2 3,0,1 1,0,3 0,0,4 $N_0 = 0$ 0,1,3 3,1,0 2,1,1 1,1,2 $N_0 = 1$ 0,2,2 2,2,0 1,2,1 N₀=2 1,3,0 0,3,1 N₀=3 0,4,0 $N_0 = 4$

$$= \frac{1}{2}(N+1)(N+2) \quad (i.e. \ d = 15 \ \text{for } N = 4)$$

$$= \frac{-3}{2} -\frac{-2}{2} -\frac{-1}{2} = \frac{0}{2} +\frac{1}{2} +\frac{$$

The relevant Hamiltonian (1): Zeeman energy

 \hat{H}^{\prime}

Quadratic Zeeman effect:

$$_{\text{Zeeman}}^{(1)} = -\mu B \hat{S}_z = -\mu B \left(\hat{N}_+ - \hat{N}_- \right)$$

Since S_z is a conserved quantity, $H_{\text{Zeeman}}^{(1)}$ does not contribute to the dynamics

$$= qB^2 \left(\hat{N}_{+1} + \hat{N}_{-1} \right) + \text{ constant} \qquad \qquad N = N_{-1} + N$$
$$= -qB^2 \hat{N}_0 + \text{ constant} \qquad \qquad \beta \equiv qB^2$$

 $q = 277 \text{ Hz/G}^2 > 0$: favours the accumulation of atoms in m = 0

The value and the sign of q could be changed by rf dressing or a time-modulation of B

The relevant Hamiltonian (2): Interaction energy

Real magnetic interactions (dipole-dipole) are negligible at our temperature scale

Only van der Waals interactions (described by a contact potential) are significant

For a collision between two spin 1 atoms, the total spin can be:

Here, symmetric orbital state (same spatial mode) \Rightarrow Only S = 0 and S = 2 channels are relevant

Rb: $g_s < 0$ (ferro) Na: $g_s > 0$ (antiferro)

S = 0 (symmetric spin state) S = 1 (anti-symmetric spin state) S = 2 (symmetric spin state)

For Na:

 $a_0 = 2.51 \text{ nm}$ $a_2 = 2.80 \text{ nm}$

Ho (1998)

Outline of this lecture

1. An assembly of spin 1 particles

- 2. Experimental implementation
- 3. A mean-field analysis

- 4. Bogoliubov approach and reversible many-body dynamics
- 5. Beyond Bogoliubov: Relaxation dynamics
- 6. A fragmented condensate

The experimental system

Magneto-optical trap in the vapour cell

Evaporation in the s = 1 ground state in a crossed dipole trap + dimple $\hbar \omega \gtrsim k_{\rm B} T, E_{\rm int}$ $\omega/2\pi = 0.5$ to 3 kHz

Quasi-pure BEC in SMA with an adjustable atom number between 100 and 5000

Room temperature vapour cell of Sodium (using UV light-induced desorption)

Magnetisation: Detection and control

Diagnostic of the sample by Stern-Gerlach analysis

Check of the single-mode approximation: same spatial profile for m = -1, 0, +1

Using a combination of magnetic field gradient and radio-frequency pulses, we can prepare the atoms:

- all in m = 0,
- or in a superposition of $m = \pm 1$
- or in a superposition of m = 0 and m = +1
- or whatever...

Absorption imaging

Spin resolved fluorescence imaging at the single atom level

- Time-of-flight in the presence of ∇B
- Recapture in an optical molasses
- Collect the emitted fluorescence light during the molasses phase

Optimal molasses duration: ~ 5 ms

Determine optimized regions of interest

After background removal, the residual shot noise corresponds to a sensitivity of

 $N \approx 1.6$ atom

An Qu, Bertrand Evrard, Jean Dalibard, Fabrice Gerbier, Phys. Rev. Lett. **125**, 033401 (2020)

Outline of this lecture

1. An assembly of spin 1 particles

2. Experimental implementation

3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate

1	/
- I.	6
	U

A mean-field approach to the ground state of the N spin system

The two non-commuting contributions to the Hamiltonian $(\alpha, \beta > 0)$

Antiferromagnetic interactions:

Quadratic Zeeman effect:

 $\hat{H}_{\text{Zeeman}} = \beta$

 $\hat{H}_{interaction}$

Mean-field approach

Trial wave-function where all atoms occupy the same

$$|\psi\rangle = \begin{pmatrix} \sqrt{n_{+1}} e^{i\phi_{+1}} \\ \sqrt{n_0} e^{i\phi_0} \\ \sqrt{n_{-1}} e^{i\phi_{-1}} \end{pmatrix}$$

6 real parameters but - Irrelevant global phase - Fixed norm: $n_{+1} + n_0 + n_{-1} = 1$

$$= \frac{\alpha}{N} \sum_{i < j} \hat{\vec{s}}_i \cdot \hat{\vec{s}}_j = \frac{\alpha}{2N} \hat{S}^2 + \text{ const.}$$

$$\hat{S} = \sum \hat{s}_i : \text{total sp}$$

$$\beta\left(\hat{N}_{+1}+\hat{N}_{-1}\right)$$
 + constant

me spin state
$$|\Psi\rangle = |\psi\rangle^{\otimes N}$$

 \rightarrow 4 independent real parameters

pin

The ground state in the mean-field approach

$$\begin{array}{l} \text{Minimize } \langle \psi | \hat{H} | \psi \rangle \text{ with} \\ \hat{H} &= \frac{\alpha}{2N} \hat{S}^2 + \beta \left(\hat{N}_{+1} + \hat{N}_{-1} \right) \text{ and } \quad |\psi\rangle = \begin{pmatrix} \sqrt{n_{+1}} e^{i\phi_{+1}} \\ \sqrt{n_0} e^{i\phi_0} \\ \sqrt{n_{-1}} e^{i\phi_{-1}} \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \text{magnetization } M_z = n_{+1} \\ S_z/N \\ \end{array}$$

Second-order phase transition with the population n_0 as the order parameter

Critical magnetic field value $\beta_{\rm c} = \alpha \left(1 - \sqrt{1 - M_z^2} \right)$

For $\beta > \beta_c$, the three populations are non-zero

$$n_0 \neq 0$$

For $\beta < \beta_c$, only $n_{\pm 1}$ are non-zero $n_0 = 0$

Zhang, Yi, You (2003)

- Vary the magnetic field
- Measure the fraction of atoms in m = 0

Previous measurements: NIST for $M_z > 0.5$, Georgia Tech (but not SMA)

hmetry $M_z \leftrightarrow - M_z$)

no adjustable parameters

n the mean-field analysis: $M_z = \beta = 0$

Important role of Quantum Fluctuations around this point!

An assembly of spin 1 atoms: The simplest many-body system

- Jean Dalibard
- Solvay chair for Physics 2022

Lecture 4, part 2

Outline of this lecture

- 1. An assembly of spin 1 particles
- 2. Experimental implementation
- 3. A mean-field analysis

- 4. Bogoliubov approach and reversible many-body dynamics Bertrand Evrard, An Qu, Jean Dalibard and Fabrice Gerbier, Phys. Rev. Lett. **126**, 063401 (2021)
- 5. Beyond Bogoliubov: Relaxation dynamics
- 6. A fragmented condensate

The various regimes to be studied

$$\hat{H} = \frac{\alpha}{2N} \hat{S}^2 + \beta \left(\hat{N}_{+1} + \beta \right)$$

25

 $\beta | \alpha$

Bogoliubov approach (1)

$$\begin{split} \hat{H} &= \frac{\alpha}{2N} \hat{S}^2 + \beta \left(\hat{N}_{+1} + \hat{N}_{-1} \right) : \text{ Let's write the Hamiltonian in the "number" basis} \\ \rightarrow \text{ Interaction term: } \quad \frac{\alpha}{2N} \hat{S}^2 = \frac{\alpha}{N} \left[\hat{a}_{+1}^{\dagger} \hat{a}_{-1}^{\dagger} \hat{a}_0^2 + \left(\hat{a}_0^{\dagger} \right)^2 \hat{a}_{+1} \hat{a}_{-1} \right] + \dots \\ & \text{ where } \dots = \frac{\alpha}{2N} \left[\hat{S}_z^2 + 2N + (2\hat{N}_0 - 1) \left(\hat{N}_{+1} + \hat{N}_{-1} \right) \right] \\ \rightarrow \text{ Zeeman term: } \quad \beta \left(\hat{N}_{+1} + \hat{N}_{-1} \right) = \beta \left(\hat{a}_{+1}^{\dagger} \hat{a}_{+1} + \hat{a}_{-1}^{\dagger} \hat{a}_{-1} \right) \end{split}$$
Take advantage of $N_0 \gg N_{\pm 1}$ by setting $\hat{a}_0 \approx \hat{a}_0^{\dagger} \approx \sqrt{N}$

$$\hat{H} \approx \alpha \left(\hat{a}_{+1}^{\dagger} \hat{a}_{-1}^{\dagger} + \hat{a}_{+1} \hat{a}_{-1} \right) + (\beta + \alpha) \left(\hat{a}_{+1}^{\dagger} \hat{a}_{+1} + \hat{a}_{-1}^{\dagger} \hat{a}_{-1} \right) + \text{constant}$$

Quadratic Hamiltonian: Elementary brick at the basis of the Bogoliubov method

is already diagonal

Bogoliubov approach (2)

$$\hat{H} = \frac{\alpha}{2N}\hat{S}^2 + \beta\left(\hat{N}_{+1} + \hat{N}_{-1}\right) \longrightarrow \hat{H} \approx \alpha\left(\hat{a}_{+1}^{\dagger}\hat{a}_{-1}^{\dagger} + \hat{a}_{+1}\hat{a}_{-1}\right) + (\beta + \alpha)\left(\hat{a}_{+1}^{\dagger}\hat{a}_{+1} + \hat{a}_{-1}^{\dagger}\hat{a}_{-1}\right) + \text{ constant}$$
Canonical transformation: $\hat{b}_{+1} = u\hat{a}_{+1} + v\hat{a}_{-1}^{\dagger}$, $\hat{b}_{-1} = u\hat{a}_{-1} + v\hat{a}_{+1}^{\dagger}$, leading to :

$$\hat{H} = \hbar \omega \left(\hat{b}_{+1}^{\dagger} \hat{b}_{+1} + \hat{b}_{-1}^{\dagger} \hat{b}_{-1} \right)$$

Approach valid as long as $N_{\pm 1} \ll N$

G. I. Mias, N. R. Cooper, and S. M. Girvin (2008) Y. Kawaguchi and M. Ueda (2012)

B

$$\hbar\omega = \sqrt{\beta(\beta + 2\alpha)}$$
 Linear energy spectru

$$pprox N_0$$
 , which requires $\ eta \gg lpha / N$

um

Outline of this lecture

- 1. An assembly of spin 1 particles
- 2. Experimental implementation
- 3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

Bertrand Evrard, An Qu, Jean Dalibard and Fabrice Gerbier, Phys. Rev. Lett. 126, 063401 (2021), Phys. Rev. A 103, L031302 (2021)

6. A fragmented condensate

Beyond the Bogoliubov regime

$$\hat{H} = \frac{\alpha}{2N}\hat{S}^2 + \beta\left(\hat{N}_{+1} + \hat{N}_{-1}\right)$$
Region of interest here: $\beta \ll \alpha/N$
For states such that $\sqrt{\langle \hat{S}^2 \rangle} \sim \sqrt{N}$ and $\langle \hat{N}_m \rangle \sim$
the term $\frac{\alpha}{2N}\hat{S}^2$ dominates in the Hamiltonian
 α
 \sim quadratic energy spectrum: $E_S = \frac{\alpha}{2N}S(S+1)$

Evolution of the energy spectrum

ß

$$\hat{H} = \frac{\alpha}{2N}\hat{S}^2 + \beta\left(\hat{N}_{+1} + \hat{N}_{-1}\right)$$

Relaxation dynamics (1)

Initial state: $|\Psi_i\rangle = |0,N,0\rangle \equiv |m=0\rangle^{\otimes N}$

Decomposition on the spin basis:

$$|\Psi_i\rangle = \sum_{S} c_S |S, S_z = 0\rangle$$

 $c_S \approx \sqrt{\frac{2S}{N}} \exp(-\frac{S^2}{4N})$

Subsequent evolution:

β

$$|\Psi(t)\rangle = \sum_{S} e^{-i\alpha S(S+1)t/2N\hbar} c_{S} |S, S_{z} =$$

What is the evolution of N_0 ?

Relaxation dynamics (2)

$$c_{S} = \sum_{S} c_{S} | S, S_{z} = 0 \rangle \qquad c_{S} \approx \sqrt{\frac{2S}{N}} \exp(-S^{2}/4)$$

$$(t) = \sum_{S} e^{-i\alpha S(S+1)t/2N\hbar} c_{S} | S, S_{z} = 0 \rangle$$

What is the evolution of $\bar{N}_0(t) = \langle \Psi(t) | \hat{N}_0 | \Psi(t) \rangle$?

useful relation:
$$\langle S, 0 | \hat{N}_0 | S', 0 \rangle \approx \frac{N}{2} \delta_{S,S'} + \frac{N}{4} \left(\delta_{S,S'-2} + \delta_{S,S'+2} \right)$$

pectrum:
$$\bar{N}_0(t) = N \left[1 - \tau D(\tau) \right]$$
 $\tau = \sqrt{\frac{2}{N}} \frac{\alpha t}{\hbar}$

Dawson function

Relaxation dynamics (3)

Alternative approach based on a quantum trajectory approach (dissipation into a fictitious environment) L. Fernandes, M. Wouters, J. Tempere, Phys. Rev. A 105, 013305 (2022)

$$D(\tau) = \int_0^{+\infty} \sin(2x\tau) \,\mathrm{e}^{-\tau}$$

Outline of this lecture

- 1. An assembly of spin 1 particles
- 2. Experimental implementation
- 3. A mean-field analysis

- 4. Bogoliubov approach and reversible many-body dynamics
- 5. Beyond Bogoliubov: Relaxation dynamics
- 6. A fragmented condensate

Bertrand Evrard, An Qu, Jean Dalibard, Fabrice Gerbier, Science **373**, 1340 (2021)

The zero-field limit

The ground-state in a mean-field point of view

For a given orientation of the magnetic field axis \vec{u} and a zero magnetization along this axis, the limit $B \rightarrow 0$ gives

In the mean-field point-of-view, the ground state of the system is the statistical mixture:

 $\rho_{\rm G}$

Spontaneous breaking of the rotational symmetry: for each realization of the experiment, an orientation of \overrightarrow{u} is randomly chosen

$$\hat{H} = \frac{\alpha}{2N} \hat{S}^2 + \beta \left(\hat{N}_{+1} \cdot \frac{\beta}{2N} \right)$$

$$(\underline{GS}:\vec{u}) = (|m=0\rangle_{\vec{u}})^{\otimes N}$$
 spin-nematic (or polar

$$_{\rm SS} \propto \int \left(\left| m = 0 \right\rangle_{\overrightarrow{u}} \right)^{\otimes N} \left(\left\langle m = 0 \left|_{\overrightarrow{u}} \right. \right)^{\otimes N} \, \mathrm{d}^2 u \right)^{\otimes N} \, \mathrm{d}^2 u$$

A random magnetic field creating $\beta \sim \frac{\alpha}{N^2}$ is sufficient to break the symmetry Infinitesimally small field in the thermodynamic limit

Fluctuations in the mean-field point of view

Mean-field ground state $\rho_{\rm GS} \propto \left[\left(\left| m = 0 \right\rangle_{\overrightarrow{u}} \right)^{\otimes N} \left(\left\langle m = 0 \right|_{\overrightarrow{u}} \right)^{\otimes N} \, \mathrm{d}^2 u \right] \right]$ Average spin: $\langle \hat{\vec{S}} \rangle = \text{Tr} \left(\hat{\vec{S}} \hat{\rho}_{GS} \right) = 0$ Spin fluctuations: $\langle \hat{\vec{S}}^2 \rangle = \text{Tr} \left(\hat{\vec{S}}^2 \hat{\rho}_{GS} \right) = 2N$ $\Delta S \propto \sqrt{N}$

> In this mean-field approach, $\sim \sqrt{N}$ spin states are populated in the expected ground state

The difference with the true ground-state vanishes in the thermodynamic limit

 $\hat{H} = \frac{\alpha}{2N}\hat{S}^2 + \beta\left(\hat{N}_{\pm 1}\right)$

The true ground state of the N- spin system in zero field

$$\hat{H} = \frac{\alpha}{2N} \hat{S}^2 + \beta \left(\hat{N}_{+1} + \hat{N}_{-1} \right) \qquad \alpha >$$

Minimize the total spin, while staying compatible with the exchange symmetry for bosons

• For two spin-1 particles *a* and *b*, singlet state: $\frac{1}{\sqrt{6}} \left[\left(\hat{a}_0^{\dagger} \right)^2 - 2 \alpha \right]$

• For N spin-1 particles, collective spin singlet state:

Koashi & Ueda, 2000; Castin & Herzog, 2001; Ashab & Leggett, 2002; Mueller et al, 2006; Barnett et al, 2010; De Sarlo et al, 2013

- > 0 (antiferromagnetic interaction)
- Assume N even: the state S = 0 by forming a condensate of N/2 pairs in the singlet state of $(s = 1) \otimes (s = 1)$:

Ho & Yip, 2000

Producing the collective spin singlet in the lab

Adiabatic criterion on the evolution of the gap ΔE to the first excited state:

In practice, optimised ramp from 1 Gauss to 4 milliGauss in 1 second

$$N = 100 \text{ atoms}$$
 $\alpha = h \times$

$$\hat{H} = \frac{\alpha}{2N}\hat{S}^2 + \beta\left(\hat{N}_{+1} + \beta\left(\hat{N}_{+1}\right) + \beta\left(\hat{N}_{+1}\right) + \beta\left(\hat{N}_{+1} + \beta\left(\hat{N}_{+1} + \beta\left(\hat{N}_{+1}\right) + \beta\left(\hat{N}_{+1} +$$

How to reach it?

Start with a large ($\beta > \alpha$) field $\overrightarrow{B} = B \overrightarrow{u}_{z}$, with all atoms in $|m_{z} = 0\rangle$ Adiabatic following of the ground state down to a very low field (milliGauss) such that $\beta \sim \alpha/N^2$

$$\frac{\mathrm{d}\Delta E}{\mathrm{d}t} \ll \frac{(\Delta E)^2}{\hbar}$$

< 20 Hz $\beta_f = h \times 0.004 \,\mathrm{Hz}$

Diagnosis of the singlet state: one- and two-body observables

 $N \approx 100$ atoms Measurements performed either in the z—basis or after rotation of the state with adjustable angles and axes using Larmor precession and Rabi flopping

 $\Delta N_0 \sim N_0$: super-Poissonian fluctuations

Expected for the singlet state:

$$N_0 = \frac{N}{3}, \ \Delta N_0 = \frac{2N}{3\sqrt{5}} + \mathcal{O}(\sqrt{N})$$

 $\Delta S_{x,v,z} \ll$ squeezed spin state

Expected for the singlet state:

$$\Delta S_{x,y,z} = 0$$
 for N even

Diagnosis of the singlet state: many-body state

Set of 1100 shots giving $N_{+1}^{(i)}$, $N_0^{(i)}$, $N_{-1}^{(i)}$ for i = 1, ..., 1100with various angles and axes

Reconstruction of the many-body density matrix ρ using a maximum likelihood algorithm

$$\max_{\rho} \mathscr{P}\left(\rho \mid \{N_m^{(i)}\}\right) \qquad (Lvovsky, 2004)$$

- The density matrix ρ is essentially diagonal in the basis $|S, M_{\tau}\rangle$
- The first four spin manifolds contain 90% of the population, meaning a very low entropy: $S^{(100 \text{ particles})} \approx 3k_{\text{R}}$

Spin temperature: 30 pK, comparable to $\frac{1}{N} = 10$ pK

 $N \approx 100$

atoms
0.15
0.1
0.05
0

One-body density matrix: A fragmented BEC

The set of measurements of $N_{+1}^{(i)}, N_0^{(i)}, N_{-1}^{(i)}$ allows us to reconstruct the nine coefficients of $\langle m | \hat{\rho}^{(1)} | m' \rangle$

The N-body measurement indicates that it is not a mere thermal state !

Predicted long ago (Nozières & Saint James, 1982) but little experimental evidence of such a full N-body state so far

E. J. Mueller, T.-L. Ho, M. Ueda, and G. Baym, Phys. Rev. A 74, 033612 (2006)

See X.-Y. Luo et al., Science **355**, 620 (2017) for evidence of a two-fragment BEC

 $N \approx 100$ atoms

Only one macroscopic eigenvalue

Conclusions

Assembly of spin 1 atoms in the same spatial mode, coupled with a detection at the single atom level

Unique system to illustrate many aspects of many-body physics, which also provides a very useful tool for quantum metrology

- Phase transition at the mean-field level
- Production of correlated pairs of atoms, with a record squeezing parameter
- Possibility to produce and characterized a massively entangled state: a singlet (spin 0) state made out of $N \gg 1$ spin 1 atoms

For well chosen couplings, this system can even exhibit a chaotic behavior and thus provides a tool to investigate the thermalization of a closed system

Evrard et al., PRL **126**, 063401 (2021)

$\hat{H}' = \hat{H} + \Omega \hat{S}_x \,.$

$\hat{\mathcal{R}}_x(\theta)|\bar{m} = 0\rangle^{\otimes N}$

See also M. Garcia-March, S. van Frank, M. Bonneau, J. Schmiedmayer, M. Lewenstein, and L. F. Santos, New J. Phys. 20, 113039 (2018)

