

Excitations and dynamics of fractional quantum Hall fluids of light (and of atoms)

Iacopo Carusotto

INO-CNR BEC Center and Università di Trento, Italy

Horizon 2020 European Union funding for Research & Innovation

<u>Why not hydrodynamics of light ?</u>

Light field/beam composed by a huge number of photons

- in vacuo photons travel along straight line at *c*
- (practically) do not interact with each other
- in standard cavity, thermalization via walls and absorption/emission
 → optics in vacuo typically dominated by single-particle physics

In suitable photonic structures:

- spatial confinement \rightarrow effective photon mass
- $\chi^{(3)}$ nonlinearity \rightarrow photon-photon interactions

Collective behaviour of *quantum fluid of light*

Dilute-fluid physics well explored (BEC, superfluidity, etc.) Now it is time for <u>strongly correlated states of matter</u>

IC-Ciuti, Quantum Fluids of Light, RMP 85, 299 (2013)

<u>Photon blockade</u>

- Single-mode cavity at ω_0 , losses γ
- Photon-photon interaction due to optical nonlinearity \rightarrow frequency shift ~ U n (n-1)
- If $U >> \gamma$, coherent pump $\omega_L \sim \omega_o$ resonant with $0 \rightarrow 1$, but not with $1 \rightarrow 2$.

Photon blockade (Imamoglu et al., PRL 1997) → <u>Effectively impenetrable photons</u> Opposite regime than non-interacting photons of Maxwell's eqs.

Single-cavity blockade observed in many platforms since the 2000s

Many-cavities with tunneling J \rightarrow driven-dissipative Bose-Hubbard / interacting Harper-Hofstadter model \rightarrow many-body physics: Mott insulators, Fractional Quantum Hall fluids

Fluid of spin excitations in lattice of Rydberg atoms.

Quantum Hall fluid of light: Experiment @ Chicago

Non-planar ring cavity:

- Parallel transport \rightarrow synthetic B via periscope effect
- Landau levels for photons observed

Crucial advantages:

- Narrow frequency range relevant
- Integrated with Rydberg-EIT reinforced nonlinearities

Polariton blockade on lowest (0,0) mode

• Equivalent to $\Delta_{\text{Laughlin}} > \gamma$

2-photon baby Laughlin state realized (Clark et al., Nature 2020)

Figures from Schine et al., Nature 2016; Jia et al. 1705.07475

Quantum Hall fluid of light: Experiment @ Chicago (II)

PHYSICAL REVIEW A 89, 023803 (2014)

Probing few-particle Laughlin states of photons via correlation measurements

R. O. Umucalılar^{*} and M. Wouters TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium

I. Carusotto INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy (Received 29 November 2013; published 5 February 2014)

Quantum optical tools to generate two-photon Laughlin state:

- Coherent pumping→ multi-photon peaks to many-body states Frequency selectivity isolates Laughlin state (Umucalilar-IC, PRL 2012)
- Probing → quantum correlations in emission of orbital modes (Umucalilar-Wouters-IC, PRA 2014)

Challenge: scale up to larger number of particles

Coherent pump scheme scales very bad with N for topological states

L. W. Clark, N. Schine, C. Baum, N. Jia, J. Simon, Observation of Laughlin states made of light, Nature 2020

The next challenge:

Macroscopic FQH liquids of light

<u>How to exploit non-Markovian drive & dissipation</u> <u>to stabilize a desired many-body state</u>

A recap on light-atom interaction

- Coherent laser drives absorption and stimulated emission
- |e> population saturates to ¹/₂ under CW strong pumping
- Population inversion requires e.g. pulsed excitation

- For $P >> \gamma$ atom pumped in |e>
- Markovian pump energy-insensitive, keeps exciting to higher states

- Transition to |2> detuned
 → forbidden by freq-depend.
- For *P>>γ* population accumulates into state |1>
- Naturally obtained via frequency-dependent gain, e.g. population-inverted emitters

Many-cavity system

Frequency-dependent incoherent pumping, e.g. collection of inverted emitters

José's thm: for Markov pump \rightarrow trivial T= ∞ state for each N

Non-Markovian pump:

- Inverted emitters \rightarrow Lorentzian emission line around ω_{at}
- Photon injection only active if many-body transition is near resonance, otherwise losses dominate
- For P >> γ photons injected until band is full (MI) or many-body gap develops (FQH)
- Many-body gap blocks excitation to higher states and larger N

 \rightarrow desired correlated state gets stabilized !

<u>General idea:</u> Kapit, Hafezi, Simon, PRX 2014 Lebreuilly et al. CRAS (2016)

Umucalilar-IC, PRA 2017 Lebreuilly, Biella et al., PRA 2017

Mott insulators of light

- Most naive non-Markovian master equation: frequency-dependent emission → rescaled jump operators
- driven-dissipative steady state stabilizes strongly correlated many-body states e.g. Mott-insulator, FQH...
- resembles low-T equilibrium
- (in principle) no restriction to small N_{ph} only requirement \rightarrow many-body energy gap

First expt: Ma et al. Nature 2019

$$\bar{\mathcal{L}}_{\rm em}(\rho_{\rm ph}) = \frac{\Gamma_{\rm em}}{2} \sum_{i=1}^{k} \left[2\bar{a}_{i}^{\dagger}\rho_{\rm ph}\bar{a}_{i} - \bar{a}_{i}\bar{a}_{i}^{\dagger}\rho_{\rm ph} - \rho_{\rm ph}\bar{a}_{i}\bar{a}_{i}^{\dagger} \right]$$
$$\left\langle f' \left| \bar{a}_{i}^{\dagger} \right| f \right\rangle = \frac{\Gamma_{\rm pump}/2}{\sqrt{(\omega_{\rm at} - \omega_{f',f})^{2} + (\Gamma_{\rm pump}/2)^{2}}} \left\langle f' \right| a_{i}^{\dagger} \left| f \right\rangle$$

Lebreuilly, Biella et al., 1704.01106 & 1704.08978 Related work in Kapit, Hafezi, Simon, PRX 2014

Mott insulators of light (II)

Exact description of non-Markovianity of emitter

- \rightarrow explicit inclusion of two-level emitters:
- Markovian incoherent pump $\Gamma_{\rm p}$
- Coupling to cavity mode $\Omega_R \rightarrow$ emission irreversible via Γ 's

- Frequency-dependent emission of linewidth $\Gamma_{\rm p}$ Biella, Lebreully et al., 1704.08978

Superfluid-insulator non-equilibrium phase transition

Interesting behaviour of collective excitation modes across transition:

- Linearized Gutzwiller approach; observation in transmission/reflection/FWM
- Gap closes in Mott insulating phase approaching critical point
- Diffusive Goldstone mode in superfluid
- Similar physics as in polariton BECs (Wouters, Szymanska/Keeling, Diehl, expt: Bramati) Fabio Caleffi, PhD thesis @ SISSA (to be submitted)

What about large FQH fluids?

Coherent pump:

۶

- Able to selectively generate few-body states
- Limited by (exponentially) decreasing matrix element for larger systems

Frequency-dependent incoherent pump:

- Interactions \rightarrow many-body gap Δ
- Edge excitations not gapped. Hard-wall confinement gives small $\boldsymbol{\delta}$
- Non-Markovianity blocks excitation to higher states

Calculations only possible for small systems:

- Large overlap with Laughlin states
- Residual excitations localized mostly on edge

Open question: what are ultimate limitations of this pumping method?

- R. O. Umucalilar, IC, Generation and spectroscopic signatures of a fractional quantum Hall liquid of photons in an incoherently pumped optical cavity, PRA 2017.
- R. O Umucalilar, J. Simon, IC, Autonomous stabilization of photonic Laughlin states through angular momentum potentials, PRA 2022
- Interesting subtleties: Kurilovich et al., Stabilizing the Laughlin state of light: dynamics of hole fractionalization, arXiv:2111.01157

How to probe the many-body state?

Probing anyonic statistics of quasi-holes in the bulk

Optical signatures of the anyonic braiding phase

R. O. Umucalilar and IC, Anyonic braiding phases in a rotating strongly correlated photon gas, arXiv:1210.3070

Anyonic statistics of quasi-holes: Berry phase ϕ_{Br} when adiabatically moved around each other

- Berry phase encoded in global phase of many-body wavefunction
- requires interference process to be revealed [Grusdt et al., Nat. Comm. (2016)]

Naturally provided in optics:

- FQH fluid + localized potentials: \rightarrow create & braid QH in FQH fluid
- 0-photon state unaffected; phase-shift of N-body wavefunctio of FQH state
- Berry phase extracted from shift of transmission resonance $|0\rangle \rightarrow |N\rangle$ while repulsive potential moved with period T_{rot} along circle

 $\phi_{\rm Br} \equiv (\Delta \omega_{\rm oo} - \Delta \omega_{\rm o}) T_{\rm rot} \ [2 \pi]$

<u>Quantum mechanics of anyons (I) – single particle</u>

Laughlin wavefunction of Fractional Quantum Hall:

- quasi-holes \rightarrow no E_{kin} , no independent life
- dressed by heavy impurity \rightarrow anyonic molecule
- full-fledged quantum mechanical degree of freedom

Born-Oppenheimer approx:

- Heavy impurity \rightarrow slow Degree of Freedom
- Light FQH particles \rightarrow fast DoF

$$H_{\text{eff}} = \frac{\left[-i\nabla_{\mathbf{R}} - (Q - \nu q)\,\mathbf{A}(\mathbf{R})\right]^2}{2\mathcal{M}}$$

- Mass $M \rightarrow M$ (impurity) + QH dragging effect
- Impurity & FQH particles feel (Synth-)B, so synth-Charge $\rightarrow Q$ (impurity) $-\nu q$ (QH)

Cyclotron orbit \rightarrow fractional charge and BO mass correction

A. Muñoz de las Heras, E. Macaluso, IC, PRX 2020

Quantum mechanics of anyons (II) – two particles

 $\mathcal{A}_{i}(\mathbf{R}) = \mathcal{A}_{q}(\mathbf{R}_{i}) + \mathcal{A}_{\text{stat.}i}(\mathbf{R})$

Each particle \rightarrow attached flux

$$= \frac{\mathcal{B}_{\mathrm{q}}}{2} \mathbf{u}_{\mathrm{z}} \times \mathbf{R}_{j} + (-1)^{j} \frac{\nu}{R_{\mathrm{rel}}^{2}} \mathbf{u}_{\mathrm{z}} \times \mathbf{R}_{\mathrm{rel}}$$

Relative motion:

- inter-particle potential
- statistical A_{rel} due to attached flux

$$H_{\rm rel} = \frac{\left[\mathbf{P}_{\rm rel} + \mathbf{A}_{\rm rel}(\mathbf{R}_{\rm rel})\right]^2}{2\mathcal{M}_{\rm rel}} + V_{\rm ii}(R_{\rm rel})$$

2-body scattering: interference of direct & exchange

- fringes in differential cross section
- fringe position depends on attached flux, i.e. measure fractional statistics

> What about Rydberg polaritons?

<u>A simpler strategy: observing anyonic statistics in ToF measurements</u>

Braiding phase \rightarrow Berry phase when two quasi-holes are moved around each other

Braiding operation generated by rotations, braiding phase related to L_z

$$\varphi_{\rm B}(R) = i \oint_R \langle \Psi(\theta) | \partial_\theta | \Psi(\theta) \rangle d\theta$$

$$\varphi_{\rm B}(R) = \frac{1}{\hbar} \oint_R \langle \Psi(\theta) | L_z | \Psi(\theta) \rangle d\theta = \frac{2\pi}{\hbar} \langle L_z \rangle$$

Self-similar expansion of lowest-Landau-levels $\rightarrow L_z$ measured via size of the expanding cloud in time-of-flight

$$\langle r^2 \rangle_{\rm tof} = \frac{1}{N} \left(\frac{\hbar t}{\sqrt{2}M l_B} \right)^2 \left(\frac{\langle L_z \rangle}{\hbar} + N \right) = \left(\frac{\hbar t}{2M l_B^2} \right)^2 \langle r^2 \rangle$$

Can be applied to both cold atoms or to fluids of light looking at far-field emission pattern Difficulty \rightarrow small angular momentum difference of QH compared to total L_z

Umucalilar, Macaluso et al., Observing anyonic statistics via time-of-flight measurements, PRL (2018)

Connection to spin/statistics of anyons: Comparin, Opler, Macaluso, Biella, Polychronakos, Mazza, Measurable fractional spin for quantum Hall quasiparticles on the disk, PRB 2022

Quasi-Hole structure vs. anyon statistics (I)

• Compare (two) single quasi-holes and overlapping pair of quasi-holes:

$$\frac{\varphi_{\rm br}}{2\pi} = \frac{1}{\hbar} \left[\langle \hat{L}_z \rangle_{|\eta_1| = |\eta_2|} - \langle \hat{L}_z \rangle_{\eta_1 = \eta_2} \right].$$

• Relates to difference of density profiles:

$$\frac{\varphi_{\rm br}}{2\pi} = \frac{N}{2l_B^2} \left[\langle r^2 \rangle_{|\eta_1| = |\eta_2|} - \langle r^2 \rangle_{\eta_1 = \eta_2} \right],$$

- Incompressibility \rightarrow external region unaffected
- Statistics inferred from local density difference around QH core, i.e. spatial variance of density depletion
- To be distinguished from fractional charge inferred from missing charge
- Insensitive to spurious excitation of (ungapped) edge states
- Numerical calculation using Moore-Read wavefunction allows to distinguish fusion channels of even/odd total particle number

E. Macaluso, T. Comparin, L. Mazza, IC, Fusion channels of non-Abelian anyons from angular-momentum and density-profile measurements, PRL 2019

Connection to spin/statistics of anyons: Comparin, Opler, Macaluso, Biella, Polychronakos, Mazza, Measurable fractional spin for quantum Hall quasiparticles on the disk, PRB 2022

Quasi-Hole structure vs. anyon statistics (II)

Discrete lattice model \rightarrow Harper-Hofstadter-Bose-Hubbard Ground state using Tree-Tensor-Network ansatz

- experimentally realistic "large" system
- open boundary conditions with harmonic trap
- repulsive potentials to pin quasi-holes

Apply discretized version of braiding phase formula

$$\frac{\varphi_{\rm br}}{2\pi} = \frac{N}{2l_B^2} \left[\langle r^2 \rangle_{|\eta_1| = |\eta_2|} - \langle r^2 \rangle_{\eta_1 = \eta_2} \right]$$

to physical ground state wavefunction

- \rightarrow Accurate reconstruction of anyonic statistics
- \rightarrow Experiment accessible in state-of-the-art circuit-QED systems

E. Macaluso *et al.*, *Charge and statistics of lattice quasiholes* from density measurements: a Tree Tensor Network study, Phys. Rev. Research (2020)

On-going work: Linear and nonlinear edge dynamics of FQH clouds

Towards quantum optics of chiral Luttinger liquids

Response of trapped FQH cloud to external potential (I)

Trapping potential $V_{conf}(r) = \lambda r^{\delta}$

Ab initio ED calculations by MC evaluation of matrix elements of H via Metropolis (upto ~50 particles)

Time-dependent perturbation $U(r, \theta; t)$ running around edge:

• generates oscillatory perturbation on edge

<u>Weak perturbation → chiral Luttinger liquid behaviour</u>

- linear response proportional to filling v
- related to quantized transverse conductivity of FQH
- matches with numerics for long wavelength excitations...

A. Nardin, IC, *Linear and nonlinear edge dynamics of* trapped fractional quantum Hall droplets beyond the chiral Luttinger liquid paradigm, arXiv:2203.02539

Response of trapped FQH cloud to external potential (II)

Linear response matches χ LL... but much more physics hidden in edge perturbation $\sigma(z,t)$:

- free oscillation frequency shift $\sim k^3 \rightarrow$ group velocity dispersion
- nonlinear effects \rightarrow frequency shift proportional to amplitude σ due to radially increasing trapping force (different functional form compared to FQH literature)

Well captured by classical evolution eq: driven Korteweg-de Vries

$$\frac{\partial \sigma}{\partial t} = -\left[v_0 + \left(\frac{2\pi\tilde{c}_0}{\nu}\sigma\right)\right] \frac{\partial \sigma}{\partial \zeta} - \left(\beta_m\tilde{c}_0\frac{\partial^3\sigma}{\partial \zeta^3}\right) \frac{\nu}{2\pi}\frac{\partial U}{\partial \zeta}$$

- but also shows temporal decay of oscillation... which requires further refinements...
- A. Nardin, IC, *Linear and nonlinear edge dynamics of trapped fractional quantum Hall droplets* beyond the chiral Luttinger liquid paradigm, arXiv:2203.02539

Response of trapped FQH cloud to external potential (III)

Broadening associated to damping well captured by quantum- χ LL

$$\begin{split} \hat{H}_{\chi \text{LL}}^{NL} &= \int d\zeta \, \left[\frac{\pi \, v_0}{\nu} \, \hat{\sigma}^2 - \left(\frac{\pi \, \beta_m \tilde{c}_0}{\nu} \left(\frac{\partial \hat{\sigma}}{\partial \zeta} \right)^2 + \left(\frac{2\pi^2 \tilde{c}_0}{3\nu^2} \hat{\sigma}^3 \right) + U(\zeta, t) \, \hat{\sigma} \right] \\ \text{with} \qquad \left[\hat{\sigma}(\zeta), \, \hat{\sigma}(\zeta') \right] = -i \, \frac{\nu}{2\pi} \, \partial_\zeta \, \delta(\zeta - \zeta'). \end{split}$$

Quantum- χ LL eigenstates well match ED results, as well as temporal evolution of observables Dynamic structure factor \rightarrow going to be explained in terms of refermionization of LL

> A. Nardin, IC, *Linear and nonlinear edge dynamics of trapped fractional quantum Hall droplets* beyond the chiral Luttinger liquid paradigm, arXiv:2203.02539

Nonlinear optics of edge excitations at constriction (I)

<u>Chern-Simons view:</u> Linear χ LL dynamics of edge + intrinsic nonlinearity at junction (see D. Tong lectures on QH physics, 1606.06687)

+
$$\Gamma \cos[\phi(x_2) - \phi(x_1)]$$

Edge mode propagation

H =

 $\frac{v_F}{4\pi}\int dx\,(\partial_x\phi)^2$

Charge density
$$\rho = \frac{1}{2\pi} \partial_x \phi$$
 $[\phi(x), \rho(y)] = \frac{i}{m} \delta(x - y)$ QP operator $\Psi_{qp} = :e^{i\phi} :$ displaces 1/m charge

Semiclassical dynamics for $\Delta \phi$ = phase across junction = (2 π) transmitted charge

$$\partial_t \Delta \phi = -\Gamma \sin(\Delta \phi) + 2\pi I_0(t)$$

Backscattered current $I_B(t) = \frac{\Gamma}{2\pi} \sin(\Delta \phi)$

Z. Bacciconi, *Fractional quantum Hall edge dynamics from a quantum optics perspective*, MSc thesis at UniTrento (2021); arXiv:2111.05858 Z. Bacciconi, A. Nardin, IC, in preparation (2022)

Nonlinear optics of edge excitations at constriction (II)

$$\partial_t \Delta \phi = -\Gamma \sin(\Delta \phi) + 2\pi I_0(t)$$

 $I_B(t) = \frac{\Gamma}{2\pi} \sin(\Delta \phi)$

 $\frac{Crystallization effect}{Incident pulse of integer total Q=3} \rightarrow oscillating back-scattered current}$

<u>Commensurability effect:</u> Incident pulse of generic total $Q \rightarrow$ relaxes to nearest integer

Coherent semiclassical dynamics robust against quantum fluctuations for sufficiently large m (no such effects for integer QH state @ m=1 → free fermion propagation along edge)

Z. Bacciconi, Fractional quantum Hall edge dynamics from a quantum optics perspective, MSc thesis at UniTrento (2021); arXiv:2111.05858

On-going: Quantum optics of edge excitations at constriction

Truncated-Wigner description of bosonic χ LL: classical noise describes quantum statistics

$$\rho_{s}(x,t=0) = \sum_{k>0} r_{k} \alpha_{k} e^{ikx} + h.c. \quad I(x,t) = v_{F} \rho_{s}(x,t)$$

$$\langle \boldsymbol{\rho}_{s}(\mathbf{0}^{-},\mathbf{0})\boldsymbol{\rho}_{s}(\mathbf{0}^{-},t)\rangle \propto -\frac{1}{mt^{2}}$$

۶

- For weak junction: drift across washboard potential dominates restoring force
 - Back-scattered current $I_B \sim I_0^{-(m-2)/m}$ in agreement with χLL prediction
 - > Shot noise S ~ 1 / m fractional charge

• TWA calculation most accurate for weak junction and large *m*

Quite surprising (at a first thought) that a semiclassical treatment of quantum fluctuations can capture reduced shot-noise due to fractional charges !

Z. Bacciconi, Fractional quantum Hall edge dynamics from a quantum optics perspective, MSc thesis at UniTrento (2021); arXiv:2111.05858

10-3

10-

 I_h

Experimental implementations

Superconductor-based circuit-QED platform

- Time-modulated couplings \rightarrow synthetic B
- Long-lifetime \rightarrow lossless coherent evolution
- Independently initialize sites, then follow unitary evolution

$\frac{\text{Multi-body effect: one-/two-photon state}}{\rightarrow \text{opposite rotation direction}}$

Ultracold atoms in optical lattice

- Raman-assisted tunneling \rightarrow synth-B
- Initialize atoms, then unitary dynamics

Tai et al., Nature 2017 See also previous talk by Leonard

But also electronic FQH fluids

- Electric injection of edge waves
- Optical detection of edge wave via shift of PL emission

Other systems, e.g. Rydbergs in twisted cavities \rightarrow new physics from driving and dissipation \rightarrow to be explored !

Kamiyama et al. Phys. Rev. Research (2022)

<u>Outlook</u>

Non-equilibrium nature of quantum fluids of light may seem serious hindrance:

- Particle losses \rightarrow difficult to adiabatically follow ground state
- Steady-state under driving + dissipation \neq thermal equilibrium state

Taylor non-eq dynamics to reach desired many-body state

- No need for cooling, long-time kinetics does the job
- Wide artillery naturally available in optical systems → non-Markovian emitters stabilize MI and FQH fluids

New physics and new questions:

- Coherence of laser/non-eq BEC → KPZ class (first expts in J. Bloch's talk)
- Subtle definition of superfluidity
- What are ultimate limits of driven-dissipative schemes?
- Can topological quantum info be robust against losses/pumping?
- Extend nonlinear quantum optics of photons to edge waves of FQH fluid: new effects from underlying anyonic statistics?

Extend quantum simulation concept

- Focus on physical effects more than on precise mathematical equivalence
- Adding new ingredients facilitates observing and understanding desired physics
- Opens the way to new exciting physics
- Concept of "analogy" goes further and deeper than "simulation": bidirectional transfer same physical concepts to different contexts !

<u> Analog models ~ quantum simulators of curved space-time QFTs</u>

Propagation of low-k sound waves in BECs equivalent to curved space-time KG eq.

$$\frac{1}{\sqrt{-G}} \partial_{\mu} \left[\sqrt{-G} G^{\mu\nu} \partial_{\nu} \right] \phi(x,t) = 0$$

With exciting additional physics:

- superluminal corrections,
- wide variety of space-time metrics, ...

Stimulating bidirectional exchange of ideas and results between gravitation and cond-mat physics

Trento experimental team

 \rightarrow spin waves in 2-component BECs

<u>On-going work:</u> bubble-mediated decay of metastable state (a) 1^{st} order phase trans. \rightarrow false vacuum decay in cosmology Next challenge: q=1-spin-vortex unstable → ergoregion instability of massive star (A. Berti-IC, in preparation)

If you wish to know more...

REVIEWS OF MODERN PHYSICS, VOLUME 85, JANUARY-MARCH 2013

Quantum fluids of light

lacopo Carusotto*

INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

Cristiano Ciuti[†]

Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris 7 et CNRS,

I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)

nature physics

FOCUS | REVIEW ARTICLE

Photonic materials in circuit quantum electrodynamics

Iacopo Carusotto¹, Andrew A. Houck^{®2}, Alicia J. Kollár^{3,4}, Pedram Roushan⁵, David I. Schuster^{6,7} and Jonathan Simon^{®6,7}⊠

Review article on Nature Physics (2020)

We acknowledge generous financial support from:

PROVINCIA AUTONOMA DI TRENTO

Horizon 2020 European Union funding Commission for Research & Innovation

PhD positions available

Contact: iacopo.carusotto@unitn.it

Come and visit us in Trento!

REVIEWS OF MODERN PHYSICS. VOLUME 91

Topological photonics

Ozawa, Price, Amo, Goldman, Hafezi, Lu, Rechtsman, Schuster, Simon, Zilberberg, IC, RMP 91, 015006 (2019)

Non-equilibrium Bose–Einstein condensation in photonic systems

Jacqueline Bloch⁰ ¹^{\boxtimes}, Iacopo Carusotto⁰ ²^{\boxtimes} and Michiel Wouters³^{\boxtimes} Review article on Nat. Rev. Phys. (2022)