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Topological systems

The archetype of topological systems: a 2D quantum Hall insulator

B

classical orbits

E

Landau quantum levels

�at bands & non-trivial topology

A whole zoo of topological systems (topological insulators,

superconductors) depending on discrete symmetry class and dimension
Altland, & Zirnbauer, PRB 1997

Topological systems in dimensions D > 3 accessible in engineered systems

based on synthetic dimensions.

This talk: realization of a 4D quantum Hall system
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Simulating an orbital magnetic �eld with ultracold atoms

Mimicking the Aharonov-Bohm geometrical phase

Rotation

Sagnac phase

Madison et al, PRL 1999

Light dressing

Berry phase

Lin et al, Nature 2009

Shaken lattices

Peierls phase

Aidelsburger, PRL 2013

Jotzu et al, Nature 2014
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A new tool: synthetic dimensions

Encoding a dimension in a spin degree of freedom.

Magnetic projection m (with −J ≤ m ≤ J) acts as a coordinate.

�rst realizations with 3 states

Mancini et al, Science (2015) and Stuhl et al, Science (2015)

Assets of this method

simple realization of the magnetic �eld:

light-induced spin transitions

sharp edges
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Probing quantum Hall physics in atomic systems

Quantization of transverse response in large & smooth atomic

ensembles
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Aidelsburger et al, Nature Phys. (2015)

Chiral edge modes in very small samples (no notion of a bulk)

Mancini et al, Science (2015)

Stuhl et al, Science (2015)
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Encoding a large synthetic dimension with Dy atoms

Filled 6s2 shell

a

Submerged open 4f10 shell

a

Electronic spin J = 8

Magnetic projection states m (−J ≤ m ≤ J) encode a synthetic dimension

with 2J + 1 = 17 sites.
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Realization of a quantum Hall ribbon: initial state

→ from MOT



yz

B

Dipole traps

105 atoms held in optical tweezers, cooled down to T = 0.5 µK.

Magnetic �eld along z splits the m levels.
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Realization of a quantum Hall ribbon: spin dynamics

Raman beam 1

Raman beam 2

yz

B

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 82 1

Transitions m→ m + 1 together with momentum kick Mv → Mv − 2~k
⇒ conservation of momentum p = Mv + 2~km.
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Realization of a quantum Hall ribbon: e�ective B �eld

Spin transitions inherit the complex amplitude ∝ ei2kx from laser

interference.

Equivalent to Peierls phases (Aharonov-Bohm phases on discrete

lattice).

-8
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0

4

8

x

m

φ0

0 λ/2 x

ei2kx
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Measuring a quantized Hall response
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Hall current

Homogeneous and quantized Hall response in the bulk

T. Chalopin et al, Nat. Phys. (2020)
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Realization of a quantum Hall cylinder

Motivations for a periodic synthetic dimension

no edge e�ect

cylinder geometry for Laughlin's charge pump experiment

∆Φ‖ = Φ0
Φ0

B⊥

`mag
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Emergence of a cyclic synthetic dimension
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162Dy atomω1
ω2a

ω2bx

magnetic projection m
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Combination of two Raman transitions

m→ m + 1 together with Mv → Mv − 2~k
m→ m − 2 together with Mv → Mv − 2~k

We lose the conservation of momentum p = Mv + 2~km.



Emergence of a cyclic synthetic dimension
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162Dy atomω1
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magnetic projection m
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Both transitions satisfy

r → r + 1 together with Mv → Mv − 2~k

for the cyclic dimension

r = m (mod 3).

Conservation of the quasi-momentum q = Mv + 2~kr (mod 6~k)



Emergence of a Hall cylinder

r = 0

r = 1

r = 2

ei(ϕ−2kx)

Φ0

`mag = λ/6
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Topological charge pump in a Bloch oscillation

Evolution of spin projection probabilities
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A. Fabre et al, Phys. Rev. Lett. (2022)
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Topological charge pump in a Bloch oscillation
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〈m〉

No drift of the mean 〈m〉

A. Fabre et al, Phys. Rev. Lett. (2022)
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Topological charge pump in a Bloch oscillation

00

0

0

0

0

1

1

1

1

1

1
r=2

2

2

2

2

2

−2 0 2
-8

-4

0

4

8

q [k]

m

regrouping to infer the r -projection probabilities
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Quantized increase ∆r = 3 for each Bloch oscillation cycle.

A. Fabre et al, Phys. Rev. Lett. (2022)
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Thouless topological charge pump

adiabatic & time-periodic deformation

of a quantum lattice system

↓
quantized charge pump

Thouless, PRB 1983

Realizations in cold atomic systems

Lohse et al, Nature Phys. 2016 Nakajima et al, Nature Phys. 2016
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4D Hall physics with a 2D charge pump

A two-dimensional (super-)lattice system

Cyclic deformation of the superlattice drives quantized charge pump

described by a second Chern number.

Lohse et al, Nature 2018
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De�nition of the four dimensions

Implementation inspired from previous proposals
Kraus et al, Phys. Rev. Lett. 2013
Price et al, Phys. Rev. Lett. 2015

x
y

spin J = 8motion in the xy plane

162Dy atom

Dynamics occurs on a four-dimensional space of coordinates (x , y ,m, r)

x and y are genuine spatial dimensions

m and r are encoded in the spin and restricted to 2J + 1 = 17 sites on

a cylinder
Fabre et al, PRA 2022
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Geometry of Raman transitions

ωxω′
x

ωy

ω′
y
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ωx
ω′
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en
er
gy

-4 -3 -2 -1 0 1 2 3 4

Two types of Raman transitions

transition ∆m ∆r M∆v

x 1 1 −2~k x̂
y -2 1 −2~k ŷ

⇒ non-trivial cycles m
x→ m + 1

x→ m + 2
y→ m imparting a velocity kick

K = 2k(2x̂ + ŷ)

⇒ Conservation of the quasi-momentum

P = Mv + 2kmx̂ (mod K)
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Experimental sequence

1. Ultracold gas of 105 atoms

at T = 0.4 µK
polarized in m = −J

2. Switch on Raman couplings

(o� resonant)

3. Ramp detunings adiabatically

in frame moving with lattice

interference: inertial force

⇒ control of quasi-momentum P

4. Measurement of velocity

and spin distributions

after time-of-�ight

separation of m levels

with a B �eld gradient

xy velocity distribution

for each m level
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Adiabatic spin pumping

We decompose the quasi-momentum as

P = pX̂ + qŶ,

with Ŷ ‖ K, p arbitrary and |q| < K/2.
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Geometrical pumping along r
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Geometrical pumping along r

transition ∆m ∆r M∆v

x 1 1 −2~k x̂
y -2 1 −2~k ŷ

When pushing the system along 2x̂ + ŷ, the velocity increase is

compensated by Raman transitions, such that 〈m〉 is kept constant on
average while 〈r〉 increases.
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Geometrical pumping along m
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Geometrical pumping along m

transition ∆m ∆r M∆v

x 1 1 −2~k x̂
y -2 1 −2~k ŷ

When pushing the system along x̂− ŷ, the velocity increase is compensated

by Raman transitions, such that 〈r〉 is kept constant on average while 〈m〉
increases.
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Velocity distribution and edge modes

We extract for each momentum state the mean atom velocity.

−12 −8 −4 0 4 8 12
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0
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p [k]

q
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]

Arrow length ∝ ||v||, with max length ≡ 5vr

velocity remains very small in the bulk

on the edges m = ±J, ballistic motion along ±X̂, frozen motion along

other directions
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Rotations in four-dimensional space and cyclotron motion

Parametrization of rotations

Dimension 2: center and angle

Dimension 3: axis and angle

Dimension 4: 2 invariant orthogonal planes, and two rotation angles

(one for each plane)

⇒ charged-particle motion in a magnetic �eld involves two frequencies.

For our system

Raman process x leads to a rotation in the plane (x̂, m̂ + r̂) of

frequency ωx

Raman process y leads to a rotation in the plane (ŷ,−2m̂ + r̂) of

frequency ωy
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Cyclotron orbit for ωy/ωx = 1

We kick the atoms to drive a cyclotron motion of the center of mass.
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Cyclotron orbit for ωy/ωx = 2
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Cyclotron orbit for ωy/ωx = ϕ

For a ratio close to the golden number ϕ, the orbit ceases to be closed.
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Berry curvatures

Variations of the mean velocity with momentum give access to Berry

curvatures, e.g.

ΩYm = −
√
5

2k

∂〈vY 〉
∂q
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Expected Berry curvature in the bulk

Spin hopping induced by the x Raman lasers occurs with a Peierls phase

φx = −2kx = Am∆m + Ar∆r ,

with hopping ranges ∆m = ∆r = 1. Similar expressions for the y
transitions, with ∆m = −2 and ∆r = 1.

We deduce the vector potential

A =
1

3
(0, 0, φx − φy , 2φx + φy )x ,y ,m,r ,

hence the magnetic �eld Bµν = ∂µAν − ∂νAµ

B =
2k

3


0 0 −1 −2
0 0 1 −1
1 −1 0 0

2 1 0 0

 .
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Expected Berry curvature in the bulk

In the bulk and in the absence of dispersion, the Berry curvature is uniform

with

Ωbulk = B−1 =
1

2k


0 0 1 1

0 0 −2 1

−1 2 0 0

−1 −1 0 0
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Reconstructing the local second Chern marker

In uniform systems, the second Chern number is given by the band integral

of Berry curvature products

C2 =
1

8π2

∫
ρ2 d

4q,

where ρ2 = εµνδγΩµνΩδγ is the second Chern character.

In our �nite system with edge, we expect a quantized non-linear response in

the bulk only.

We de�ne a local second Chern marker

C2(m) =
1

3

∫
ρ2(p, q)Πm(p, q)dpdq

by weighting the second Chern character with the projection probability Πm.
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Quantized local second Chern marker in the bulk

The local second Chern marker is close to C2 = 1 in the bulk −5 ≤ m ≤ 5.
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The second Chern number quantizes a non-linear response

We expect a quantized non-linear response to both perturbative electric

�eld fν and magnetic �eld bαβ

jµNL =
C2
4π2

εµαβν fνbαβ.

In other words, a magnetic perturbation bαβ induces a Hall conductivity

∝ C2bαβ in the orthogonal plane.

In our system, we implement a magnetic perturbation bmr in the mr
plane

⇒ appearance of a Hall e�ect in the xy plane
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Implementation of the magnetic perturbation bmr

We play with the polarizations of one x Raman beam.

linear polarizations ⇒ spin hopping algebra J+

J+ + iε{J+, Jz} ' J+eimε

r -hopping acquires a complex phase ∝ m ⇒ bmr field
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Foucault pendulum precession

We study the modi�cation of cyclotron dynamics induced by the bmr �eld.

We use ωx = ωy , i.e. isotropic harmonic trapping in the xy plane.
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bmr = −0.066 bmr = 0 bmr = 0.066

The measured precession rates match well the expected values, governed by

the second Chern character ρ2.
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Outlook

Interacting many-body systems in a 4D quantum Hall structure.

Connection with quantum gravity and Yang-Mills theories?

Zhang & Hu, Science 2001
Barns-Graham et al, J. High Energ. Phys. 2018

Requirements:

characterization of interactions between components of the spin J = 8

control of the interaction range (spatial separation of m levels)

Extension to other high-dimensional topological systems

Weyl semi-metals in 5D

Quantum Hall systems in 6D

Lian & Zhang, Phys. Rev. B 2016
Petrides at al, Phys. Rev. B 2018

Lee at al, Phys. Rev. B 2018
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Thank you for your attention!
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