Efficient simulation of quantum transport in ID

Frank Pollmann

Technische Universität München

T. Rakovszky, Standford

[Rakovszky, von Keyserlingk, FP, PRB 105, 075137 (2022)] [von Keyserlingk, FP, Rakovszky, PRB **105**, 245101 (2022)]

C.v Keyserlingk, Birmingham

Solvay Workshop on 'Quantum Simulation' Brussels, Aug. 29 2022

Quantum Thermalization

Closed quantum

[Srednicki, Deutsch, Rigol]

Characterizing thermalization dynamics

Universal hydrodynamic features tend to emerge in the low-frequency, long-wavelength limit

Emergent hydrodynamic relaxation. Diffusion

How to numerically extract hydrodynamics for a given microscopic model?

Time (7)

Numerical complexity of many-body dynamics

Directly simulate the time evolution within the full many-body Hilbert space

$$|\psi\rangle = \sum_{j_1, j_2, \dots, j_L} \psi_{j_1, j_2, \dots, j_L}$$

- Complexity $\propto \exp(L)$
- Exact diagonalization methods (dynamical typicality) up to ~ 30 spins

 $|\psi(t)\rangle = e^{-itH}|\psi(0)\rangle$

$|j_1\rangle|j_2\rangle \dots |j_L\rangle$, $j_n = 1 \dots d$

Matrix-Product States

Low entanglement: Matrix-Product States [M. Fannes et al. 92]

$$\psi_{j_1, j_2, \dots, j_L} \approx \sum_{\alpha_1, \alpha_2, \dots, \alpha_{L-1}} A_{\alpha_1}^{j_1} A_{\alpha_1, \alpha_2}^{j_2} \dots A_{\alpha_{L-1}}^{j_L} (\alpha_j = 1 \dots \chi)$$

Efficient representation of ground states of gapped local Hamiltonian Schuch, Verstraete,...]

Diagrammatic representation

 $\psi_{j_1,j_2,j_3,j_4,j_5}$ \approx

$d^L \to L d\chi^2$

$$A_{\alpha,\beta}^{j} = \alpha \frac{j}{A} \beta$$
$$\alpha, \beta = 1 \dots \chi$$
$$j = 1 \dots d$$

Numerical complexity of many-body dynamics

Directly simulate the time evolution within the full many-body Hilbert space

$$|\psi\rangle = \sum_{j_1, j_2, \dots, j_L} \psi_{j_1, j_2, \dots, j_L} |j_1\rangle |j_2\rangle \dots |j_L\rangle , \ j_n = 1 \dots d$$

- Complexity $\propto \exp(L)$
- Sparse exact diagonalization methods (dynamical typicality) up to \sim 30 spins

Matrix-Product State based numerics

• Complexity $\propto \exp(t)$ because of [hinear entanglement growth

 $|\psi(t)\rangle = e^{-itH}|\psi(0)\rangle$

t

ED MPS

How to truncate entanglement without sacrificing crucial information on physical (local) observables?

Various approaches to address this problem:

[White et al.: PRB 2018] [Wurtz et al.: Ann. Phys. 2018] [Klein Kvorning, arXiv:2105.11206] [Schmitt, Heyl: SciPost 2018] [Parker et al., PRX 2019]

[Krumnow et al.: arXiv:1904.11999] [Leviatan et al., arXiv:1702.08894]

Time-dependent variational principle (TDVP)

Variational manifold: MPS states with fixed bond dimension

 $\psi_{j_1,j_2,j_3,j_4,j_5} = A_{\alpha}^{[1]j_1} A_{\alpha\beta}^{[2]j_2} A_{\beta\gamma}^{[3]j_3} A_{\gamma\delta}^{[4]j_4} A_{\delta}^{[5]j_5}$

Classical Lagrangian $\mathcal{L}[\alpha, \dot{\alpha}] = \langle \psi[\alpha] | i\partial_t | \psi[\alpha] \rangle - \langle \psi[\alpha] | H | \psi[\alpha] \rangle$

Global conservation laws (energy, particles,...)

- Efficient evolution using a projected Hamiltonian [Haegeman et al. '11, Dorando et al. '09]

[Leviatan, FP, Bardarson, Huse, Altman, arXiv:1702.08894]

Time-dependent variational principle (TDVP)

XXZ Model with longer range interactions

$$H = \sum_{i>j} a^{i-j} (S_i^x S_j^x + S_i^y S_j^y - S_j^y) = \sum_{i>j} a^{i-j} (S_i^x S_j^x - S_j^y) = \sum_{i>j} a^{i-j} (S_i^x S_j$$

Diffusion constant changes when truncation kicks it!

 $+\Delta S_i^z S_j^z)$

[Leviatan, FP, Bardarson, Huse, Altman, arXiv:1702.08894]

Dissipation-assisted operator evolution method

Heisenberg Picture: Artificial dissipation leads to a decay of operator entanglement, allowing us to capture the dynamics to long times

- Discard information corresponding to
 n-point functions with $n > \ell_*$.
- Errors induced by truncation (''backflow'') are exponentially suppressed in ℓ_*

[Rakovszky, von Keyserlingk, FP, PRB **105**, 075137 (2022)] [von Keyserlingk, FP, Rakovszky, PRB **105**, 245101 (2022)]

Non rigorous theory of "backflow" corrections

Dynamical correlations $C(\tau, x) \equiv \langle o_0(\tau) | o_x \rangle$

Contributions from "backflow" exponentially small in ℓ_* : $C_{>\ell_*}(\tau, x) \equiv \langle o_0 | \mathcal{U}(\tau = 2t, t) \mathcal{P}_{>\ell_*} \mathcal{U}(t, 0) | o_x \rangle$

[von Keyserlingk, FP, Rakovszky, PRB 105, 245101 (2022)]

Dissipation stops growth of operator entanglement

Represent dissipative evolution as tensor network

Test on quantum Ising chain:

Low-dimensional Matrix-Product Operator Time Evolving Block Decimation (TEBD) [Vidal '03]

$$\sum_{j} h_{j} \equiv \sum_{j} g_{x} X_{j} + g_{z} Z_{j} + (Z_{j-1} Z_{j} + Z_{j} Z_{j+1})/2$$

 $g_x = 1.4; g_z = 0.9045$

[Rakovszky, von Keyserlingk, FP, PRB 105, 075137 (2022)]

Diffusion constant from mean-square displacement

Time-dependent diffusion constant: $2D(t) \equiv \frac{\partial d^2(t)}{\partial t}$ Diffusive transport: $D \equiv \underset{t \to \infty}{lim} D(t)$

 $d^{2}(t) \equiv \sum_{x} C(x, t) x^{2} \quad (MSD)$

[Rakovszky, von Keyserlingk, FP, PRB 105, 07513 (2022)]

High precision in various models

Ising:
$$H = \sum_{j} h_j \equiv \sum_{j} g_x X_j + g_z Z_j$$

[Rakovszky, von Keyserlingk, FP, PRB 105, 075137 (2022)]

 $Z_j + \frac{1}{2}(Z_{j-1}Z_j + Z_jZ_{j+1})$

High precision in various models

XX ladder:
$$H = \sum_{j=1}^{L} \sum_{a=1,2} (X_{j,a} X_{j+1,a} + Y_{j,a} Y_{j+1,a}) + \sum_{j=1}^{L} (X_{j,1} X_{j,2} + Y_{j,1} Y_{j,2})$$

$$q_x \equiv (Z_{j,1} + Z_{j,2})/2$$

[Rakovszky, von Keyserlingk, FP, PRB 105, 075137 (2022)]

Benchmark to other methods (work in progress)

XX ladder:
$$H = \sum_{j=1}^{L} \sum_{a=1,2} (X_{j,a} X_{j+1,a} + Y_{j,a} Y_{j+1,a}) + J_{\perp} \sum_{j=1}^{L} (X_{j,1} X_{j,2} + Y_{j,1} Y_{j,2})$$

[Hemery, Lovas, Mc Culloch, von Keyserlingk, FP, Rakovszky (in progress)]

Benchmark to other methods (work in progress)

XXZ chain
$$H = \sum_{j=1}^{L} (X_j X_{j+1} - X_j)^{-1}$$

[Hemery, Lovas, Mc Culloch, von Keyserlingk, FP, Rakovszky (in progress)]

 $+ Y_j Y_{j+1} + \Delta Z_j X_{j+1}$

Dissipation-assisted operator evolution method

Artificial dissipation leads to a decay of operator entanglement, allowing us to capture the dynamics to long times

- Discard information corresponding to
 - n-point functions with $n > \ell_*$.
- Errors induced by truncation (''backflow'')

are exponentially suppressed in ℓ_*

[Rakovszky, von Keyserlingk, FP, PRB 105, 075137 (2022)] [von Keyserlingk, FP, Rakovszky, PRB 105, 245101 (2022)]

Thank you!

Open questions and challenges

 (1) What is the optimal way to truncate entanglement without sacrificing crucial information on physical (local) observables?

(2) What are the problems for which we do actually require a quantum computer to simulate physical (local) observables?

Thermal state (locally)