Quantum Circuits and Simulation with Individual Atoms

Christopher Monroe Univ. Maryland, JQI, QuICS, and IonQ

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

Atomic Qubit (¹⁷¹Yb⁺)

¹⁷¹Yb⁺ Qubit Manipulation

D. Hayes et al., PRL 104, 140501 (2010)

Quantum Circuits and Algorithms

Quantum Entanglement of Trapped Ions

Raman Sideband Spectrum of 32 ¹⁷¹Yb⁺ ions

Fluorescence (arb)

Programmable/Reconfigurable Quantum Computer Module

Full "Quantum Stack" architecture

User	Quantum Algorithms: Deutsch-Jozsa, QFT, etc.
Quantum compiler	Universal gates: Hadamard, C-NOT, C-Phase, etc. Native gates: XX-Gates, R-gates
Quantum control	Pulse shaping: Optimization of XX- and R-Gates
Hardware	Optical addressing: Qubit manipulation/ detection Ion trap: Linear ion-chain, optical access, etc.

Benchmarking 11-qubit register

Qubit pair

Benchmarking 11-qubit register

Bernstein-Vazirani Algorithm

Given $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$, find *n*-bit string \mathbf{c} 1.0 avg observed success prob: 73.0% classical: *n* queries best possible classical: 0.2% quantum: 1 query 200 0.8 distribution of measurements example: *c* = 1101011001 probability 400 0.6 $|0\rangle - H$ $R_y(\frac{\pi}{2})$ $R_y(\frac{\pi}{2})$ X $|0\rangle - R_y(\frac{\pi}{2})$ $R_y(\frac{\pi}{2})$ $|0\rangle - H$ X $|0\rangle - H$ $|0\rangle - R_y(\frac{\pi}{2})$ $R_y(\frac{\pi}{2})$ 600 $|0\rangle - R_y(\frac{\pi}{2})$ $|0\rangle - H$ X $R_y(\frac{\pi}{2})$ 0.4 $|0\rangle - H$ $|0\rangle - R_y(\frac{\pi}{2})$ $R_y(\frac{\pi}{2})$ $|0\rangle - H$ $|0\rangle - R_y(\frac{\pi}{2})$ X $R_y(\frac{\pi}{2})$ $|0\rangle - H$ $|0\rangle - R_y(\frac{\pi}{2})$ $R_y(\frac{\pi}{2})$ XH800 - 0.2 $|0\rangle - R_y(\frac{\pi}{2})$ $|0\rangle - H$ H $|0\rangle - H$ $|0\rangle - R_y(\frac{\pi}{2})$ $R_y(\frac{\pi}{2})$ $|0\rangle - H$ $|0\rangle - R_y(\frac{\pi}{2})$ $X - R_y(\frac{\pi}{2})$ $|0\rangle - R_y(-\frac{\pi}{2}) - X - X - X - X - X$ $|1\rangle - H$ 1000 \oplus \oplus 0.0 textbook circuit trapped ion circuit 200 400 600 800 1000 0

input circuit **c**

Build it and they will come!

application	#qubits	# 2Q gates	# 1Q gates	fidelity	reference	collaborator
CNOT	2	1	3	99%	Nature 536, 63 (2016)	
QFT Phase est.	5	10	70-75	61.9%	Nature 536, 63 (2016)	
QFT period finding	5	10	70-75	695-97%	Nature 536, 63 (2016)	
Deutsch-Jozsa	5	1-4	13-34	93%-97%	Nature 536, 63 (2016)	
Bernstein-Vazirani	5	0-4	10-38	90%	Nature 536, 63 (2016)	
Hidden Shift	5	4	42-50	77%	PNAS 114, 13 (2017)	Microsoft
Grover Phase	3	10	35	85%	Nat. Comm. 8, 1918 (2017)	NSF
Grover Boolean	5	16	49	83%	Nat. Comm. 8, 1918 (2017)	NSF
Margolus	3	3	11	90%	PNAS 114, 13 (2017)	Microsoft
Toffoli	3	5	9	90%	PNAS 114, 13 (2017)	Microsoft
Toffoli-4	5	11	22	71%	Debnath Thesis	NSF
Fredkin Gate	3	7	14	86%	arXiv:1712.08581 (2017)	Intel
Fermi-Hubbard Sim.	5	31	132		arXiv:1712.08581 (2017)	Intel
Scrambling Test	7	15	30	75%	arXiv: 1806.02807 (2018)	Perimeter, UCB
Bayesian Games	5	5	15		Qu. Sci. Tech 3, 045002 (2018)	Army Res. Lab.
Machine Learning (detection)	5	n/a	n/a		arXiv:1801.07686 (2018)	JQI
Machine Learning (state synth)	4	5*N	30*N	90%	arXiv 1812.08862 (2018)	NASA
[[4,2,2]] Error Det.	5	6-7	20-25	98%-99.9%	5 Sci. Adv. 3, e1701074 (2017)	Duke
Full Adder	4	4	16	83%	In preparation (2018)	NSF
Simultaneous CNOT	4	2	8	94%	In preparation (2018)	NSF
Deuteron Simulation	3	35	30	<0.5% erro	r In preparation (2019)	ORNL
Circuit QAOA	7-9	42	50		In preparation (2019)	Perimeter, Intel

Dynamical Circuits for Machine Learning

arXiv 1812.08862 (2018) with A. Perdomo-Ortiz (NASA) M. Benedetti (UC London)

see also E. Martinez et al., New J. Phys. 18, 063029 (2016)

N=4 qubits encodes "Bars and Stripes" patterns

Our task: prepare equal superposition of all B&S states

11 parameters

Hybrid Quantum-Classical Learning Loop

Particle Swarm (classical) optimization

Bayesian (classical) optimization

Quantum Scrambling Litmus Test (7 qubit circuit)

N. Yao (UC Berkeley) B. Yoshida (Perimeter) arXiv:1803.10772

Quantum scrambling

U

- The "complete diffusion" of entanglement within a system
- Relevant to information evolution in black holes Hayden and Preskill, J. HEP **9**, 120 (2007); Susskind and Zhao, arXiv:1707.04354 (2017)
- OTOC measurements can be ambiguous

ORNL (R. Pooser, E. Dumitrescu, P. Lougovski, A. McCaskey) UMD (K. Landsman, N. Linke, D. Zhu, CM) IonQ (Y. Nam, O. Shehab, CM)

canonical UCC ansatz

 $H = (15.531709)I + (0.218291)Z_0 - (6.125)Z_1 - (9.625)Z_2 - (2.143304)X_0X_1 - (2.143304)Y_0Y_1 - (3.913119)X_1X_2 - (3.913119)Y_1Y_2$

E.F. Dumitrescu et al., arXiv 1801.03897 (2018)

pn Simulating the Ground State of the Deuteron

Extrapolated ground state energy for theoretically determined optimal angles (exact: -2.22 MeV):

(Note: implementing 3-qubit ansatz on Rigetti system was not possible)

(Analog) Quantum Simulation

Global Entanglement of Trapped Ion Qubits

Long-range Ising Hamiltonian

$$H = \sum_{i < j} \frac{J_0}{|i - j|^{\alpha}} \sigma_x^i \sigma_x^j + B \sum_i \sigma_y^i \quad J_{ij} = \frac{J_0}{|i - j|^{\alpha}} \quad \begin{array}{l} 0 < \alpha < 3 \\ J_0 \sim 2\pi (1 \text{ kHz}) \\ J_0 \tau \sim 50 \end{array}$$

Porras and Cirac (2003) Schaetz group [2 ions] (2008) UMD [3-50 ions] (2008-) Innsbruck [5-20 ions] (2012-)

~5 µm

Dynamical Phase Transition with 50+ Qubits

Quantum Approximate Optimization Algorithm (QAOA)

- Prepare the ground state of H_R (1)
- (2) Alternate H_A and H_B for p "layers" with evolution angles $\{\vec{\gamma}, \vec{\beta}\}$
- (3) Measure the the energy or complete state distribution
- (4) Optimize $\{\vec{\gamma}, \vec{\beta}\}$ to minimize $\langle H \rangle$

Scaling the System

******************************* ----....... -. • -----.....

......... - - -.

......

Ion Trap Lab at JQI-Maryland

Photo: Phil Schewe

- Co - To

E.S.

. .

4K environment (better vacuum!)

5-segment linear rf ion trap (Au on Al_2O_3 blades, 200 μ m)

121 ions (lifetime consistent with ∞)

Scaling to 100-1000s of Qubits

Linear shuttling through single zone

Modular shuttling between multiple zones

Kielpinski, Monroe, Wineland, Nature 417, 709 (2002) Leikesh, et al., Science Advances 3, e1601540 (2017)

Scaling beyond 1000s of Qubits: photonics

Modular optical interconnects

Duan and Monroe, *Rev. Mod. Phys.* **82**, 1209 (2010) Li and Benjamin, *New J. Phys.* **14**, 093008 (2012) Monroe, et al., *Phys. Rev. A* **89**, 022317 (2014)

Grad Students Patrick Becker David Campos (IonQ) Allison Carter **Kate Collins** Clay Crocker Shantanu Debnath (IonQ) Laird Egan Caroline Figgatt (Honeywell) Jessica Hankes Volkan Inlek (Duke) Kevn Landsman Aaron Lee (Northrop) Kale Johnson (Yale) Harvey Kaplan Antonis Kyprianidis Ksenia Sosnova Wen-Lin Tan Jake Smith (Northrop)

Jake Smith (Northrop) Ken Wright (IonQ) Daiwei Zhu Undergrads

Eric Birckelbaw Nate Dudley Micah Hernandez Sophia Scarano

Postdocs

Kristi Beck (IonQ)

Marty Lichtman

Guido Pagano

Paul Hess (Middlebury Prof)

Steven Moses (Honeywell)

Jiehang Zhang (NYU fac)

Trapped Ion Quantum Information

Research Scientists Jonathan Mizrahi (IonQ) Kai Hudek (IonQ) Marko Cetina Jason Amini (IonQ) Norbert Linke (UMD fac)

> Key Collaborators Jungsang Kim (Duke) Ken Brown (GaTech/Duke) Luming Duan (Michigan/Tsinghua) D. Maslov (NSF) Alexey Gorshkov (NIST) Norman Yao (Berkeley)

US Army Research Office and Laboratory

www.ionq.co College Park, MD

35 employees

Venture Investors:

New Enterprise Associates Google Amazon Web

Services

