

Spectroscopy to Support Short Wavelength Light Source Development

Gerry O'Sullivan

University College Dublin

Solvay Workshop Brussels, November 25-27 2019

Collaborators

UCD

Kevin Carroll Padraig Dunne Emma Sokell Fergal O'Reilly Paddy Hayden Tom McCormack Nicola Murphy Ronan Faulkner Anthony Cummings Deirdre Kilbane Rebekah D'Arcy John Sheil Takamitsu Otsuka Takanori Miyazaki Luning Liu John White

Utsunomiya Takeshi Higashiguchi Goki Arai Thanh-Hung Dinh Hiroyuki Hara Yoshiki Kondo Yuhei Suzuki, Toshiki Tamura Takuya Gisuji When-Bo Chen

NIFS

Chihiro Suzuki Takako Kato Daiji Kato Izumi Murakami Hiroyuki Sakaue Tao Wu Lanzhou University

Wuhan

Bowen Li

NWNU Lanzhou

Chenzhong Dong Maogen Su

NIST

John Gillaspy Yuri Ralchenkpo Joe Reader

Kansai QSI Akira Sasaki **CTU Prague** Jiri Lampouch Ladislaw Pina Akira Endo Ragava Lokasani Elle Floyd Barte

TMU Hajime Tanuma Naoki Namudate

Toyama Hayato Ohashi

ILE Osaka Katsunobu Nishihara Hiroaki Nishimura Shinsuke Fujioka Atsushi Sunahara

DCU John Costello

Outline

- Applications of Laser Produced Plasmas (LPPs) as Light Sources for Lithography and Microscopy.
- Properties of LPPs
- Properties of $\Delta n = 0$ UTAs
- Application of $\Delta n = 1$ UTAs
- Conclusions/Outlook

Lithography and Moore's Law

Number of transistors doubles approximately every 18 months

Predicated on decrease in feature size

The Twilight of Moore's Law: Economics

Altic Comiconductor	1				
Altis Semiconductor	Donghu Uitok	Т			
Dongou Hitek	Dongou Hitek				
Freescale	Freescale				
Fujitsu	Fujitsu		1		
Globalfoundries	Globalfoundries	Freescale	1		
Grace Semiconductor	Grace Semiconductor	Fujitsu	1		
IBM	IBM	Globalfoundries	1		
Infineon	Infineon	IBM		-	
Intel	Intel	Infineon	Fujitsu		
Panasonic	Panasonic	Intel	Panasonic		
Renesas (NEC)	Renesas (NEC)	Panasonic	Globalfoundries		
Samsung	Samsung	Renesas (NEC)	IBM		
Seiko Epson	Seiko Epson	Samsung	Intel		-
SMIC	SMIC	SMIC	Renesas (NEC)	Globalfoundries	
Sony	Sony	Sony	Samsung	Intel	
ST Microelectronics	ST Microelectronics	ST Microelectronics	SMIC	Panasonic	Globalfoundries
Texas Instruments	Texas Instruments	Texas Instruments	ST Microelectronics	Samsung	Intel
Toshiba	Toshiba	Toshiba	Toshiba	ST Microelectronics	Samsung
TSMC	TSMC	TSMC	TSMC	TSMC	ST Microelectronics
UMC	UMC	UMC	UMC	UMC	TSMC

65nm/55nm 45/40nm 22/20nm 32/28nm Market volume wall: only the largest volume products will be manufactured with the most advanced technology

130nm

90nm

Photolithographic Principle

EUVL must use reflective optics

Diffraction limited resolution/ Rayleigh criterion. Smallest feature size

 $\Delta x = k\lambda/NA$

NA=nsinช

To achieve smaller structures: Higher NA

- Immersion
- Optimise k factors
- Double Patterning
- Multiple Patterning
- Reduce source wavelength

Evolution of Lithography Wavelength

Why 13.5 nm Lithography?

Target Geometry (Mass-limited tin Droplet Targets)

At high repetition rates, it is not possible to use solid (slab) targets.

For EUV, rep. rate $=10^5$ Hz

Martin Richardson et al.

Target should be fully ionized by end of laser pulse.
¹ Low mass Sn content. number of Sn atoms should be equal to number of radiators.

Plasma located far from nozzle. Ideally, no nozzle erosion.

Commercial Laser Produced Plasma Sources

- Gigaphoton and CYMER have obtained > 250 W at Intermediate focus.
- Gigaphoton:Nd:YAG prepulse, CO₂ main pulse, Cymer CO₂ main and prepulse.
- Target should be fully ionized by end of laser pulse
- Problems: Droplet stability, CO₂ beam quality.

Progress in CE

Mizoguchi Proc.2016 International Workshop on EUV Lithography http://www.euvlitho.com/2016/2016%20EUVL%20Worksho p%20Proceedings.pdf

Source Power Progress

Gigaphoton: 188 W for 7 hrs (April 2016) Maximum power 264W @CE 0f 4% (In-burst mode, 27 kW CO₂ laser @ 100kHz)
 ~5.5% CE with ~30 μm droplet target

Commercial EUV Tool (ASML)

ultra-violet-euv.html

Water window source development

Water window : 2.34-4.38 nm.

Relative transparency of water allows investigation of biomolecules, cells and proteins in their natural aqueous environment by xray transmission microscopy or tomography

Laser plasma based full field transmission X-ray Microscope (LTXM) developed at MBI. http://www.mbiberlin.de/de/researc h/projects/4.2/BLIX/ microscope.html

SXR Tomography: Zone Plate Optics

Stavros Lomvardas, UCSF

Multilayer mirrors in the EUV/SXR

Outline

- Applications of Laser Produced Plasmas (LPPs) as Light Sources for Lithography and Microscopy.
- Properties of LPPs
- Properties of $\Delta n = 0$ UTAs
- Application of $\Delta n = 1$ UTAs
- Conclusions

Laser produced plasmas (LPPs)

Effect of Increasing Power Density Φ

increased kinetic losses due higher temperature. Therefore, high power density usually means tighter focus, Increased kinetic loss due to lateral expansion.

Competition between kinetic and radiative losses.

Harilal *et al* used a CO₂ pulse with $\tau = 25 - 55$ ms Typically FWHM = 30 ns, $\Phi = 6 \times 10^9 \text{ Wcm}^{-2}$

Energy Losses

Plasma expansion:

Fastest and most highly charged ions at centre of the plume.

(O'Connor et al. 2011, JAP 109,, 073301)

Expansion velocity increases with Φ .

Reduce by reducing Φ or by reducing shock wave momentum (target density)

Radiation:

Spectrum consists of:

- lines (bound-bound transitions), in some cases lines cluster together to form a UTA (unresolved transition array)
- recombination radiation (bound-free transitions): $I \alpha n_e^2 \langle z \rangle^4$ where $\langle z \rangle$ is the average ionic charge
- bremsstrahlung (free-free): $I \alpha n_e^2$,

Maximise line emission by reducing opacity, Maximise spectral purity by reducing recombination

Density has a 'sweet spot'

Most important isoelectronic sequences for line emission

Because of increase in ionization potential required to remove an electron from a closed shell, get large populations of closed shell and single electron outside closed shell species. Strongest lines from closed shell or single electron outside closed shell species. Also in LPPs spectra often dominated by these species (especially at short pulse lengths). because of high density, lines from high n states are usually not seen. Strongest lines always involve resonance transitions to the ground configuration Must allow for level rearrangement with ionization.

Subshell ordering with increasing ionization

Ground configurations can change along isoelectronic sequences, levels reorder by principal quantum number.

- In Ca I ground configuration is (Ar) 4s², this changes to (Ar) 3d².
- Hyperalkali ions: PmI: 4d¹⁰5s²5p⁶6s²4f⁵ changes to 4d¹⁰ 4f¹⁴5s at the 15th ion stage along the sequence (*Curtis and Ellis PRL 45, 2099 1989*).
- Xe sequence: transitions based on 5p⁶ vanish at Pr VI, ground configuration changes to {5p4f}⁶.

Reason:

The effective radial potential is of the form:

$-Z'e^{2}/4\pi\varepsilon_{0}r + l(l+1)h^{2}/8\pi^{2}r^{2}$

Early studies @13.5 nm, line emission CE

APPLIED PHYSICS LETTERS 93, 091502 (2008)

Laser wavelength dependence of extreme ultraviolet light and particle emissions from laser-produced lithium plasmas

Two types of UTA in XUV spectra

 $4p^{6}4d^{N}-4p^{6}4d^{N-1}4f+4p^{5}4d^{N+1}$ in Sn @13.5 nm, emission from different ion stages overlap. Opacity is a major issue. $\Delta n = 0$ transitions overlap in adjacent ion stages.

 $\Delta n > 0$ transitions do not overlap in adjacent ion stages and move to shorter wavelengths with increasing ionization....less opacity.

Outline

- Applications of Laser Produced Plasmas (LPPs) as Light Sources for Lithography and Microscopy.
- Properties of LPPs
- Properties of $\Delta n = 0$ UTAs
- Application of $\Delta n = 1$ UTAs
- Conclusions

$\Delta n = 0$ UTA: important isoelectronic sequences

© 2014 Todd Helmenstine sciencenotes.org

$4p-4d \Delta n = 0 UTA$

4pⁿ- 4pⁿ⁻¹4d UTA, important in lanthanides and 3rd transition row spectra.

Spin orbit split, overall, relatively weak and high energy array lies on the short wavelength side of the 5 nm UTA in W.

Sn UTA emission

4p⁶4d^N- 4p⁶4d^{N-1}4f emission in Sn @13.5 nm

Lines due to SnXI –Sn XIV Churilov and Ryabtsev, 2006, Phys. Scr. 73 614-619

More recent study has shown the need to revisit and refine analysis *Windberger et al. 2016, PRA 94, 012506 Toretti et al PRA 95 042303 2017* Major problem due to spectral complexity

Spectral shape modified by density effects: opacity, satellite lines

Sasaki et al. 2004. IEEE Journal of Quant. Electron.10, 1307

Evolution with Z of $\Delta n=0$, 4d-4f UTAs

Spectral narrowing due to Configuration Interaction

Need to isolate the contribution from each ion stage

EBIT (Electron Beam Ion Trap) Spectra

PHYSICAL REVIEW A 95, 042503 (2017)

Optical spectroscopy of complex open-4*d*-shell ions Sn⁷⁺–Sn¹⁰⁺

F. Torretti,^{1,2,*} A. Windberger,^{1,3} A. Ryabtsev,^{4,5} S. Dobrodey,³ H. Bekker,³ W. Ubachs,^{1,2} R. Hoekstra,^{1,6} E. V. Kahl,⁷ J. C. Berengut,⁷ J. R. Crespo López-Urrutia,³ and O. O. Versolato¹

EBIT spectra at higher electron accelerating voltages give spectra from higher ion stages, However, they are generally very weak and recorded at low resolution. Good for strongest lines.

Need for high resolution LPP or vacuum spark spectra in tandem with

low resolution EBIT data for a complete analysis.

Gd EBIT Spectra

JOURNAL OF APPLIED PHYSICS 115, 033302 (2014)

Tuning extreme ultraviolet emission for optimum coupling with multilayer mirrors for future lithography through control of ionic charge states

Hayato Ohashi,^{1,a)} Takeshi Higashiguchi,^{1,b)} Bowen Li,² Yuhei Suzuki,¹ Masato Kawasaki,¹ Tatsuhiko Kanehara,³ Yuya Aida,³ Shuichi Torii,⁴ Tetsuya Makimura,⁴ Weihua Jiang,⁵ Padraig Dunne,² Gerry O'Sullivan,² and Nobuyuki Nakamura³

Opacity Effects in ∆n = 0 n=4-n=4 arrays

 Spectra from metal targets dominated by continuum emission

Some strong emission and absorption lines

Large contribution from satellite lines

 Spectra of low density targets dominated by an intense Unresolved Transition Array (UTA), with greatly reduced continuum emission

Emission largely mirrors line strength distribution

Narrowing of the UTA at reduced ion concentration

Dominant emission in all ion stages arises from $4p^{6}4d^{N} - 4p^{6}4d^{N-1}4f + 4p^{5}4d^{N+1}$

LHD spectra of Sn

Effect of Laser Wavelength: CO₂ vs. Nd:YAG

1,064 nm: $n_{ec} \approx 1 \times 10^{21} \text{ cm}^{-3}$ 10,600 nm: $n_{ec} \approx 1 \times 10^{19} \text{ cm}^{-3}$

Optical depth α pulse duration×(Intensity)^{5/9}×(λ)^{-4/3}

Increases with pulse duration, decreases with laser wavelength.

.(Ando et al. APL **89**, 151501, 2006, Sunahara et al Plasma and Fusion Res.3,43 2008)

Effect of prepulses with slab targets

The use of prepulses greatly enhances intensity in X-ray and EUV regimes e. g. Mochizuki et al. 1986 PRA33, 525,Kodama et al. 1987APL. 50, 720. Tanaka et al. 1988JAP . 63, 1767, Teubner et al. 1991,APL. 59,2672, Wulker et al. PRE 1994, 4920

Efficiency increases due to increased emitting volume with lower density and opacity (equivalent to using a CO₂ laser.) Sn output (\approx `5% bw) at 13.5 nm as a function of delay & %.

What is Max CE?

Conversion efficiency dependence on CO₂ laser intensity for single (dashed) and double (solid) irradiation by a 10 ns pulse. The interpulse delay was 180 ns (*Nishihara et al Phys. Plasmas 15, 056708 2008*)

Max CE @ 60 ns delay close to wedge centre Nd:YAG, E~ 170 mJ, $\Phi = 1.5 \times 10^{11}$ Wcm⁻² CO₂: E~ 200 mJ, $\Phi = 4 \times 10^9$ Wcm⁻² CE = 3.33±0.16% For CO₂ only, CE = 4.85±0.10% Allowing for overfilling of plasma by CO₂ CE approximately 7%

4d-4f UTA at shorter wavelengths: 6.x nm

Vacuum spark

Lase

nlasma

Optimum temperature for an optically thin Gd plasma ~110 eV Maximum intensity at 6.76 nm due to $4d^{10}$ $^{1}S_{0}$ - $4d^{9}4f$ $^{1}P_{1}$ line.

Hybrid UTA-line source

Phys. Scr. 80 (2009) 045303 (600 doi:10.1088/0031-8949/80/04/045303 EUV spectra of Gd and Tb ions excited in laser-produced and vacuum spark plasmas S S Churilov¹, R R Kildiyarova, A N Ryabtsev and S V Sadovsky Establishment of the Russian Academy of Sciences Institute of Spectroscopy RAS, Troitsk, w region 142190. Russia Gd XVIII-XIX Gd Vacuum lase nlasma 50 60 70 80 90 100 110 λ.Å Tb Tb XIX & XX

The most important transitions occur in Ag-like and Pd-like: Gd XVIII-XIX, Tb XIX - XX

i.e. lons with 4d¹⁰4f and 4d¹⁰ and ground states

(Sugar and Kaufman Phys. Scr. **24,** 742 (1982) and **26**, 417 (1984)

3 J in 20 ns, $\lambda = 1.06 \ \mu m$ $\Phi = (5-8) \times 10^{11} \ W cm^{-2}$

an

CE Experiment at Gekko XII

CE lower than Sn as higher fraction of laser energy goes into plasma heating/ionizaton

4p-4d and 4d-4f arrays separate as Z increases

Intensity Scaling of n= 4 – n=4 UTAs

Atomic number dependences of the wavelength and photon flux of the n = 4 - n = 4 ($\Delta n = 0$) transitions.

(Shimada et al. APL 2019 Submitted)

Note that intensity falloff past Z = 70 due to decreasing HCI population is compensated for by diminishing impact of absorption due to $4p^{6}4d^{n} \rightarrow 4p^{5}4d^{n+1}$ transitions

∆n = 0 4-4 UTAs in the water window region, Au, Pb and Bi (LHD Spectra)

Spectra dominated by resonant line emission to the ground state
Only Ag-, Pd- and Rh-like ions give line emission
Absorption free (Ohashi et al. JPB 48 (2015) 144011)
All require Te> 500 eV for generation

LPP Spectrum of Pb

Outline

- Applications of Laser Produced Plasmas (LPPs) as Light Sources for Lithography and Microscopy.
- Properties of LPPs
- Properties of $\Delta n = 0$ UTAs
- Application of $\Delta n = 1$ UTAs
- Conclusions

Δn = 1 UTAs; Alternative WW Source

© 2014 Todd Helmenstine sciencenotes.org

$\Delta n=1$ transitions in 2nd transition row

Integrated Intensity in the Water Window due to different UTAs

Comparison of the time-integrated emission spectra in the soft x-ray spectral region from laserproduced plasmas of Zr (a), Nb (b), Mo (c), Au (d), Pb (e), and Bi (f).

(Tamura et al. Opt. Letts.Vol. 43, No. 9, 2042)

Dual Laser Illumination of Mo

Number of photons (x 10¹⁰ photons/nm•sr)

Conclusions

- Still more CE can be attained at 13.5 nm. Modelling needs more atomic data. A definitive line classification still does not exist.
- Solid state mid-IR lasers could give better beam profiles (spatially and temporally)
- Δn=1 transitions in medium and high Z elements and Δn=0 in high Z elements can be used for water window sources.
- $\Delta n=1$ transitions require less energy for excitation than $\Delta n=0$. Also some match existing MLMs and atomic data needed for optimisation
- Ideal source depends on mirror bandwidth. For very narrow bandwidth at low wavelength H-like 1s-2p line in low Z ions best.
 Water/ammonia/organic liquid droplet, dual ps pulse irradiation.

Thanks to:

Science Foundation Ireland Principal Investigator Grant 07/IN1/I1771

Enterprise Ireland

Intel Ireland and Intel Oregon

EACEA Erasmus Mundus Project EXTATIC framework partnership agreement FPA-2012-0033

Science Foundation Ireland International strategic collaboration award 13/ISCA/2846

University College Dublin

National Institute for Fusion Science

Utsunomiya University

JSPS, Japan Society for the promotion of Science KAKENHI grant 15H03759

Chinese Scholarship Council

National Natural Science Foundation of China, grant 11304235

Scientific Research Foundation of Hubei Province grant Q20131512

MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN

OLARSHIP

íntel

THE PR

NDED 19

science foundation ireland

THANK YOU!