Laser spectroscopy as a probe for t size and shape of exotic nuclei

Lain Moore

Department of Physics, University of Jyväskylä, Finland

Outline

- Laser spectroscopy for atomic nuclei and traditional methods
- Nuclear spin & electromagnetic moments
 - the story of copper (linked to Michel!)
- Shapes and shape coexistence in nuclei
- from yttrium, to mercury and the lead region
- Summary

Observables: isotope shifts, hyperfine structure

$$A = \frac{\mu_I B_{\rm e}(0)}{IJ} \qquad B = e Q_{\rm s} \left\langle \frac{\partial^2 V_{\rm e}}{\partial z^2} \right\rangle$$

Electric quadrupole interaction

 $\delta < r^2 >$

ſ

Precision collinear laser spec (W. Nörtershäuser) Collinear resonance ionization spectroscopy (G. Neyens)

Scanning voltage (V)

0

-2

10

In-source resonance ionization spectroscopy

An efficient and selective method (combined with mass separation). Lower resolution than collinear laser spectroscopy.

UNIV

Migration of quantum states

Example: neutron-rich copper (Z=29) isotopes

K.T. Flanagan et al., Phys. Rev. Lett. 103 (2009) 142501

From in-source to collinear laser spectroscopy

and by improving the experimental sensitivity by ×300...

R.P. de Groote et al., Phys. Rev. C 96 (2017) 041302(*R*)

K.T. Flanagan et al., Phys. Rev. Lett. 103 (2009) 142501

- In-source laser spectroscopy at ISOLDE used for a low-resolution probe of ⁷⁵Cu HFS
- High-resolution collinear laser spectroscopy resolved both atomic ground and excited state HFS
- The ratio of HF factors of the upper and lower state should be constant across an isotopic chain...nuclear spin is 5/2⁺ at ⁷⁵Cu

Nuclear magnetic moments

- Nuclear moments provide an exceptionally sensitive probe of the nuclear wave function and the different orbitals involved, for example, during the onset of deformation (collectivity)

P. Vingerhoets et al., Phys. Rev. C 82 (2010) 064311

I.D. Moore, Solvay Workshop, 25-27 Nov. 2019, Brussels

Magnetic and quadrupole moments

- The g factor of ⁷³Cu is not reproduced by the two shell model interactions! This indicates "missing physics" in the theory
- The electric quadrupole moment is an ideal parameter to probe collectivity does this evolve with additional neutron correlations far from stability?
- One can also compare experimental quadrupole moments with shell model predictions

What if we expand the shell model "space"?

By opening the model space we can allow for additional "residual correlations" which may account for the "missing physics"...

Probing the nuclear size and shape

Reminder: isotopic shifts

$$\delta\nu_i^{A,A'} = M_i \frac{A'-A}{AA'} + F_i \delta\langle r^2 \rangle^{A,A'}$$

What can the charge radii tell us?

- The $\delta < r^2 >$ arising from the addition of 1 neutron is ~0.07 fm². If the shape changes from $<\beta^2 > = 0$ to 0.1, an order of magnitude larger increase in $\delta < r^2 >$ is expected.
- Nuclear deformation also probed via other nuclear-based spectroscopy techniques
- Higher order deformation (eg octupole β_3), higher order radial moments (eg r^4) would be new territory!

Yttrium - different shapes and sizes

3 peaks maximum for each nuclear state

- Yttrium contains many isomeric (long-lived) nuclear states
- Quadrupole moments indicate a shape transition from (weakly) oblate to (strongly) prolate

$$Q_0 \approx \frac{5Z \langle r^2 \rangle_{\rm sph}}{\sqrt{5\pi}} \langle \beta_2 \rangle (1 + 0.36 \langle \beta_2 \rangle)$$

B. Cheal et al., Phys. Lett. B 645 (2007) 133

How "soft" or "rigid" are nuclei?

The difference between $<\beta_2>$ and $<\beta_2^2>$ gives the "softness" / "rigidity".

Charge radii systematics near Zr (Z=40)

P. Campbell, IM, and M. Pearson, PPNP 86 (2016) 127

JYU. Since 1863.

I.D. Moore, Solvay Workshop, 25-27 Nov. 2019, Brussels

Shape coexistence in the nuclear chart

- "Shape coexistence appears to be unique in the realm of finite many-body quantum systems"
- States with different shape/deformation at low energy
- Interplay between stabilizing effect of closed shells and mid-shells for proton-neutron interactions

Staggering in the charge radii of Hg isotopes

JYU. Since 1863.

Filling in the picture: nuclear level systematics

Coexistence of different bands in Hg isotopes

Prolate "intruder" states come down in energy towards minimum around *N=104* mid-shell region

Studied by many nuclear spectroscopy techniques

Ground state (probed by laser spectroscopy). Charge radius difference linked to the odd neutron driving deformation.

When does the staggering end?

Combining detection in three different experimental stations

B. Marsh et al., Nature Phys. 14 (2018) 1163 *S. Sels et al., Phys. Rev. C* 99 (2019) 044306

After 30 years of developments....

End-point of staggering observed, Hg isotopes return to more spherically-shaped trend.

Rich playground for testing theoretical calculations!

B. Marsh et al., Nature Phys. 14 (2018) 1163, S. Sels et al., Phys. Rev. C 99 (2019) 044306

Triple shape coexistence in ¹⁸⁶Pb

R. Julin et al., J. Phys. G 43 (2016) 024004

Different 'shapes' of an atomic nucleus (**spherical**, **prolate**, **oblate**) coexist at similar excitation energies.

A. Andreyev et al. Nature 405 (2000) 430

Charge radii in the mid-shell region around Pb

Pb ground states remain essentially spherical; evidence for shape staggering in Bi; "kink" in the N=126 shell is of topical interest (W. Nöertershäuser).

Probing more exotic deformations?

center of

mass

L.P. Gaffney et al. Nature **497** (2013) 199

- Isotopes of Rn, Ra, Th and U are predicted to have the strongest octupolar "correlations"
- Constraint of candidates for experimental studies of electric-dipole moment (EDM), and thus existence of physics beyond the standard model (G. Neyens)

Top 10 breakthrough in physics in 2013 (Physics World)

center of mas

"Pear-shaped nuclei discovery challenges time travel hopes"

center of

charge

Octupole deformation and charge radii?

$$\langle r^2 \rangle = \langle r^2 \rangle_{sph} \left(1 + \frac{5}{4\pi} (\langle \beta_2^2 \rangle + \langle \beta_3^2 \rangle + \cdots) \right) + 3\sigma^2$$

- E. Verstraelen et al., Phys. Rev. C 100 (2019) 044321
- *M. Bender, contribution to "Workshop on Laser Spectroscopy as a tool for Nuclear Theories" (Oct. 2019)*

UNIVERSITY OF JYVÄSKYLÄ

- Potential impact on magnetic dipole moments
- Reversal of odd-even staggering in charge radii maybe correlated to octupole deformation...
- New experimental and theoretical efforts in the future to access and study neutrondeficient actinide isotopes

D. Fink et al., Phys. Rev. X 5 (2015) 011018

I.D. Moore, Solvay Workshop, 25-27 Nov. 2019, Brussels

Summary

- Laser spectroscopy combined with radioactive ion beams: a powerful tool providing access to fundamental ground (and isomeric) state nuclear structure, complementary to other nuclear spectroscopic techniques but free from nuclear model dependencies
- Extract nuclear spins, magnetic & electric properties, charge radii...
- Contributes to answering, for example, questions of emergence of collective behavior (shape evolution) of nuclei and the re-ordering of quantum states
- Efficiency, selectivity and sensitivity of our techniques are critical to push to the most exotic nuclei (eg lightest, heaviest elements...)
- Critical dialogue with atomic theorists (atomic factors...) as well as nuclear theorists (interpretation of the experimental observables)
- Sensitivity to higher order deformation, moments, r⁴ term?

Thanks to G. Neyens, M. Bender, R.de Groote, S. Sels, T. Grahn for material.

& thanks for your attention!