

UNIVERSITY OF

GOTHENBURG

Dag Hanstorp

Laser Spectroscopy of radioactive and stable negative ions

Solvay Workshop in honour of Michel Godefroid 'New Frontiers in Atomic, Nuclear, Plasma and Astrophysics'

Brussels, November 25 - 27, 2019

Charlotte Froese Fischer - Opening Remarks: *In the beginning*

"It all began in the 60ies"

16th of May 1960

T. H. Maiman Nature **187**, 493–494(1960)

The negative ion of hydrogen: H⁻

Hatree Fock predict H⁻ to be unstable

EA of H⁻ experimentally determined to be 0,75 eV

Can be predicted only by properly including electron correlation

Properties of Negative Ions

Why study negative ions?

- Benchmark for electron correlation theory
- Single state system
- Efficient method to produce ground-state atoms
- Heating of thermonuclear reactors
- Accelerator Mass Spectrometry
- Sympathetic cooling of antiprotons Cerchiari, *et al.* PRL **123**, 103201 (2019), Tang *et al.* PRL **123**, 203002

UNIVERSITY OF GOTHENBURG

Isotope shifts in the Electron affinity

6

Laser photodetachment Threshold Spectroscopy

Andersson *et al.* J. Phys. B **40** (2007) 4097.

The Wigner law: $\sigma = k (E - E_{EA})^{l+1/2}$

Isotope shift in electron affinity

Ideal test case for electron correlation

Periodic Table of Elements

¹H/ ²H ³⁵Cl/37Cl ¹⁶O/ ¹⁷O / ¹⁸O ³²S/ ³⁴S ¹²C/ ¹³C ²⁰⁶Pb / ²⁰⁸Pb

Lykke, Murray and Lineberger, *Phys. Rev. A* 43 (1991) 6104
Berzinsh et al. *Phys. Rev. A* 51, (1995) 231
Blondel et al. *Phys. Rev. A* 64 (2001) 052504
Carette, et al. *Phys. Rev. A* 81 (2010) 042522
Bresteau, Drag and Blondel, *Phys. Rev. A* 93 (2016) 013414
Chen and Ning, *J. Chem. Phys.* 145 (2016) 084303

Only stable isotopes investigated

Isotope shift in EA of ^{35/37}CI

SMS = --0.51(14) GHz

Berzinsh et al. Phys. Rev. A 51, (1995) 231

Isotope shift in EA of ^{35/37}CI

IOP PUBLISHING

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 095003 (10pp)

doi:10.1088/0953-4075/46/9/095003

Isotope shift on the chlorine electron affinity revisited by an MCHF/CI approach

T Carette^{1,2} and M R Godefroid²

	SMS	MS	FS	RIS	IS
			This work		
HF	-1.348	-0.607	-0.003(22)	-1.351(22)	-0.610(22)
val. FC-MCHF	-0.674	+0.067	-0.002(20)	-0.676(20)	+0.065(20)
val. MCHF	-0.495	+0.246	-0.003(21)	0.407(21)	+0.244(21)
final results	-0.535(51)	+0.206(51)	-0.003(22)	-0.538(72)	+0.203(72)
Exp.				-0.51(14)	+0.22(14)
DF	-1.3	-0.6	+0.014(14)	A 4.00	-0.6
MB low corr.	+0.50	+1.24	+0.014(14)	+0.51(2)	+1.26(2)

UNIVERSITY OF GOTHENBURG

Visualization of electronic motion in an atomic ground state

Energy levels of C⁻ and C

Photodetachment in a strong field:

 $W_{m=0} >> W_{m=\pm 1}$

N. Rohringer and R. Santra, Phys. Rev. A 79, 053402 (2009)

Bandwidth of laser > Fine structure splitting of C \rightarrow Coherently populated states 15

Bandwidth of laser > Fine structure splitting of C \rightarrow Coherently populated states 16

Hultgren et al. PRA 87 (2013) 031404

UNIVERSITY OF GOTHENBURG

The electron affinity of Astatine

24

Astatine

- Least abundant element on earth
- 70 mg in the crust of the earth (1 atom per 100 kg mass)
- Decays through α-decay
- Small knowledge about its chemical and physical properties
- Used in cancer treatment Targeted Alfa Therapy (TAT) (suitable lifetime and energy, non-toxic, non-radioactive daughters)

Experimental program at ISOLDE

GANDALPH

Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment

I-FC Graphene on quartz Warbinek, et al. APL114 (2019) 061902

For each laserpuls:

Signal: 0.01 atom

Background: 10¹⁴ photons

The electron affinity of astatine

David Leimbach^{1,2,3}, Julia Sundberg², Yangyang Guo⁴, Rizwan Ahmed⁵, Jochen Ballof^{1,6}, Lars Bengtsson², Ferran Boix Pamies¹, Anastasia Borschevsky⁴, Katerina Chrysalidis^{1,3}, Ephraim Eliav¹¹, Dmitry Fedorov⁷, Valentin Fedosseev¹, Oliver Forstner^{8,9}, Nicolas Galland¹⁰, Ronald Fernando Garcia Ruiz¹, Camilo Granados¹, Reinhard Heinke³, Karl Johnston¹, Agota Koszorus¹, Ulli Köster¹³, Moa K. Kristiansson¹⁴, Yuan Liu¹⁵, Bruce Marsh¹, Pavel Molkanov⁷, Lukáš F. Pašteka¹², Joao Pedro Ramos¹, Eric Renault¹⁰, Mikael Reponen¹⁶, Annie Ringvall-Moberg^{1,2}, Ralf Erik Rossel¹, Dominik Studer³, Adam Vernon¹⁷, Jessica Warbinek^{2,3}, Jakob Welander², Klaus Wendt³, Shane Wilkins¹, Dag Hanstorp² and Sebastian Rothe¹

¹CERN, Geneva, Switzerland

²Department of Physics, University of Gothenburg, Gothenburg, Sweden

³Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany

⁴Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands

⁵National Centre for Physics (NCP), Islamabad, Pakistan

⁶Institut für Kemchemie, Johannes Gutenberg-Universität, Mainz, Germany

⁷Petersburg Nuclear Physics Institute - NRC KI, Gatchina, Russia

⁸Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Germany

9 Helmholtz-Institut Jena, Jena, Germany

¹⁰CEISAM, Université de Nantes, CNRS, Nantes, France

¹¹School of Chemistry, Tel Aviv University, Tel Aviv, Israel

¹²Department of Physical and Theoretical Chemistry & Laboratory for Advanced Materials, Fac-

ulty of Natural Sciences, Comenius University, Bratislava, Slovakia

¹³Institut Laue-Langevin, Grenoble, France

14Department of Physics, Stockholm University, Stockholm, Sweden

¹⁵Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

¹⁶Department of Physics, University of Jyväskylä, Jyväskylä, Finland

17 School of Physics and Astronomy, The University of Manchester, Manchester, UK

Method	Author	Year	EA
Experiment			2.41578(5)
CBS-DC-CCSDT(Q)+Breit+QED			2.414(16)
MCDHF+SE corr.	Chang et al	2010	2.38(2)
MCDHF	Zhao et al	2012	2.416
DC-CCSD(T)+Breit+QED	Broschevsky et al	2015	2.412
MCDHF+Extrap.+Breit+QED	Si and Fischer	2018	2.3729(46)
CBS-DC-CCSD(T)+Gaunt+QED	Finney and Peterson	2019	2.423(13)

Property	Definition	Value
Electron affinity	EA	$2.41578(5)\mathrm{eV}$
Ionization energy	IE	$9.31751(8)\mathrm{eV^{20}}$
Electronegativity	$\chi_M = \frac{IP + EA}{2}$	$5.86665\mathrm{eV}$
Hardness	$\eta = IE - EA$	$6.90172(13)\mathrm{eV}$
Softness	$S = \frac{1}{n}$	$0.14489(2)\mathrm{eV^{-1}}$
Electrophilicity	$\omega = \frac{\chi^2}{2\eta}$	$2.49341(8)\mathrm{eV}$

The At-H molecule should be called **astatine hydride** (not hydrogen astatide)

UNIVERSITY OF GOTHENBURG

Stockholm University

Photodetachment using an electrostatic storage ring

PHYSICAL REVIEW A

VOLUME 32, NUMBER 3

SEPTEMBER 1985

Laser photodetachment measurement of the electron affinity of atomic oxygen

D. M. Neumark, K. R. Lykke, T. Andersen,* and W. C. Lineberger

$O^- + hv \rightarrow O + e^-$

Measuring the EA of O⁻

 $O^- + hv \rightarrow O + e^-$

ACKNOWLEDGEMENT

University of Gothenburg

Anton Lindahl Pontus Andersson Johan Rohlén Jakob Welander Julia Sundberg Annie Moberg-Ringv Moa Kristiansson

University of Freibr Freiburg, Germany Igor Kiyan Hannes Hultgren Mikael Eklund Hanspeter Helm

Stockholm University

CERN Sebastian Rothe David Leimbach

Charlotte Froese Fischer - Opening Remarks: *In the beginning*

"It all began in the 60ies"

"2019 is not the end, but the beginning of the future!"

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of shifts in the electron affinities of chlorine isotopes

Dag Hanstorp¹, Jakob Welander¹, David Leimbach¹, Annie Ringvall-Moberg^{1,2}, Michel Godefroid³, Per Jönsson⁴, Jörgen Ekman⁴, Tomas Brage⁵, Klaus Wendt⁶, Reinhard Heinke⁶, Oliver Forstner⁷, Yuan Liu⁸, Ronald Garcia Ruiz⁹, Shane Wilkins⁹, Adam Vernon⁹, Cory Binnersley⁹, Kieran Flanagan⁹, Gerda Neyens¹⁰, Agi Koszorus¹⁰, Kara Lynch², Sebastian Rothe², Tim Giles², Katerina Chrysalidis^{2,6}, Pierre Larmonier², Valentin Fedosseev² and Bruce Marsh².

Department of Physics, University of Gothenburg, SE 412 96 Gothenburg, Sweden

²CERN, CH-1211 Geneva 23, Switzerland

³ Université libre de Bruxelles, B 1050 Brussels, Belgium

⁴ Materials Science and Applied Mathematics, Malmö University, 205 06 Malmö, Sweden

⁵ Division of Mathematical Physics, Department of Physics, Lund University, Box 118, SE-221 00 Lund,

⁶ Institut f
ür Physik, Johannes-Gutenberg Universit
ät, Mainz, Germany

⁷ Friedrich Schiller Universität, Jena, Germany

⁸ Physics Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, USA

⁹ School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom.

¹⁰ Institute for Nuclear and Radiation Physics, Celestijnenlaan 200d - box 2418, 3001 Leuven, Belgium

Spokesperson: D. Hanstorp (dag.hanstorp@gu.se) Co-spokesperson: J. Welander (jakob.welander@gu.se) Contact persons: S. Rothe (sebastian.rothe@cern.ch)

ABSTRACT

We propose to conduct measurements of the isotope shift in the electron affinity (EA) for chlorine isotopes. The specific mass shift is sensitive to electron correlation that is particularly pronounced in negative ions and neutral atoms. Hence, a study of isotope shifts in electron affinities is an excellent method to obtain benchmark data for theoretical models that go beyond the independent-particle model. The treatment and interpretation of the experimental data will be supported by multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations performed by leading specialists in the field of theoretical atomic physics. The collinear laser photodetachement spectroscopy will be conducted using the GANDALPH experimental beam line at GLM using the RILIS laser system in narrow linewidth configuration.

This proposal is based on the letter of intent I-177

Requested shifts: 8 shifts

Solvay Workshop in honour of A

NEW FRONTIERS IN ATOMIC, NUCLEAR, Plasma and Astrophysics

BRUSSELS, 25 - 27 NOVE MBER 2019 ULB - Campus Plaine 1 Solvay Room

INVITED SPEAKERS

Marcal Arnold (ULB, Brussels, Belgium) Martin Agpland (Australian Minturol IL), Caultura, Australia) Peter Bati sectorise (LLML, Uvermore, CA, USA Julian C, Benergur (ILLOF New South Weine, Sydney, Australia) Michael Block (SSI, Durnstahl BLU, Naite, Bermany) Tomas Biage (Lund IL), Sweden) Chadrotte Froeso Rocher (UBC, Vencouver, Canada) Dag Hanstorp (IL of Borhenburg, Sweden) Hane-Thomas Janka (MPA, Barching, Bermany) Per Lin eson (Meimö U, Sweden) Michai Kodov (Driensburg Muchai, Physice L, Berchins, Russie) James M. Lattimer (Since U, Olfkow York, Sinny Bruck, USA) Jain Micon (U, of Jyväskykä, Ankard) Witcid Mazaenicz Olichigun Since U, Sant Lensing, M. USA) Witcid Manashikuser (Technische U, Dametrich Bernany) Sinerd O'Sultvan OL College Oublin, Jeden() Berhard Pize UL Montpeller, Feince) Achim Schwein (Technische U, Dametrich, Bernany) Chris Sneden OL of Tecon, Acetri, USA) Eline Tatory (U, of Gruningen, The Nertherbards)

SCIENTIFIC AND ORGANISING COMMITTEE

Thiony Bastin OLy, Liège, Belgium) Pierre Cohear (ULB, Bronnels, Belgium) Charlotte Froese Flacher (UBC, Vencouve, Cestala) Michel Guleiroid (ULB, Brussels, Belgium) Stighene Gondry (ULB, Brussels, Belgium) Alata Jortsson (ULB, Brussels, Belgium) Per Jorsson (Nielmi ULS, Swadon) Pertick Painter (UMDNI S, More, Belgium) Bertrand Plac (UL, Mangel Inc, France) Pet Yan Ouppen (KULLauren, Belgium) Nathalin Vanck (ULB, Brussels, Belgium) Sophie Yan Gok (ULB, Brussels, Belgium)

Thanks to

the organizers for an excellent conference

Michel for a career where you have combine scientific excellence with friendship

you for your attention

