

Laser spectroscopy of heavy and superheavy elements

Michael Block GSI Darmstadt Helmholtzinstitut Mainz Institut für Kernchemie der Universität Mainz

HELMHOLTZ Helmholtz-Institut Mainz

- Brief introduction to superheavy elements
- challenges for laser spectroscopy in heavy and superheavy elements
- atomic and nuclear properties revealed by laser spectroscopy
- recent results obtained at GSI Darmstadt and JGU Mainz
- summary and outlook

Superheavy Element Research – Key Questions

- Where is the end of the periodic table in atomic number and mass?
- What are the properties and boundaries of the predicted "island of stability" of superheavy elements?
- Are there remnants of long-lived superheavy elements on earth?
- How do relativistic effects affect the architecture of the periodic table?

S.A. Giuliani et al., Rev. Mod. Phys. 91, 011001 (2019)

SHIP Laser Spectroscopy Collaboration

The Es/Fm Collaboration

The isotopes used in this research were supplied by the U.S. Department of Energy, Office of Science, by the Isotope Program in the Office of Nuclear Physics. The ^{253,254,255}Es and ^{255,257}Fm were provided to Florida State University and the University of Mainz via the Isotope Development and Production for Research and Applications Program through the Radiochemical Engineering and Development Center at Oak Ridge National Laboratory.

Groups of

- T. Albrecht-Schmitt, FSU
- M. Block, Mainz, GSI
- Ch. Duellmann, Mainz
- K. Wendt, Mainz

Activities led by S. Raeder, GSI

Laser Spectroscopy - Current Status

Present Knowledge of Ionization Potentials

				Un Un	certai certai	nty < (ntv 0. ⁻	0.1 μe 1 - 1.0	eV neV							UN	E <u>sco</u>	2019 IYP	Md
1	Uncertainty 1 - 10 μeV									ed Nations entific and ganization	 Internation of the Peri of Chemic 	nal Year iodic Table al Elements						
н				Un	Uncertainty 10 - 100 µeV													
3	4		Uncertainty 0.1 - 1 meV 5 6 7 8 9									10						
Li	Ве			Uncertainty 10 - 200 meV BCNOFN								Ne						
11	12			No experimental value 13 14 15 16 17								18						
Na	Mg AI Si P S CI Ar										Ar							
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I.	Хе	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn	
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Courtesy U. Koester, D. Studer

 \wedge

T

Experimental Data atomarer Niveaus in Actiniden

Overview of known atomic levels in the heavy actinides

Atomic structure

- limited experimental data for heavy elements
- for $Z \ge 103$ only theoretical predictions

Cf

odd

even

Challenges for Laser Spectroscopy of Heaviest Nuclides

- very low production rates / low amount of atoms
- production at high energy (tens of MeV) for laser spectroscopy
- no stable or long-lived isotopes for Z > 100 available

> Sensitive and efficient methods required

- atomic theory crucial to guide and interpret experiments
- high spectral resolution important to obtain nuclear properties

Superheavy Element Research – Yield

Courtesy of Ch. Düllmann

Produktion in Schwerionen-Fusionsreaktionen

Primary beam intensity:

- about 6 x 10¹² per second for typical beams ⁴⁸Ca, ⁵⁰Ti, ..., ⁷⁰Zn
- Beam energy 4.5-6.5 MeV/u

Available Actinide Isotopes for Target Production

Z

M. Block

These long-lived nuclides are also interesting for offline measurements

Resonant Laser Ionization – Excitation Schemes

- ion detection more efficient than fluorescence detection
- detection of radioactive decay increases sensitivity
- 2-step ionization for initial level search if no data known

 $h(v_1 + v_2) > E_{IP}$

Resonant Laser Ionization – Excitation Schemes

Online experiments on radionuclides produced in fusion evaporation reactions

GSI / FAIR Facility

Radiation Detected Resonance Ionization Spectroscopy Method

M. Laatiaoui et al., Nature 538, 495 (2016)

- separate from primary beam
- slow down and neutralize
- evaporate atoms
- two-step photo-ionization
- transport to detector
- register radioactive decay

Predictions for Atomic Transitions in Nobelium

Z=102 atomic ground state: [Rn]5f¹⁴7s² ¹S₀

1 (MCDF): S.Fritzsche, Eur. Phys. J. D 33 (2005) 15

2 (MCDF): S.Fritzsche, Eur. Phys. J. D 33 (2005) 15

3 (IHFSCC): A.Borschevsky et al., Phys. Rev. A 75 (2007) 042514

4 (RCC): V.A.Dzuba et al., Phys. Rev. A 90 (2014) 012504

5 (MCDF): Y.Liu et al., Phys. Rev. A 76 (2007) 062503

6 (MCDF): P.Indelicato et al., Eur. Phys. J. D 45 (2007) 155

7 (extrapolation): J.Sugar, J. Chem. Phys. 60 (1974) 4103

theoretical uncertainty corresponds to a scan range of about 5,000 steps - one step takes about 5 minutes

Breakthrough in 2015 – First Resonance

Nobelium Ionization Potential from Rydberg Series

HELMHOLTZ

P. Chhetri et al., Phys. Rev. Lett. 120 (2018) 263003

Ionization Potential of Actinides and Transactinides

	IP (eV)					
Laser spectroscopy At SHIP / GSI	6.62621(5)					
Theory (Borschevsky et al., RCC)	6.632					
Extrapolation (Sugar)	6.65(7)					
T. K. Sato <i>et al.</i> Nature 520 (Apr.9) (2015) 209-211.						
T. Sato et al. JACS 2018, 140,	14609					
No : IP ₁ (No) = 6.63±0.08 eV						
Lr: IP ₁ (Lr) = 4.96±0.08 eV → Lr: [Rn]5 $f^{14}7s^27p_{1/2}$						

HELMHOLTZ

Deformation in the Region of Superheavy Nuclides

Courtesy F. P. Hessberger

Laser Spectroscopy of Nobelium Atoms

- First optical spectroscopy beyond
 - Z=100 despite low yields on the

atom-at-a-time scale

- Half-life range 2.4 s 55 s
- Several atomic and nuclear properties

determined

M. Laatiaoui *et al.*, Nature 538, 495 (2016) S. Raeder et al., Phys. Rev. Lett. 120 (2018) 232503

Hyperfine Structure in ²⁵³No

S. Raeder et al., Phys. Rev. Lett. 120 (2018) 232503

M. Block

experimental results

A= 734(46) MHz; B= 2815(686) MHz

and input from atomic theory provide magnetic moment and quadrupole moment

	Ref.	μ (μ _N)	Q _s (b)		
Laser spec.	[1]	-0.527 ±0.034	5.79 ±1.42		
this work	[2]	-0.549 ±0.034			
Nucl. spec.	[3]	-0.593	7.145		

[1] V.A. Dzuba et al. (RCC)
[2] A. Borschevsky et al. (RCC)
[3] R.D. Herzberg et al., Eur. Phys. J. A 42, 333-337 (2009)

Charge Radii in Actinides

good agreement between experimental data for actinides from laser spectroscopy and theoretical calculations using density functional theory

J. Maruhn et al. Phys. Commun. 185 2195 (2014) P.-G. Reinhard, W. Nazarewicz, Phys. Rev. C 95 064328 (2017)

Exp. Date for No: S. Raeder et al., Phys. Rev. Lett. 120 (2018) 232503

Deformation in Nobelium

Calculations B. Schuetrumpf, W. Nazarewicz et al.

M. Block

- Theoretical calculations using density functional theory predict:
- maximum deformation around N = 152

central

depression in proton density already for nobelium

Extending laser spectroscopy at SHIP

- yield: about 0.05 atoms / second
- preliminary results confirm nuclear spin I=1/2
- ongoing analysis will provide magnetic moment

preparatory experiments for Lr (Z=103) completed – ready for level search in 2020

Improving Spectral Resolution: In-Gas-Jet Spectroscopy

- directed movement of atoms in gas-jet, perpendicular ionization
- high Mach-number for low pressure and low temperature
- \rightarrow reduction of Doppler-broadening for higher spectral resolution

For more details see contribution by R. Ferrer

Offline Experiments on Long-Lived Actinide Isotopes At the RISIKO Separator at JGU Mainz

Hot Cavity Resonance Ionization Spectroscopy

10 kHz Laser system

- laser spectroscopy with high efficiency
- used for production of radioactive ion beams
- background from surface ionization
- Resolution limited by source temperature and laser bandwidth

Laser Systems and the Sample

Courtesy of S. Raeder

JG U ohannes GUTENBERG UNIVERSITÄT MAINZ

Sample Analysis with Laser Ionization

- Radiochemical separation of actinide samples challenging
- Lasers tuned to resonantly ionize different actinide elements
- Multiple nuclides in one sample

The isotopes used in this research were supplied by the U.S. Department of Energy, Office of Science, by the Isotope Program in the Office of Nuclear Physics. The ^{253,254,255}Es and ^{255,257}Fm were provided to Florida State University and the University of Mainz via the Isotope Development and Production for Research and Applications Program through the Radiochemical Engineering and Development Center at Oak Ridge National Laboratory.

Courtesy of S. Raeder

F. Weber, K. Wendt et al.

Laser Spectroscopy on Es

- Es sample from Oak Ridge / Florida State University
- Mainz: RISIKO separator filled with one aliquot

The isotopes used in this research were supplied by the U.S. Department of Energy, Office of Science, by the Isotope Program in the Office of Nuclear Physics. The ^{253,254,255}Es and ^{255,257}Fm were provided to Florida State University and the University of Mainz via the Isotope Development and Production for Research and Applications Program through the Radiochemical Engineering and Development Center at Oak Ridge National Laboratory.

Courtesy of S. Raeder

Results for Fermium

- Investigated 3 atomic transitions in 257 Fm (T_{1/2} = 30 d)
- out of 7 transitions reported in ²⁵⁵Fm by Sewtz et al. 2003 / Backe et al. 2006

No.	WN (cm-1)	FWHM (cm-1)	A_ki (1/s)	WN fund. (cm-1)	WL fund. (nm)	WN to IP (cm-1)	WN to IP fund. (cm-1)	WL to IP fund. (nm)
R1	25,099.80 pm 0.2	-	3.4 pm 0.8 E6	12,549.90	796.8	27,300.2	13650.1	732.6
R2	25,111.80 pm 0.2	-	3.5 pm 0.7 E6	12,555.90	796.4	27,288.2	13644.1	732.9
R3	27,389 pm 1.5	0.85 pm 0.16	-	13,694.5	730.2	25,011	12505.5	799.6
R4	27,466 pm 1.5	1.34 pm 0.09	>= 2.9 E6	13,733	728.2	24,934	12467	802.1
R5	28,185 pm 1.5	1.08 pm 0.05	-	14,092.5	709.6	24,215	12107.5	825.9
R6	28,377 pm 1.5	0.75 pm 0.05	-	14,188.5	704.8	24,023	12011.5	832.5
R7	28,391 pm 1.5	0.61 pm 0.03	>= 1.1 E7	14,195.5	704.4	24,009	12004.5	833.0

Sewtz, M., et al. "First observation of atomic levels for the element fermium (Z= 100)." *Phys. Rev. Lett.* 90.16 (2003): 163002. *Backe, H., et al. "Laser spectroscopic investigation of the element fermium (Z= 100)." Laser 2004. (2006). 3-14.*

Summary

- precision measurements of atomic properties by laser spectroscopy extended to heavier elements
- new opportunities to track the nuclear structure evolution in the heaviest nuclei providing information on shape, size and electromagnetic properties
- Online work complemented by "classical" laser spectroscopy on long-lived actinide isotopes
- all recent data in good agreement with theoretical calculations
- technical and methodical developments for extension to heavier elements under way

Thank you for your attention !

