Precision stellar spectroscopy

Martin Asplund

Australian Government

^{*} Australian Research Council

Stellar spectroscopy

 λ , $\lambda/\Delta\lambda$, S/N

Stellar Atmosphere Radiative transfer Atomic data Optimal solution Speed Robustness

Stellar surface convection

Stellar surface convection

3D stellar atmosphere models

Ingredients:

- Radiative-hydrodynamical
- Time-dependent
- 3-dimensional
- Simplified radiative transfer

Essentially parameter free

For the aficionados:

Stagger-code (Nordlund et al.) MHD EoS (Mihalas et al.) Opacities (Gustafsson et al.) Opacity binning

Non-LTE radiative transfer

Non-LTE: Rate equations simultaneous w/ radiative transfer equation

$$rac{\mathrm{d}n_i(ec{r})}{\mathrm{d}t} = \sum_{j
eq i}^N n_j(ec{r}) P_{ji}(ec{r}) - n_i(ec{r}) \sum_{j
eq i}^N P_{ij}(ec{r}) = 0 \qquad \quad rac{\mathrm{d}I_
u}{lpha_
u \mathrm{d}s} = S_
u - I_
u$$

Huge amount of atomic data needed

(opacity, gf, photo-ionisation, H & e- collisions, broadening, HFS, charge transfer, etc)

Merci Michel et collègues!

Precision spectroscopy

Does the Sun have a subsolar metallicity?

Cosmological Li problems

Galactic archaeology

Solar chemical composition

Fundamental yardstick for all astronomy

Main partners in crime

Nicolas Grevesse

Pat Scott

(+ many collaborators)

Past and present PhD students + postdocs:

Anish Amarsi, Maria Bergemann, Remo Collet, Wolfgang Hayek, Karin Lind, Zazralt Magic, Jorge Melendez, Thomas Nordlander, Tiago Pereira, Aldo Serenelli, Regner Trampedach

Solar system abundances

Meteorites

Mass spectroscopy Very high accuracy Element depletion

Solar atmosphere Solar spectroscopy Modelling-dependent Very little depletion

Solar abundances revisited

- Asplund et al., 2009, ARAA, 47, 481
- Realistic 3D model for the solar atmosphere
- 3D/non-LTE spectrum formation calculations
- Improved atomic and molecular input data
- Careful selection of lines
- Updated: Scott et al. 2015ab, Grevesse et al. 2015ab, Amarsi et al. 2015, 2018, 2019

Element	Anders & Grevesse (1989)	Asplund et al. (2009)	Difference	
Carbon	8.56+/-0.06	8.43+/-0.05	-26%	
Nitrogen	8.05+/-0.04	7.83+/-0.05	-40%	
Oxygen	8.93+/-0.03	8.69+/-0.05	-42%	

Note: logarithmic scale with H defined to have 12.00

Oxygen diagnostics

- Discordant results in 1D: log O~8.6-8.9
- Excellent agreement in 3D: log O=8.70±0.05
- Asplund et al. (2009), Amarsi et al. (2018)

Lines	MARCS (1D)	Holweger- Mueller (1D)	3 D
[O I]	8.69+/-0.05	8.73+/-0.05	8.70+/-0.05
01	8.62+/-0.05	8.69+/-0.05	8.70+/-0.05
OH, dv=0	8.78+/-0.03	8.83+/-0.03	8.71+/-0.03
OH, dv=1	8.75+/-0.03	8.86+/-0.03	8.71+/-0.02

Two often-used 1D model atmospheres

[O I]: blends

Allende Prieto et al. 2001: Blend with Ni: -0.19 dex

Johansson et al. 2003: gf-value of Ni I blend measured experimentally

Scott et al. 2009, 2015: New solar Ni abundance

Asplund et al. 2009, Amarsi et al. 2018: $\log O = 8.70\pm0.05$

O I: non-LTE effects

High-excitation O I lines are sensitive to non-LTE Non-LTE - LTE≈-0.2 dex

Pereira et al. 2009: Use observed center-tolimb variations and full 3D non-LTE to determine poorly known H collisions

Asplund et al. 2009: log O=8.68±0.05 Amarsi et al. 2018: log O=8.69±0.03

OH lines: 3D effects

Table 1 Element abundances in the present-day solar photosphere. Also given are the corresponding values for CI carbonaceous chondrites (Lodders, Palme & Gail 2009). Indirect photospheric estimates have been used for the noble gases (Section 3.9)

Z	Element	Photosphere	Meteorites	Z	Element	Photosphere	Meteorites
1	Н	12.00	8.22 ± 0.04	44	Ru	1.75 ± 0.08	1.76 ± 0.03
2	He	$[10.93 \pm 0.01]$	1.29	45	Rh	0.91 ± 0.10	1.06 ± 0.04
3	Li	1.05 ± 0.10	3.26 ± 0.05	46	Pd	1.57 ± 0.10	1.65 ± 0.02
4	Be	1.38 ± 0.09	1.30 ± 0.03	47	Ag	0.94 ± 0.10	1.20 ± 0.02
5	В	2.70 ± 0.20	2.79 ± 0.04	48	Cd		1.71 ± 0.03
6	С	8.43 ± 0.05	7.39 ± 0.04	49	In	0.80 ± 0.20	0.76 ± 0.03
7	N	7.83 ± 0.05	6.26 ± 0.06	50	Sn	2.04 ± 0.10	2.07 ± 0.06
8	0	8.69 ± 0.05	8.40 ± 0.04	51	Sb		1.01 ± 0.06
0	F	456 ± 0.30	447 ± 0.06	52	Tě		2.18 ± 0.03

Asplund et al. 2009, ARAA, 47, 481; Scott et al. 2015ab; Grevesse et al. 2015: 3D-based analysis of <u>all</u> elements Statistical <u>and</u> systematic errors included in total uncertainties

32	Ge	3.65 ± 0.10	3.58 ± 0.04	76	Os	1.40 ± 0.08	1.35 ± 0.03
33	As		2.30 ± 0.04	77	Ir	1.38 ± 0.07	1.32 ± 0.02
34	Se		3.34 ± 0.03	78	Pt		1.62 ± 0.03
35	Br		2.54 ± 0.06	79	Au	0.92 ± 0.10	0.80 ± 0.04
36	Kr	$[3.25 \pm 0.06]$	-2.27	80	Hg		1.17 ± 0.08
37	Rb	2.52 ± 0.10	2.36 ± 0.03	81	TI	0.90 ± 0.20	0.77 ± 0.03
38	Sr	2.87 ± 0.07	2.88 ± 0.03	82	Pb	1.75 ± 0.10	2.04 ± 0.03
39	Y	2.21 ± 0.05	2.17 ± 0.04	83	Bi		0.65 ± 0.04
40	Zr	2.58 ± 0.04	2.53 ± 0.04	90	Th	0.02 ± 0.10	0.06 ± 0.03
41	Nb	1.46 ± 0.04	1.41 ± 0.04	92	U		-0.54 ± 0.03
42	Mo	1.88 ± 0.08	1.94 ± 0.04				

Sun has a subsolar metallicity

(Anders & Grevesse 1989)

$Z=0.014\pm0.002$

(Asplund et al. 2009)

Solar interior models with new abundances are in conflict with helioseismology

- Wrong sound speed
- Wrong depth of convection zone: $R=0.723 \text{ vs } 0.713 \pm 0.001$
- Wrong surface helium abundance: Y=0.235 vs 0.248±0.004

Missing opacity?

Serenelli (2009): Higher opacities by ~10-15% below the convection zone would restore agreement

Missing opacity

Solar composition: neutrinos

Solar hydrogen burning

⁸B vs ¹³N+¹⁵O neutrinos

Prospect of discriminating between solar chemical compositions with ¹³N and ¹⁵O neutrinos Borexino: expect 10% uncertainty \Rightarrow 3 σ result (Improved p+¹⁴N cross-section from LUNA experiment will also help)

Precision spectroscopy

Does the Sun have a subsolar metallicity?

Cosmological Li problems

Galactic archaeology

Big Bang nucleosynthesis

Abundances of D, ³He, ⁴He, ⁷Li determined by baryon-tophoton density η

Coc & Vangioni (2017): ⁷Li/H=(5.61 \pm 0.24) × 10⁻¹⁰ $\Rightarrow \log \epsilon_{Li} = 2.75 \pm 0.04$

Spite & Spite 1982: Primordial Li in metal-poor stars?

Something wrong with...

• Big Bang nucleosynthesis?

• Spectroscopic analysis?

1.00

• Stellar Li destruction?

Problems with observed Li?

&

3D stellar atmospheres

3D NLTE radiative transfer

& Improved stellar parameters (e.g. T_{eff}-scale)

Same old results!

Asplund et al. 2003, 2006 Melendez et al. 2010 Sbordone et al. 2010 Wang et al. 2019a Reggiani et al. 2019

Li destroyed in stars?

Standard stellar evolution models metal-poor stars <u>do not predict</u> appreciable surface Li depletion

Extra mixing to bring Li-depleted gas back into convection zone? Rotation? Diffusion + turbulence? Gravity waves?

Li in globular clusters

Korn et al. 2006; Lind et al. 2009; Nordlander et al. 2016: Li depleted in turn-off stars in NGC6397: Signature of atomic diffusion + turbulent mixing? \Rightarrow (Part) Solution to cosmological ⁷Li problem?

Lithium isotopes

If ⁷Li is depleted by 3x in metal-poor stars then ⁶Li is depleted by much more but...

THE ASTROPHYSICAL JOURNAL, 408:262–276, 1993 May 1 © 1993. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE ⁶Li/⁷Li RATIO IN THE METAL-POOR HALO DWARFS HD 19445 AND HD 84937

VERNE V. SMITH,¹ DAVID L. LAMBERT,¹ AND POUL E. NISSEN^{1,2}

Received 1992 September 2; accepted 1992 October 26

ABSTRACT

High-resolution high signal-to-noise spectra of the Li I 6707 Å line in the subdwarfs HD 19445 and HD 84937 have been analyzed for the presence of ⁶Li. By measurement of the Li I lines's wavelength and analysis of its profile, the atmosphere of HD 84937 is shown to have a small amount of ⁶Li: $R = {}^{6}Li/Li = 0.05 \pm 0.02$. For HD 19445, an upper limit is set of R < 0.02. The presence of ⁶Li in HD 84937 is consistent with the mild depletion of ⁶Li predicted by standard (nonrotating) models and the initial presence of ⁶Li in the halo produced by (principally) α -on- α fusion reactions involving the cosmic rays that are required to account for the Be and B observed in subdwarfs. Depletion of ⁶Li is expected. If Yale models of rotating subdwarfs are adopted, the predicted severe depletion of ⁶Li and the observed survival of ⁶Li in HD 84937 have to be reconciled. Four suggestions are made: the rotating models are inapplicable to halo dwarfs, production of ⁶Li by cosmic rays has been underestimated, the required high initial ⁶Li abundance of the halo was produced prior to the formation of the Galaxy, or the ⁶Li was produced in stellar flares.

Two cosmological Li problems?

Lithium isotope determination

Utilise isotopic shift in Li I 670.8nm resonance line Exceptionally challenging measurement

New observations

ESPRESSO spectra of HD84937 & HD140283

- S/N=1800 per pixel, $R=\lambda/\Delta\lambda=140,000, 4$ pixels/r.e.
- Extreme wavelength precision
- 3D non-LTE for Fe \Rightarrow vsini and v_{rad}
- 3D non-LTE for Li \Rightarrow convective line asymmetry
- ⇒ Improved ⁶Li/⁷Li determination

3D non-LTE for Fe

Large Fe model atom: 463 levels, 3000 transitions, 16000 frequencies

Rotational broadening (vsini) and wavelength shift (v_{rad}) determined from ~50 Fe lines \Rightarrow apply to Li

No macroturbulence or microturbulence needed in 3D

Convective line asymmetries accurately predicted by 3D model

3D non-LTE for Li

Li model atom with accurate radiative + collisional cross-sections

5 snapshots of 3D stellar models, 5 Li abundances, and 5 ⁶Li/⁷Li ratios

Wang et al. 2019a: 3D non-LTE calculations for Li lines for FGK dwarfs/giants and many Li abundances publicly available:

https://github.com/ellawang44/Breidablik

Li in HD84937

Fixed: vsini & v_{rad} (Fe lines) vsini=0.91±0.30km/s vrad=1.349±0.050km/s

Free: ⁷Li, ⁶Li, continuum

MCMC analysis to determine ⁷Li and ⁶Li abundances

⁶Li/⁷Li in HD84937

components as emission

2.277+0.002/-0.002 -0.679+0.692/-0.731

Not quite final word

Precision spectroscopy

Does the Sun have a subsolar metallicity?

Cosmological Li problems

Galactic archaeology

Galactic archaeology

How to analyse millions of stars?

Automated

GALAH

- Fast
- Accurate
- Precise
- Reliable
 - Reproducible

1D non-LTE for 11 elements in >500,000 stars

3D non-LTE stellar spectra

Training set & input spectra

Machine learning

Mapping spectrum \Leftrightarrow labels

Bayesian inference

Use <u>all</u> information available: parallax, photometry, asteroseismology, stellar evolution models, reddening etc