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Atoms as probes for new physics

* Violation of discrete symmetries

e Violation of the local Lorentz invariance

* Time variation of the fundamental constants
e Exotic long-range interactions

* |Interactions with Dark Matter & Dark Energy

~

Sometimes we study qualitative effects and
sometimes we look for quantitative disagreements. In
both cases we can not check atomic theory directly.

Here we focus on the qualitative effects.




Symmetry violation & time-dependence of
fundamental constants

* We calculate atomic sensitivity to some perturbation.
e Typically a few percent accuracy is sufficient.

* Usually highest sensitivity is found in complex atoms (i.e. heavy,
polyvalent, with accidental degeneracies, etc.)

We need universal method and some tools to control the
accuracy. Usually we calculate similar properties, which can
be measured (spectra, transition rates, g-factors, HFS,
polarizabilities).



Non-perturbative methods

A typical example is configuration interaction (Cl)
method.

It works very well for few electron systemes.

The size of Cl space scales exponentially with the
number of electrons.

Cl becomes ineffective for the number of electrons
of the order of 10.



Many-body perturbation theory

Perturbation theory is effective when there is small
parameter A«1l
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In atomic theory if we start with some mean-field
potential U,. The residual interaction

Vi=v-U,
is usually not small. More precisely, the parameter

A is of the order of unity, A =V'/A~ 1. As a result, in
general MBPT does not work!
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[AViatkina, MK, V Flambaum, PRA 95, 022503 (2017)]
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Shell structure for T1
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Effective small parameter for core-valence
correlation corrections

Let us single out the core with excitation
energy A,,~1. Then for the core-valence

- - ()
correlations we can introduce o
eff A
cvVv
Comparing this to the correlation ( V')Z

correction: cv A

we can write: 2\ g /BECV
C
AC'V

And now A can be small.




CI+MBPT and CI+AO methods

Valence correlations are treated within configuration
interaction (Cl) method.

Core-valence & core-core correlations are accounted for by

many-body perturbation theory (MBPT), or by all-order (AO)
coupled cluster (CC) method.

MBPT, or CC method is used to form effective Hamiltonian in
the valence Cl space.

Effective operators are also formed for all valence observables.



Effective Hamiltonian for valence electrons

We define valence space so that all core electrons are frozen.
We use MBPT, or CC to form H_ in the valence space.

Zero order Hamiltonian is the valence Hamiltonian in the
frozen core approximation.

We diagonalize effective Hamiltonian using configuration
interaction method.



Effective operators for observables

RPA for core
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Accuracy of Cl, CI+MBPT, & CI+AO for Mg |
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HES of 205T| (MHz)

Agp 11 4 6p3 7511 4 P11 4 P3p 4 6d;)) 6dsp
DF 17339 1291 7579 1940 187 21 9
CI 924 — 1369 3799 —102 112 — 185 391
H. 3428 —45 765 331 —56 114 —226
Agrpa 959 359 1031 103 73 5
A, — 1071 —31 —269 —-92 -9 3 — &
A — 1389 — 161 —75 —113 —19 —19 -8
Ay 1731 120 —22 133 4 21 7
Asr 209 88 —-29 14 6 -1 0
Norm. — 467 —4 —113 —20 —3 0 0
Total 21663 248 12666 2193 295 —41 183
Theor. ? 21760 —1919 12470 2070 195
Theor. ° 21300 339 12760
Theor. € 21623 264 12307 2157 315 —35 184
Expt. 21311 265 12297 2155 309 —43 229

[MK, S G Porsev, & W R Johnson, 2001]



Polarizabilities of 1S, & 3P, clock states in B*, Al*, & In* ions

[on CI CI + MBPT  CI + all
B* ap(2s21S,) 9.575 9.613 9.624
ay(252p 3P8 ) 7.779 7.769 7.772
A« —1.796 —1.844 —1.851
Al* ao(3s21S,) 24.405 24.030 24.048
ag(3s3p3Pg) 24874 24.523 24.543
A 0.469 0.493 0.495
In* ay(55%1S,) 26.27 23.83 24.01
ao(5s5p3P3)  28.60 25.87 26.02
Aa 2.33 2.04 2.01

[M Safronova , MK, C Clark, PRL, 107, 143006 (2011)]



Hyperfine-induced quadrupole transitions 'Sy —3D; in Yb
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FIG. 1. Hyperfine mixings e;r of the 5d6s°D; and 5d6s°D,
levels in odd isotopes '"'Yb (I = 1/2) and '*Yb (I = 5/2).

MK, V Dzuba, & V Flambaum, PRA 99, 012516 (2019)

TABLE IV. Reduced matrix elements of the transitions
652 'Sy, I, F' =1 — 5d6s3D;. 1. F for the isotopes '"'Yb (I = 1/2)
and 'Yb (I = 5/2). The HFI quadrupole transition amplitudes (17)
are in eag. Subscripts A, B, and tot correspond to the contributions
from the magnetic dipole and electric quadrupole mixings and the
sum of the two. Equation (19) defines the PV E'l transitions in terms
of the amplitude Ap, which was calculated in Refs. [11-13].

I.F 1/2,1/2 1/2,3/2 5/2.3/2 5/2.5/2 5/2.7)2
E2, x 103 0.0 40643 —0.363 +0.634 —0.752
E2p x 10° 0.0 0.0 —0.039  +0.021 +0.028

E2 x 10° 0.0  40.64(10) —0.40(6) +0.66(10) —0.72(12)
E1RP/Ap  +0.667 40471  —0.660 +0.231  +0.667




CI+AQ results for E1 transition amplitudes and polarizability of Pb

S Porsev, MK, M Safronova, & | Typitsyn, PRA 93, 012501 (2016)

TABLE III. V¥=2 approximation. The reduced MEs |{f||d||i)]
(ina.u.) for the electric-dipole transitions, obtained in the CI+all-order
approximation and including RPA, Sbt, o, SR, and normalization
corrections. In last column the MEs extracted from the experimental
transition probabilities are presented. The value of the ground-state
static polarizability is given in the last line.

Transition This work Experiment
6p2 P -6pTs °P§ 1.89 2.04(7)
2.05(10)°
6p% *Py-6p7s °Pf 1.32 1.37(4)
1.20(5)°
6p? 3Py -6 p6d 3D;’ 2.01 1.62(4)*
1.67(8)°

a(6p* 3 py) 46.5 47(7)¢




Effective three-particle interactions
In nuclear physics:

3 3 Nucleon can be polarized by its neighbor and then it can interact
with another neighbor.

b—>/7 This effect is caused by the internal structure of the nucleon.

C

Three electron interactions between valence electrons in an atom:

a ” a a " ; " a
a Two-particle > Correction due to the
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Typical scale for TPI

a " a'
§ e Atoms with valence electrons ns & np: ~10 cm
b /y/ b e Transition metals with nd valence electrons: ~100 cm™?
§ e Lanthanides & actinides (4f & 5f): ~1000 cm?
C > > C,

TPl in atoms with filling 4f shell

K'=1,3,5§ 5s R R 4f

, =32
Allowed multipoles > :
il 4d// > ar for d—finterac’gon 4f 4d// A TPl diagram for
§ K=135 § K3 4f°5s configuration

> Ll

4f 5s



...TPl in atoms with filling 4f shell

Configurations with Configurations with
“large” TPI corrections  “small” TPI corrections:
for last core shell 4d.: o 4f3

¢ 4_]Q55 ° 4f75p

* 4f5s5p o 4f552
Examples:

Ce9+,Pr1°+,Nd11+: EU14+Z

5s°5p; 4f5s? 4f?5s; 4f3; 4f5s°



TPl and QED
corrections

to the spectrum of
Eu14+

Ground configuration:
[15%.....4d1° ] 4f*5s
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Summary A: Advantages

Applicable to atoms and ions with arbitrary number of closed
shells including superheavy elements.

Applicable to polyvalent atoms.
Computationally relatively inexpensive.

Allows to calculate large variety of properties, which depends
mainly on valence electrons.

Some high-order MBPT corrections can be included within
Cl+all-order (CI+AQO).



Summary B: Limitations

Difficult to include high-order MBPT corrections
consistently:

— energy-dependence of the effective Hamiltonian;

— effective many particle interactions.

Difficult to use for atoms with too many electrons in the
open shells:

— Cl Space grows too fast;

— choice of the mean field

— The role and the number of the effective many particle
interactions grows with N,



Conclusions

CI+MBPT and CI+AO methods are typically an order of

magnitude more accurate than va
We can calculate different atomic

ence Cl.

oroperties and estimate the

accuracy of the results. This makes our predictions sufficiently

reliable.

These methods are efficient for atoms and ions with up to 4-5

valence electrons.

Generally, they can not be used for quantitative tests of

fundamental physics.
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