KU LEUVEN

High-resolution Laser Ionization Spectroscopy of Heavy Elements in Supersonic Gas Jets

Rafael Ferrer KU Leuven, Instituut voor Kern- en Stralingsfysica Belgium

Outline

- Motivation for Laser Spectroscopy of Heavy Elements
- In-Gas Laser Ionization and Spectroscopy (IGLIS): Technique
- > Off-line characterization studies
- Plans for IGLIS studies of exotic nuclei

Optical Spectroscopy Actinides

Essential toges: > Laser spectroscopy of fusion evaporation reaction products

- Test and refine n > Low production rates of actinides call for a highly-sensitive and -efficient laser spectroscopy technique
- Improve our und

•

Understand the c > High spectral resolution required to <u>resolve hyperfine structure</u>

Map of actinides updated from: P. Campbell, I.D. Moore, M.R. Pearson, Prog. Part. Nucl. Phys. 86 (2015) 127-180

In Gas Laser Ionization and Spectroscopy (IGLIS) In-Cell vs In-Jet Spectroscopy

• Low temperature & low density supersonic gas jets are ideal environments for laser spectroscopy experiments of exotic nuclei

 \rightarrow Reduced Doppler and collisional broadening effects

IGLIS laboratory @ KU Leuven (off-line studies)

High power high rep. dye laser system

<u>R&D on:</u>

RFQ Ion Guides

Laser Spectroscopy of Cu in Atomic Beam Unit

 Narrow-band pulsed dye amplification results in multiple side-band formation Pulsed Dye Amplifier pumped by SLM Laser^Z

High Mach-number Nozzle (M=8.5): Calculations & Manufacturing

6

Characterization of local flow parameters: Planar Laser Induced Fluorescence Spectroscopy

Characterization of local flow parameters: Resonance Ionization Spectroscopy

Geometrical scanning lasers to characterize jet parameters

High Mach-number Nozzle: results

- Good agreement between PLIFS and RIS data
- Calculations reproduce fairly well the trend of RIS and PLIFS data
- Discrepancy between experimental curves and calculations can be explained by laser misalignment

In-gas-jet laser ionization and spectroscopy of ^{229m}Th

Only one group has reported the production of a controlled ion beam of ^{229m}Th

- Confirm nuclear structure (nuclear moments) and probe not-yet-observed ^{229m}Th¹⁺
- Produce pure beams of ^{229m}Th

Goal: Determination of $E_{i.s.}$ by VUV spectrometry (149.7 ± 3.1 nm) implanting ^{229m}Th in a transparent crystal

Y. Kudryavtsev et al., NIM B297 (2013) 7

R. Ferrer - Solvay Workshop Brussels, 25-27 November 2019

KU LEUVEN

Outlook: Reach of IGLIS on Actinides

Summary

• Optimization/characterization of IGLIS technique to study products of fusion evaporation reactions is ongoing at KU Leuven (milestones: nozzle, narrow-band laser, RFQ Ion Guides)

 Comparison RIS & PLIFS shows that the former will complementary be used to characterize local flow parameters → Higher efficiency and faster than PLIFS

 IGLIS combines good efficiency and spectral resolution and is well suited for the study of heavy elements → ^{229m}Th@KU Leuven, ^{253,254m,255}No@GSI, S³-LEB@SPIRAL2.....

Acknowledgments

KU Leuven

A. Claessens, K. Dockx, M. Huyse, S. Kraemer, Yu. Kudryavtsev, M. Nabuurs, P. Van den Bergh, D. Reynaerts, J. Romans, P. Van Duppen, M. Verlinde, E. Verstraelen

Collaborators

H. Backe⁴, M. Block^{1,2,4}, L. Cáceres, B. Cheal⁵, P. Chhetri^{1,6}, Ch. Droese^{1,7}, A. Drouart⁸, Ch. E. Duellmann^{1,2,4}, X. Flechard⁸, S. Franchoo⁹, F. Giacoppo^{1,2}, S. Goetz^{1,2}, F. P. Hessberger^{1,2}, O. Kaleja^{1,4,10}, J. Kallunkathariyil⁸, J. Khuyagbaatar^{1,2}, T. Kron², P. Kunz¹¹, M. Laatiaoui³, W. Lauth⁴, N. Lecesne¹², A.K. Mistry^{1,2}, V. Manea, T. Murboeck¹, S. Raeder^{1,2}, H. Savajols¹², F. Schneider^{2,4}, B. Sulignano⁸, Ch. Theisen⁸, M. Vandebrouck⁸, Th. Walther⁶, A. Yakushev^{1,2}

¹GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt, Germany | ²Helmholtz Institut Mainz, 55128 Mainz, Germany | ⁴Johannes Gutenberg-Universitaet, 55099 Mainz, Germany | ⁵University of Liverpool | ⁶TU Darmstadt | ⁷Ernst-Moritz-Arndt-Universitaet 17487 Greifswald, Germany | ⁸CEA Saclay | ⁹INP Orsay | ¹⁰Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg, Germany | 11TRIUMF| 12GANIL

