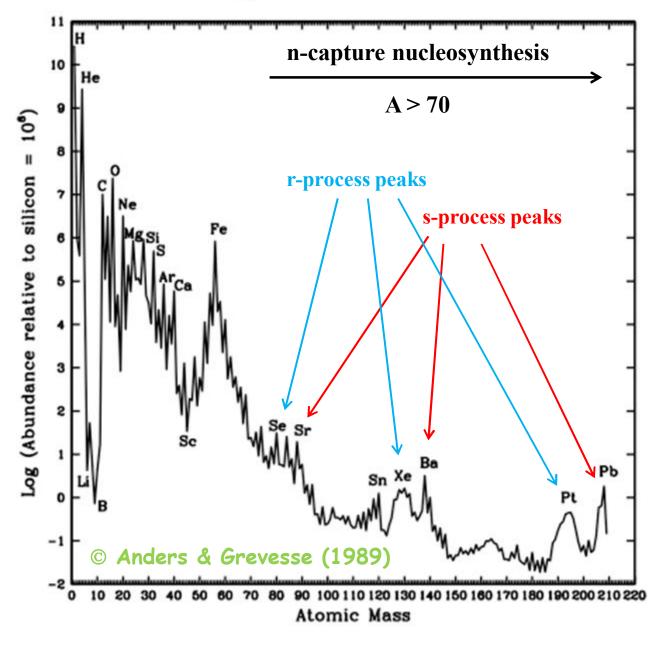
A new assessment of the Solar s- and rprocess components

C. Abia

APPROX PROPERTY

181

UNIVERSIDAD DE GRANADA


in collaboration with N. Prantzos (IAP), S. Cristallo (OAT), A. Chieffi (IAS), M. Limongi (OAMP)

11111

111

Solvay Workshop, 25-27 November, Brussels

The Solar System abundances

The astrophysical sites

S-process: hydrostatic He- & C-burning (N_n~10⁶⁻⁸ cm⁻³)

- Asymptotic Giant Branch stars $(1 \le M/M_{\odot} \le 8)$

Käppeler et al. (2011)

90 \leq A \leq 210 main component ¹³C(α ,n)¹⁶O , ²²Ne(α ,n)²⁵Mg neutron sources

- Massive stars ($> 8 M_{\odot}$)

 $70 \le A \le 90$ weak component $^{22}Ne(\alpha,n)^{25}Mg$

R-process: ? (N_n > 10²³ cm⁻³)

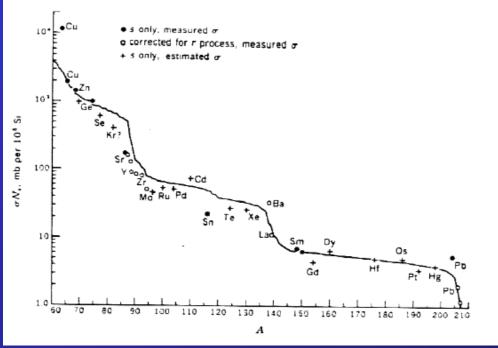
 $A \ge 70$ components?

- Core collapse SNe
- NS + NS, NS + BH mergers
- Collapsars

-

Arnould et al. (2007) Thielemann et al. (2018)

Methods: ...first compute the s-contribution, then


✓ Classical method (Clayton 1968)

 τ_{o} (N_n, T), Fe/n

 $N_s \sigma_n \approx const$ for s-nuclei

- Multi-event approach (Goriely 1999)

 ΔN_n , ΔT , N_e , Z_{\odot}

✓ Stellar method (Arlandini et al. 1999)

Fit to the SS s-only abundances from a post-processing calculation using a range (M, Z) stellar structure AGB models

✓ Galactic Chemical Evolution (GCE) models

Travaglio et al. (2004)

The SS abundance distribution must be calculated considering the interplay between the SFR history, stellar evolution, ISM ...integrated over the galactic life-time.

Detailed GCE models including ACCURATE s-process yields provide a reference to r-process calculations

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **476**, 3432–3459 (2018) Advance Access publication 2018 February 6 Articles and

doi:10.1093/mnras/sty316

Chemical evolution with rotating massive star yields – I. The solar neighbourhood and the s-process elements

N. Prantzos,¹* C. Abia,²* M. Limongi,^{3,4}* A. Chieffi^{5,6} and S. Cristallo^{7,8}

¹Institut d'Astrophysique de Paris, UMR7095 CNRS, Univ. P. & M. Curie, 98bis Bd. Arago, F-75104 Paris, France

²Departmento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain

³Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Roma, Via Frascati 33, I-00040, Monteporzio Catone, Italy

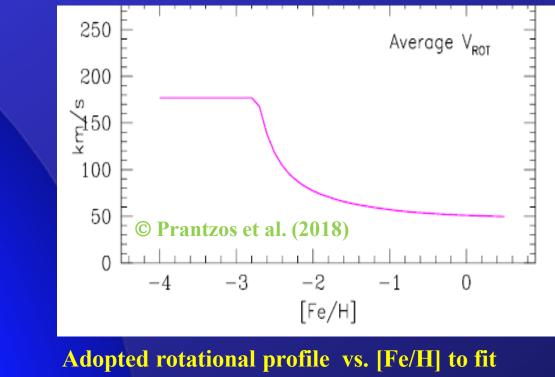
⁴Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI)

⁵Istituto di Astrofisica e Planetologia Spaziali, INAF, via Fosso del cavaliere 100, I-00133 Roma, Italy

⁶Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Victoria 3800, Australia

⁷Istituto Nazionale di Astrofisica, Osservatorio Astronomico d'Abruzzo, Via Maggini snc, I-64100, Teramo, Italy

⁸Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via Pascoli, I-06123, Perugia, Italy


Effect of rotation on stellar yields

- Mixes protons into He-burning regions and products of H- & He-burning
- Boosting production of CNO, F, ²²Ne..and s-process

PC BC

He burning

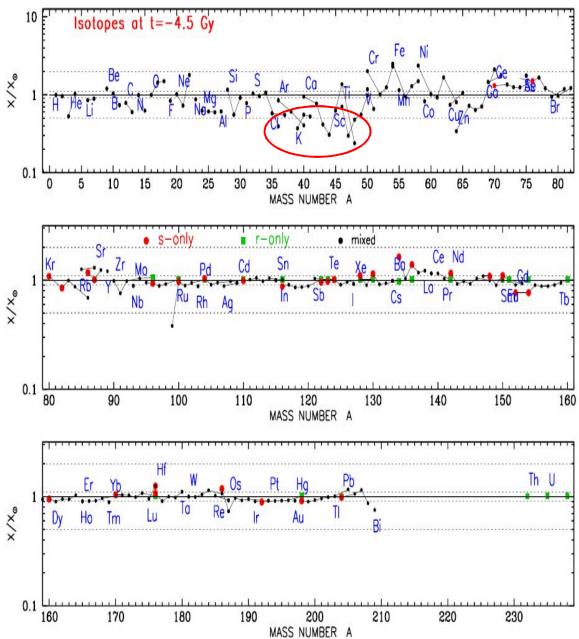
• Turns "secondary" elements in "quasi primary" ones

the observed [N/Fe] vs. [Fe/H]

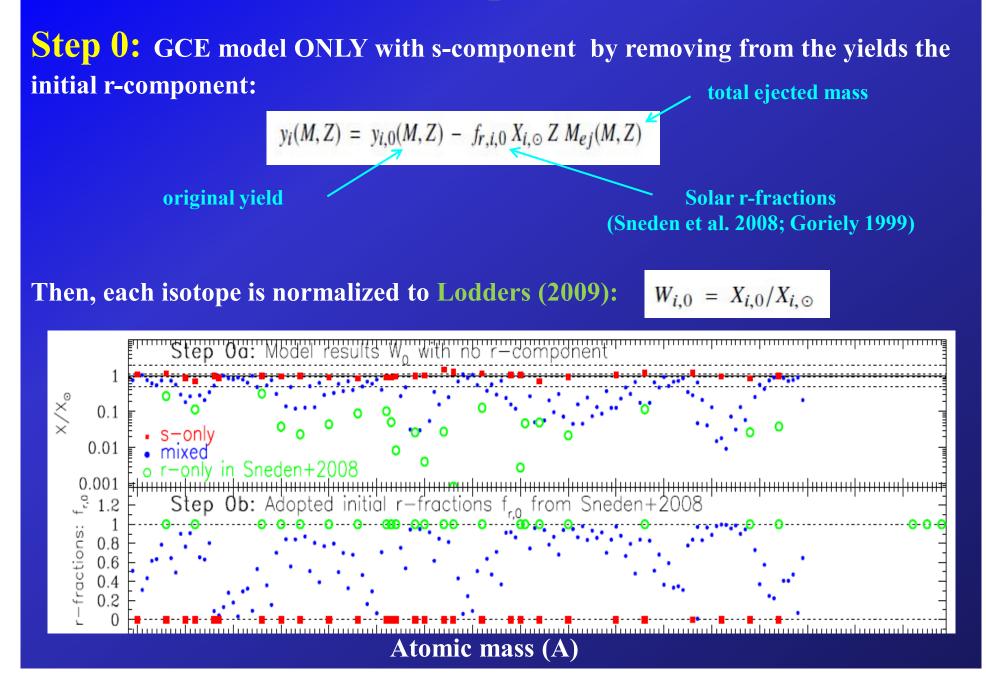
https://fruity.oa-abruzzo.inaf.it/

https://orfeo.iaps.inaf.it/

Results from Paper I


better than a factor 2

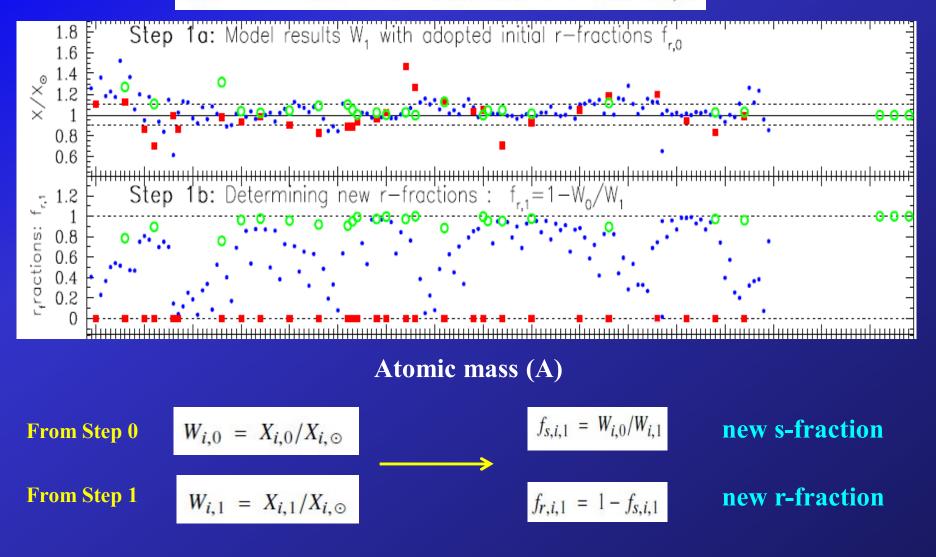
• s-only nuclei better than 40%

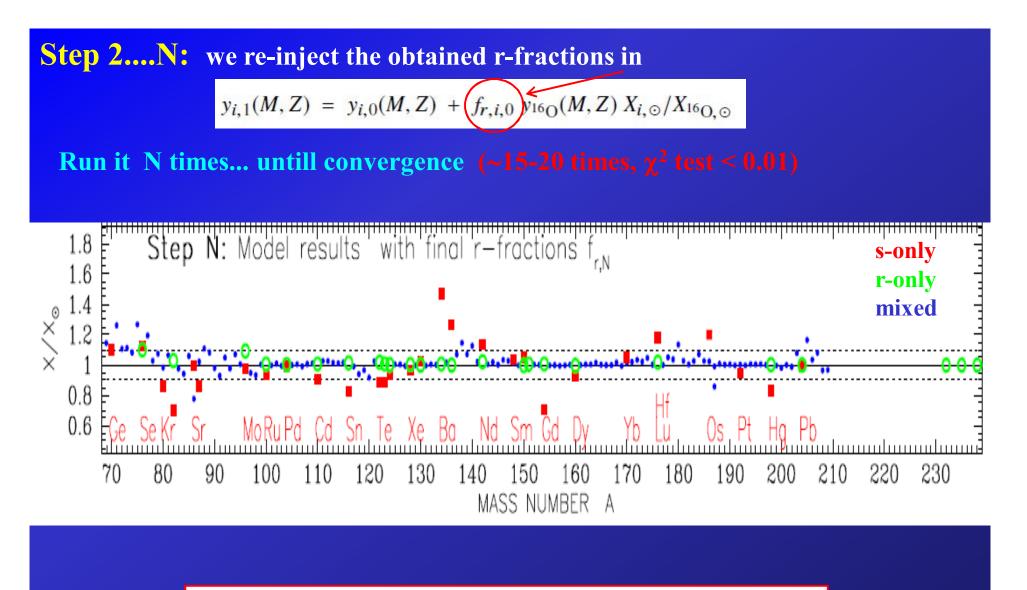

 r-nuclei: yields from r-residuals by Sneden et al. (2008) scaled to α-elements and fixed to match Solar abundances of pure-r (Th, U)

$$Y_{r,i}(M, Z) = Y_{16O}(M, Z) \frac{X_{r,\odot}}{X_{16O,\odot}} f_{r,i},$$

Solar r-fractions
(Sneden et al. 2008)

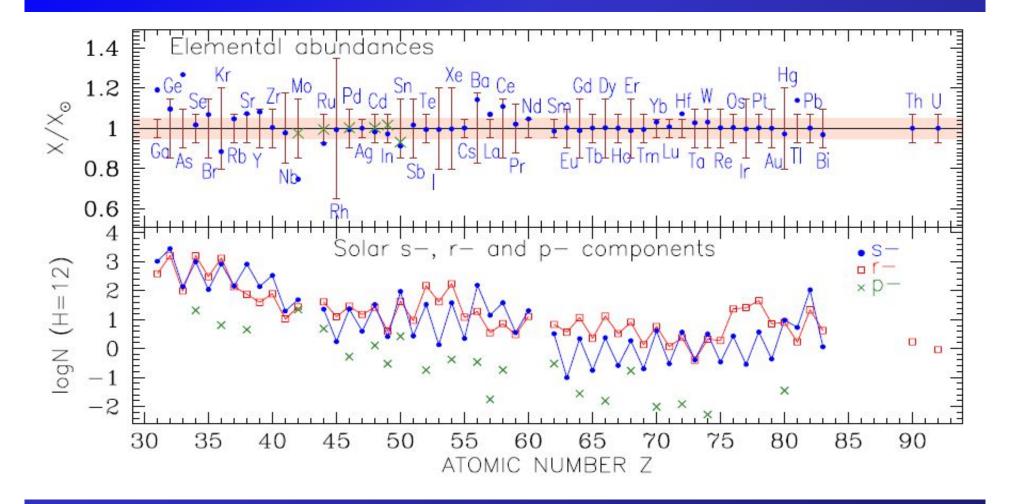
Calculated SS abundance distribution



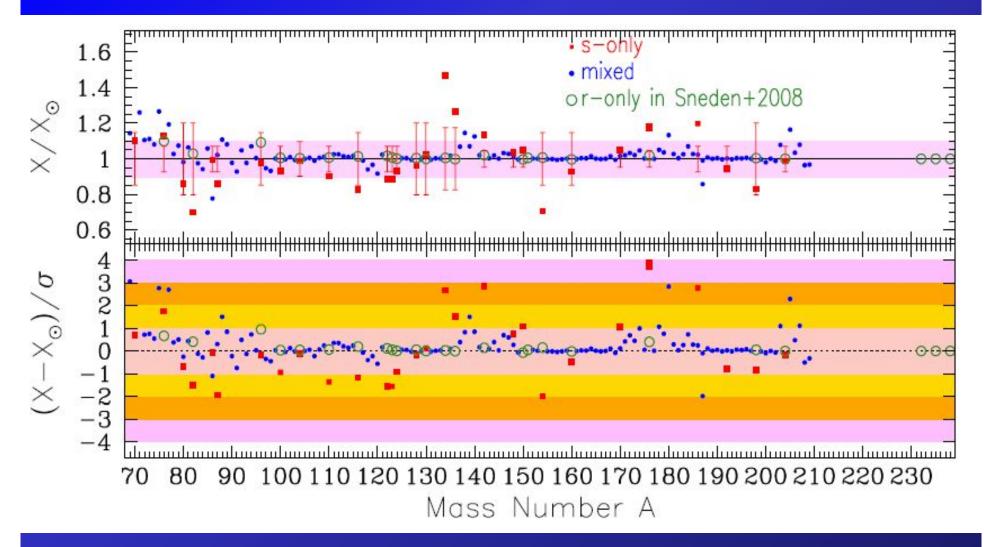

New "bootstrap" method

Step 1: Run a GCE model with original yields and introducing the r-component of each isotope scaled to an alpha-element

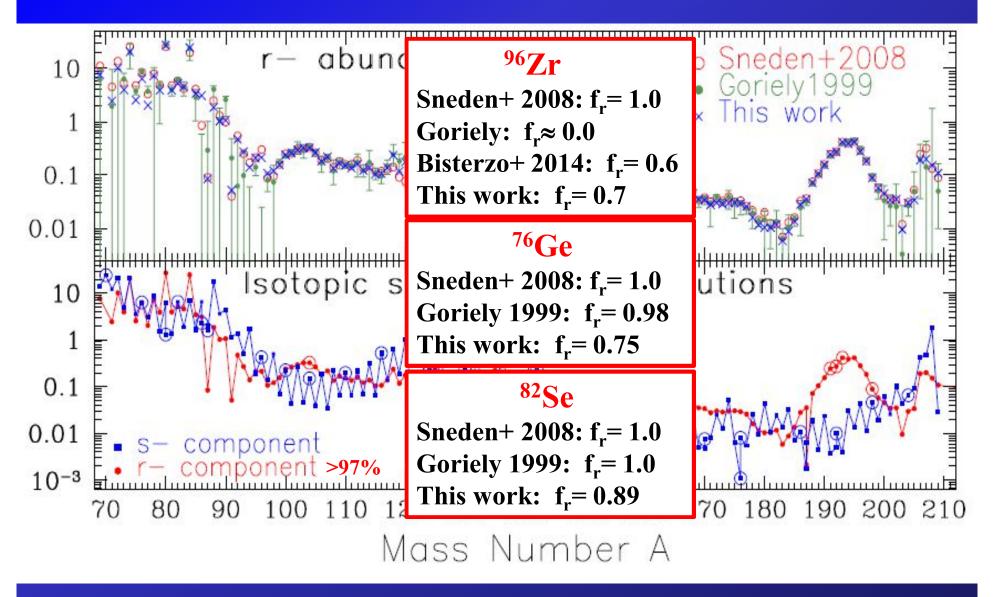
 $y_{i,1}(M,Z) = y_{i,0}(M,Z) + f_{r,i,0} y_{16O}(M,Z) X_{i,\odot}/X_{16O,\odot}$



Results ONLY depend on:


- ✓ the adopted stellar s-isotope yields (GCE)
- ✓ the goodness to the fit of the pure-r isotopes Th & U independently of the initial choice f_{ri,0} !!

Comparison to Solar system: elements


38 elements out 53 within ± 5% (Th and U imposed)... ...with contribution from p-process: 41 out 53

Comparison to Solar system: isotopes

120 isotopes within ± 10%96 isotopes within ± 5%

Comparison to previous works

Largest differences found for lightest isotopes & s-dominated elements

Our tribute to the 150th anniversary of the Mendeleiev's Periodic Table

57 La 56 Ba 55 Cs 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Ag 45 Rh	138 139 130 132 134 135 136 137 138 133 124 126 128 129 130 131 132 134 136 124 126 128 129 130 131 132 134 136 127 120 122 123 124 125 126 128 130 121 123 124 125 126 128 130 121 123 114 115 116 117 118 119 120 122 124 113 115 106 108 110 111 112 113 114 116 107 109 102 104 105 106 108 110 103 96 98 99 100 101 102 104	83 Bi 82 Pb 81 TI 80 Hg 79 Au 79 Au 78 Pt 77 Ir 76 Os 75 Re 75 Re 74 W 73 Ta 72 Hf 71 Lu
44 Ru 42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 36 Kr 35 Br 34 Se 33 As 33 Ge 31 Ga	96 98 99 100 101 102 104 92 94 95 96 97 98 100 93 90 91 92 94 96 98 90 91 92 94 96 98 89 84 86 87 88 85 87 78 80 82 83 84 86 S 78 80 82 83 84 86 S S 74 76 77 78 80 82 r 75 70 72 73 74 76 P 69 71 73 74 76 P	70 Yb 69 Tm 68 Er 67 Ho 66 Dy 65 Tb 64 Gd 63 Eu 63 Eu 62 Sm 60 Nd 59 Pr 58 Ce

2 Pb 20 1 TI 20. 2) Hg 190 3 Pt 190 7 Ir 190	6 <mark>198</mark> 199 200 201 202 204
	6 <mark>198 199 200 201 202 204</mark> 7
)Hg 🔜 190	7
Au 193	0 192 194 195 196 198
3 Pt 19(
7 Ir <u>19</u>	
3 Os 184	
5 Os 184 5 Re 184 4 W 180	
W 180	
3 Ta 18 2 Hf 17 1 Lu 17	
2 Hf 174	
) Yb 168 9 Tm 169 3 Er 169 7 Ho 169	
7 Tm 169	
3 Er 16	2 164 166 167 168 170
3 Dy 📃 15	
5 Dy 150 5 Tb 152 4 Gd 152	
3 Eu 15 2 Sm 14	
2 Sm 14	4 147 148 149 150 152 154
) Nd 14 <u>/</u>) Pr 14/	
3 Ce 📃 130	5 138 140 142

Preprint 18 October 2019

Compiled using MNRAS IATEX style file v3.0

arXiv-1911.02545

Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r- process components

N. Prantzos,¹* C. Abia,² S. Cristallo^{3,4} M. Limongi,^{5,6} A. Chieffi^{7,8}

¹Institut d'Astrophysique de Paris, UMR7095 CNRS, Sorbonne Université, 98bis Bd. Arago, 75104 Paris, France

²Departmento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain

³ Istituto Nazionale di Astrofisica - Osservatorio Astronomico d'Abruzzo, Via Maggini snc, I-64100, Teramo, Italy

⁴ Istituto Nazionale di Fisica Nucleare - Sezione di Perugia, Via Pascoli, I-06123, Perugia, Italy

⁵ Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Roma, Via Frascati 33, I-00040, Monteporzio Catone, Italy

⁶ Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI)

⁷ Istituto di Astrofisica e Planetologia Spaziali, INAF, via Fosso del cavaliere 100, 00133 Roma - Italy

⁸ Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Victoria 3800, Australia

Thanks for your attention !!