The Belgian Repository of fundamental Atomic Data and Stellar Spectra

A. Lobel, M. Laverick, T. Merle, P. Royer, C. Martayan, P. van Hoof, M. Van der Swaelmen, M. David, H. Hensberge, E. Thienpont

Alex.Lobel@oma.be

Royal Observatory of Belgium, Univ. of Leuven, Univ. Libre de Bruxelles

Univ. of Antwerp, Vereniging voor Sterrenkunde, Belgium

European Southern Observatory, Chile

Science motivation

- Compilation of high-quality optical spectral atlases of bright benchmark BAFGK stars with confirmed line identifications and quality-tested atomic line data.
- Modelling of high-resolution optical spectra of bright stars of every stellar spectral sub-class observed with SNR~1000 (HERMES & UVES)
- Perform detailed spectral synthesis calculations to test quality of atomic line input data from literature and online data providers (VAMDC, NIST, and more).
- Provide observed and theoretical spectra combined with quality-tested atomic data in public online database called BRASS.
- Institutional networking project of Belgian Federal Science Policy Office in the BRAIN.be program of 2015-, also involving ESO.

Mercator-HERMES and VLT-UVES spectrographs

- HERMES = High Efficiency and Resolution Mercator Echelle Spectrograph Collaboration project between the Univ. of Leuven, the Université Libre de Bruxelles and the Royal Observatory of Belgium, with contributions from the Observatoire de Genève (Switzerland) and the Thüringer Landessternwarte Tautenburg (Germany).
- UVES = Ultraviolet and Visual Echelle Spectrograph on ESO VLT UT2.
- HERMES spectral resolution R=85,000. Optimized for high efficiency in visual band. λ =377 nm to 900 nm observed in a single exposure.
- UVES R=47,000. Built for maximum mechanical stability & accurate wavelength calibration.

BAFGK benchmark spectra for BRASS

- Benchmark spectra of SNR~1000 are used for testing the quality of atomic input data.
- 5-7 bright stars per spectral type. Narrow-lined stars (Vrot < 20 km/s), single, invariable, not-peculiar stars are selected having metallicity close to solar (not metal-poor field/halo stars).
- We determine atmospheric parameters Teff, log*g*, [M/H], [α/H],Vmic, & [X/H] values using ~30 diagnostic lines and compare to literature parameters (Lobel et al. 2017, Can J. Phys., 95, 833).
- We develop "synthetic template continuum normalization" procedure.

Detailed RT modeling of observed stellar spectra

- Correctly fit detailed profiles of absorption lines simultaneously with atomic input line data: rest wavelength λ_0 , oscillator strengths log(*gf*), line damping contants.
- Spectrum synthesis calculations with radiative transfer in LTE using 1-D hydrostatic atmosphere models of FGK-type dwarf stars of 5000 K < Teff < 6000 K.

Cool stars (F G K) benchmark spectra for BRASS

- Molecular line opacity included in the theoretical FGK spectrum calculations.
- Molecular lines in optical spectrum of the Sun (G-type) are weak, but stronger in K- and M-type stars.
- Atomic lines blending together with molecular lines are avoided for further analysis in BRASS.

Detailed RT modelling of observed stellar spectra

- Correctly fit detailed profiles of absorption lines simultaneously with atomic input line data: rest wavelength λ_0 , oscillator strengths log(*gf*), line damping contants.
- Spectrum synthesis calculations with radiative transfer in LTE using 1-D hydrostatic atmosphere models of FGK-type dwarf stars of 5000 K < Teff < 6000 K.

Atomic and molecular data for BRASS

- BRASS atomic line data compiled from literature until 2012 (+2014) in 400 nm < λ < 680 nm.
- SpectroWeb compilation from literature before 2007 & older data in NIST V-4 & VALD-2.
- Retrieved CHIANTI, TIP/TOPbase, and Spectr-W³ atomic line data from VAMDC database.

Repository	Origin	No. lines	Date	Ion	λ	A_{ki}	f_{ik}	$\log(gf)$	$E_{low/up}$	$J_{low/up}$	
BRASS	-	82337	2012 ^b	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
SpectroWeb	-	62181	2008 ^b	\checkmark	\checkmark			\checkmark	\checkmark_{f}		
VALD3	VALD	158861	26/05/2016	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
NIST	NIST	36123	14/03/2016	\checkmark	\checkmark_{c}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Spectr-W ³	VAMDC	5515	14/03/2016	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
TIPbase ^a	NORAD	33108	28/02/2017	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark_{g}		
TOPbase ^a	VAMDC	33462	24/05/2016	\checkmark	\checkmark			\checkmark_{e}	\checkmark_g		
CHIANTI	VAMDC	3587	18/03/2016	\checkmark	\checkmark_d	\checkmark		\checkmark_{e}	\checkmark_f	\checkmark	

 \Rightarrow Total number of retrieved transitions: ~400,000 atomic lines

 Retrieved di-atomic molecular data from literature and ExoMol database for CN, C₂, CH, AlH, CaH, SiH, FeH, CrH, NH, OH, MgH, TiO, ZrO, VO:
 = several tens of millions of molecular lines added to spectrum synthesis line lists.

Cross-matching atomic line data for BRASS

- Atomic data sources carrying electronic configuration information are cross-matched based on electronic configuration information only (includes the terms and *J* of upper and lower states).
 - \Rightarrow First time this has been successfully accomplished for BRASS.
 - Resolve:- inhomogeneous configuration nomenclatures across sources
- detection of many duplicated lines in data sources (VALD3)
- book-keeping required for hyperfine and isotopic componentsExample:BRASS vs. NIST
BRASS vs. VALD3
BRASS vs. TOP/TIPBASE (spectral terms and seniority index)
- Without electronic configuration info cross-matches consider thresholds for differences in λ_0 and energy levels. Traditional cross matching method of atomic data source builders
 - levels. Traditional cross-matching method of atomic data source builders.
 - <u>Resolve:</u> cross-matches can be sensitive to choices of the threshold levels
 - Example: BRASS vs. SpectroWeb
 - BRASS vs. CHIANTI BRASS vs. Spectr-W³

Cross-matching atomic line data for BRASS

- NIST updates of atomic log(gf) values between 2012 and 2016
- $\log(gf)$ differences to ~2 dex.

Cross-matching atomic line data for BRASS

- Many updates of atomic log(*gf*)-values between 2007 and 2012
- $\log(gf)$ differences to >3 dex.

BRASS Data Interface – Atomic lines

SPECTRA LINES	DUPLICATED LINES	DOWNLOAD SPECTRA	HELP CREDITS	THE BELGIAN REPOSITORY OF ATOMIC DATA AND STELLAR SPECTRA © 2019
BRASS Lines				
QUERY BRASS ATOMIC L	INES DATA			
Search	BRASS da	atabase		
Element (e.g. Fe, fe; for all elements all): Start wavelength (A, >4000): End wavelength (A <6800):	4924 4926			
Present as:	○plot © table			
Sort by (matters for table presentation only):	rowavelength sigm	haLoggf		
C			©B	RASS 2019

Lines

BRASS Data Interface – Atomic lines

BRASS Lines

Lines of S

Save se	lected lines									
ID BRASS	Source	Wavelength	E low	E up	Element I	on Log(gf)	Lower level	Upper level	Reference	
Dialoc	·					< >				
						σ				
						N				
V 18914	BRASS	4924.11	13.618	16.135	S 2	-0.059	LS 3s2.3p2. (3P).4s 4P	LS 3s2.3p2. (3P).4p 4P*	[Miller, M. H., Wilkerson, T. D., Roig, R. A., and Bengtson, R. D. 1974, Phys. Rev. A 9, 2312]	
18914	VALD3	4924.11	13.6175	16.1347	S 2	-0.059	'LS 3s2.3p2. (3P).4s 4P'	'LS 3s2.3p2. (3P).4p 4P*'	[M. H. Miller, T. D. Wilkerson, R. A. Roig, and R. D. Bengtson. Absolute line strengths for carbon and sulfur. Phys. Rev. A, 9:2312-2323, Jun 1974. [DOI:10.1103/PhysRevA.9.2312]]	
18914	NIST	4924.115	13.617382	2 16.13457	9 S 2	-0.341	'3s2.3p2. (3P).4s4P'	'3s2.3p2. (3P).4p4P*'	[Breit-Pauli oscillator strengths, lifetimes and Einstein A-coefficients in singly ionized sulphur, A. Irimia and C. Froese Fischer, Phys. Scr. 71, 172-184 (2005) DOI:10.1238/Physica.Regular.071a00172; G. Tachiev and C. Froese Fischer, The MCHF/MCDHF Collection (energy-adjusted MCHF calculations), downloaded on December 21,2005]	
18914	SpectroWeb	4924.11	13.6171	16.1341	S 2	-0.059			[M. H. Miller, T. D. Wilkerson, R. A. Roig, and R. D. Bengtson. Absolute line strengths for carbon and sulfur. Phys. Rev. A, 9:2312-2323, Jun 1974. [DOI:10.1103/PhysRevA.9.2312]]	
18914	CHIANTI	4924.11	13.617	16.1342	S 2	-0.075514	'3s2 3p2 4s'	'3s2 3p2 4p'	v4	
18914	spectrw3 TIPbase	4924.1	13.6163	16.1341	S 2	-0.142879			[Wiese W.L., Martin G.A., NSRDS-NBS, 1990, 68, Wavelengths and transition probabilities for atoms and atomic ions]	
18914	TOPbase	5012.72123235	14.012134	4 16.49430	3 S 2	-0.210	'4s 4P'	'4p 4P*'	[Laverick M., Lobel A., Merle T., Royer P., Martayan C., David M., Hensberge H. and Thienpont E. 2018, Astron. Astrophys. 612, A60, dx.doi.org/10.1051/0004-6361/201731933]	
						-0.135				
						0.099				
						7				
V 18936	BRASS	4925.343	13.584	16.101	S 2	-0.235	LS 3s2.3p2. (3P).4s 4P	LS 3s2.3p2. (3P).4p 4P*	[Miller, M. H., Wilkerson, T. D., Roig, R. A., and Bengtson, R. D. 1974, Phys. Rev. A 9, 2312]	
18936	VALD3	4925.343	13.5839	16.1005	S 2	-0.235	'LS 3s2.3p2. (3P).4s 4P'	'LS 3s2.3p2. (3P).4p 4P*'	[M. H. Miller, T. D. Wilkerson, R. A. Roig, and R. D. Bengtson. Absolute line strengths for carbon and sulfur. Phys. Rev. A, 9:2312-2323, Jun 1974. [DOI:10.1103/PhysRevA.9.2312]]	
18936	NIST	4925.347	13.583794	4 16.10036	2 S 2	-0.206	'3s2.3p2. (3P).4s4P'	'3s2.3p2. (3P).4p4P*'	[Breit-Pauli oscillator strengths, lifetimes and Einstein A-coefficients in singly ionized sulphur, A. Irimia and C. Froese Fischer, Phys. Scr. 71, 172-184 (2005) DOI:10.1238/Physica.Regular.071a00172; G. Tachiev and C. Froese Fischer, The MCHF/MCDHF Collection (energy-adjusted MCHF calculations), downloaded on December 21,2005]	
18936	SpectroWeb	4925.343	13.5835	16.0999	S 2	-0.235			[M. H. Miller, T. D. Wilkerson, R. A. Roig, and R. D. Bengtson. Absolute line strengths for carbon and sulfur. Phys. Rev. A, 9:2312-2323, Jun 1974. [DOI:10.1103/PhysRevA.9.2312]]	
18936	CHIANTI	4925.35	13.5834	16.0999	S 2	-0.0601813	3 '3s2 3p2 4s'	'3s2 3p2 4p'	v4	
18936	spectrw3	4925.3	13.5827	16.0999	S 2	-0.156032			[Wiese W.L., Martin G.A., NSRDS-NBS, 1990, 68, Wavelengths and transition probabilities for atoms and atomic ions]	
	TIPbase									
									© 87455 2019	
1. Contract (1. Contract)										

- BRASS atomic lines data queries in 400 680 nm \rightarrow centralization of all data sources.
- BRASS log(gf) references & provenance info provided; includes removal of duplicates.
- Users can request log(*gf*) difference plots per element, or for all elements.

BELGIAN REPOSITORY OF ATOMIC DATA AND STELLAR SPECTRA V4.0-2017

UERY BRASS ATOMIC LINES DATA

Comparison of LogGF values between BRASS and other sources

Fe 2

QUERY BRASS ATOMIC LINES DATA

2

-2

BRASS LI

Vald3-BRASS

Comparison of LogGF values between BRASS and other sources

.

Fe 1

Fe 1 5607.6637 (x,y):(-3.437, 1.167)

BRASS

Continuum flux normalized FGK benchmark spectra

• Systematic search for sufficiently unblended atomic lines for atomic data quality assessment work.

Continuum flux normalized FGK benchmark spectra

• Systematic search for sufficiently unblended atomic lines for atomic data quality assessment work.

1. Clean unblended lines selection procedure

- Detailed line synthesis calculations to assess percentage of line blending by neighbouring lines.
- All 82337 atomic lines are calculated with and without neighbouring lines to quantify amount of overlap.
- 1091 lines are sufficiently unblended having clean core profiles required for detailed profile modelling.

Atomic lines selection for quality assessment

- 1091 photospheric lines are rather uniformly distributed across the 400 680 nm range.
- Lines inside very broad H Balmer wings are typically not selected.
- Optical and near-IR telluric H₂O and O₂ bands are avoided or lines de-selected during quality assessment.

2. Detailed line profile radiative transfer modelling

- Iteratively vary line rest-wavelength value in steps of 0.05 Å.
- Iteratively vary line log(*gf*)-value in steps of 0.005 dex.

Best profile fit using B-splines in λ_0 and log(gf)

• B-splines minimization procedure finds best λ_0 and $\log(gf)$ -values per benchmark star.

• Calculate weighted mean and standard deviation per 1091 selected atomic lines.

Modelling the spectrum of Sun-like star 51 Peg

• First main-sequence star with Jupiter size exoplanet dicovered in 1995.

- Over 20 publications with atmospheric parameters of host star from spectra.
- Range of literature values: 5674 K \leq Teff \leq 5804 K and $0.18 \leq$ [M/H] \leq 0.24.

Example of detailed modelling in Sun-like star 51 Peg

• Range of log(*gf*) iterations typically spans differences in published log(*gf*)-values.

• Detailed best fit based on spectrum synthesis includes atomic&molecular background.

3. Accurate equivalent line width measurements

- Levenberg-Marquardt iteration using Gaussian fit function.
- Incorporate EW corrections in case of lines saturating on the curve-of-growth.

• Calculate mean $<\Delta \log(gf)>$ to theoretical line c-o-gs of benchmark stars plus std. dev.

Observed Curve-of-Growth in the Sun

Fe I curve-of-growth becomes less scattered when mean <Δlog(gf)> corrections are applied to literature log(gf)-values.

Selection of BRASS quality assessible lines

If mean <∆log(gf)> values from c-o-g and detailed profile fits agree within 0.04 dex the line is quality assessible (408 lines of 1091) and compared to all literature values.
 → Error analysis discussed in M. Laverick, PhD Dissertation Sep 2019, KU Leuven.

BRASS log(gf) quality assessment results

Species	number of	quality	analysis
	investigated lines	assessable	independent
Ст	1	1	
Naı	3	3	2
Мgı	5	5	2
Alī	2	2	1
Siı	56	42	14
SiII	2	2	
SI	1	1	
Caı	21	21	10
Can	1		
Scı	1	1	
Sc II	19	17	3
Τiι	90	80	47
Ti II	36	28	10
VI	15	14	6
VII	1	1	
Cr I	82	61	36
Cr II	12	7	3
Мп I	13	9	1
Feı	543	401	231
Fe II	30	15	4
Coi	15	9	
Niı	126	112	38
${ m Zn}$ 1	2	2	
$\mathrm{Sr}\mathrm{I}$	1	1	
ΥII	9	8	
Ba 11	1		
Lan	2	1	
${ m Ce{\scriptstyle II}}$	1	1	
Total:	1091	845	408

- 70% of Fe-group lines (incl. Fe II) have at least one literature log(gf) within errorbar of <log(gf)> from detailed fits.
- Only 38% of investigated Fe I lines have literature log(*gf*)-values in agreement with our analysis results.
- Dedicated pages available in BRASS interface with overview of quality assessment results for 1091 investigated atomic lines.

BRASS log(gf) quality assessment results

- 408 quality assessible lines reveal significant differences in medium-strong lines for BRASS input log(*gf*)-values between -3 and 0.
- Some transitions reveal log(gf) differences exceeding 0.5 dex for small std. dev. (\rightarrow Fe I lines).
- Towards weak lines with BRASS input log(gf) < -3 the differences substantially decrease.

Validation of BRASS quality assessible lines

• Averages over 408 quality assessible lines show no systematic offsets between $\langle \log(gf) \rangle$ and BRASS input $\log(gf)$ for model parameters of all benchmark stars.

BRASS Data Interface – Stellar spectra

- Interactive environment for the combined display of star spectra and atomic line data.
- Lines-of-interest can be saved to user disk with html links to atomic data and quality plots.
- Users can download observed & theoretical spectra and/or measure line properties online.

Atomic data quality assessment pages in BRASS

SPECTRA LINES DUPL	ICATED LINES	DOWNLOAD	O SPECTRA	HEL	CREDITS]		THE BELGIAN I	REPOSITORY	OF ATOM	IC DATA AN	D STELL/	AR SPEC	TRA © 20	19			
BRASS Spectra and Data Displ	ay																	
BENCHMARK STARS	LOADED WAV	ELENGTH RE	EGIONS															
K-stars	REGION #1	REGION	#2 REGI	ON #3	REGION #4	ATOMIC DATA	QUALITY GAUSS	LINE FIT										
HERMES Arcturus	INVESTIGAT			STICATE			056										с	LEAR ALL
HERMES Eps Eri 🔘 🔘	INVESTIGAT	ED LINE TAB		STIGALE	D LINE DATA	LII. REFEREN	CE3											
G-stars	Show / col	lapse table	e info															
	Select Investig	ated species	s:															
	Ci Nai	Mgi A	lı Sir	Sin	Sı Caı	Call Sci	Scii Tii Ti	II VI VII Cri	Crii M	/ni Fe	ei Feii	Col	Nii	Zni	Sri Y	II Bai	ı Laıı	Сеп
KPNO-FTS Sun		Ŭ																
HERMES 51 Peg U																		
F-stars	red label numbe	wavelengt	th (Å)	Elow (eV)	log(g f) derived	by BRASS	BRASS quality flags		Tested literat	ure log(<i>g</i> f)	values							
HERMES 10 Tau 🔿 🔘																		
HERMES Beta Com 🔘 🔘																		
HERMES Procyon		Input λ	Δλ _{grid}		cog curve-of-growth	grid line profile fits	Quality Assessable	Analysis Independent	BRASS input	NIST	SpectroWeb	VALD	Spec-W ³	CHIANTI	TinBASE	TonBASE	Recommended	1 bers
A-stars					curre-or-growin	inte prome inta		<u></u>		11101	opeenoned	TALD	opec-m	CHIANT	TIPEROL	TOPDAGE	interature num	
HERMES 68 Tau	409	5052 144	0.002	7.685	=1.12	-1.29	/	×	-1.30 ¹	-1.30 ¹	-1.30 ²	-1.30 ³	-1.494	_	_	-1.45°	1234	
HERMES A bench 2			0100010.005		111400.11	112010.12		Nau									., _, o, .	
A	358	4982.814	0.004	2.104	-0.76.000	-0.86.044	/	x	-0.92°	_	-0.962	_	_	_	_	_	2.6	
REFERENCE STARS	901	6154.225	-0.006±0.002	2.102	-1.42 _{±0.05}	-1.45=0.04	1	2	-1.55°	-1.557	-1.562	-1.55 ³	-	-	-	-1.555	_	
A-stars	905	6160.747	-0.004±0.002	2.104	-1.12 _{±0.07}	-1.12 _{±0.08}	1	1	-1.25*	-1.257	-1.26 ²	-1.25 ³	-	-	-	-1.255	-	
HERMES ASIAI TBC								Mgi										
B-stars VLT-LIVES Bstar TBC	125	4571.096	-0.008±0.003	0.000	-5.46±0.09	-5.57 _{±0.09}	1	×	-5.62 ³	-5.628	-5.692	-5.62 ³	-	-	-	-	3, 8	
	227	4730.029	0.001±0.003	4.346	-2.17±0.10	-2.23 _{±0.08}		X	-2.35 ³	-2.35*	-2.322	-2.35°	-	-	_	-2.34°	- 2	
	978	6318,717	-0.011+0.002	5,108	-1.83.00	-1.87+0.07		2	-2.1011	-2.1011		-2.10 ³	_	_	_	-2.10 ⁵	-	
	979	6319.237	-0.003 _{±0.011}	5.108	-2.07 _{±0.05}	-2.10±0.04	1	1	-2.3211	-2.3211	-	-2.32 ³	-	-	-	-2.335	-	
								ALI										
	1056	6696.023	-0.006±0.002	3.143	-1.40±0.08	-1.45*0.07	1	x	-1.5712	-1.5712	-2.85 ²	-1.3513	-1.344	-	-	-1.575	-	
WAVELENGTH REGIONS	1057	6698.673	-0.007 _{±0.003}	3.143	$-1.74_{\pm 0.07}$	$-1.76_{\pm 0.04}$	1	1	-1.8712	-1.8712	-2.65 ²	-1.6513	-1.644	-	-	-1.875	-	
112 6530-6560 A 🕓								Sii										
113 6560-6590 A 🔿	340	4947.607	-0.009±0.002	5.082	-2.16 _{±0.05}	-2.18±0.05	*	*	-1.7614	-	-2.20 ²	-1.7614	-1.814	-	-	-	2	
114 6590-6620 A 🔿	415	5070.950	-0.026±0.016	5.082	-2.81±0.22	-3.22±0.10	×	×	-2.25**	_	-4.00 ²	-2.25**	-	-	_	_	×	
115 6620-6650 A	594	5488.983	-0.015 _{±0.003}	5.614	-1.68±0.05	-1.75 _{±0.05}	2	x	-2.3014	_	-1.90 ²	-2.3114	-	-	_	_	-	
116 6650-6680 A	610	5517.533	0.000 _{±0.003}	5.082	$-2.38_{\pm 0.05}$	-2.42 _{±0.05}	1	1	-2.6114	-	-2.612	-2.6114	-	-	-	-	-	
117 6680-6710 A	647	5622.220	0.014±0.009	4.930	-2.87±0.07	-3.07±0.05	x	x	-2.6114	-1.6415	-3.06 ²	-2.6114	-1.644	-	-	-2.005	X	
110 0380-0710 A O	675	5654,919	-0.013±0.004	4.930	-1.98±0.03	-2.06±0.05	×	X	-2.0410	-1.6310	-2.14 ²	-2.14"	-	-	-	-1.735	16 X	
118 6/10-6/40 A	683	5665.555	-0.016+0.000	4.920	-1.91=0.04	-2.06+0.05	x	x	-1.9416	-2.0417	-2.04 ²	-2.0417	-	-	-	-1.825	×	
119 6740-6770 A 🤜	684	5666 677	0.001	5.616	1.50	1.60	Y	Y	1 8014		1.652	1 8014					¥	
120 6770-6800 A 🕓				_						_		_	_	_		_		\square
								© BRASS 2019										

• Interactive environment for the combined display of star spectra and atomic line data.

- Lines-of-interest can be saved to user disk with html links to atomic data and quality plots.
- Users can download observed & theoretical spectra and/or measure line properties online.

Atomic data quality assessment pages in BRASS

- 1091 quality-assessed lines with interactive display in 7 FGK-type benchmark stars.
- Atomic data and line quality information λ_0 , $\log(gf)$, % of line blending, obs. and model EWs.
- Full error budget analysis of literature log(gf)-values based on RT modelling and c-o-g analysis. \Rightarrow BRASS evaluates accuracy of log(gf)-values per atomic data source.

BRASS BDI - Spectrum download & Help pages

BRASS Data	Download										
DOWNLOAD PA	AGES REGIST	ER TO BRAS	S CONFIRM R	EGISTRATI	ION					LOGIN	
Please first register via the menu above and next login											
for accessing BR	ASS data files	in these Table	IS .								
BRASS BENCH	MARK STAR S	DECTRA									
Spectral Type	Instrumont	Star name	Spoor	trum		Spoctrum	Sp	octrum	Sportrum		
Opecata Type	Instantent	Starnane	OBSERVED	uum	OBSER	VED	MODEL	souum	MODEL		
			NORMALIZE	D	NOT NO	ORMALIZED	UNBROAD	ENED	BROADENED		
к	Hermes	Arcturus	Arcturus_OB	V.ascii	Arcturus	OBU.ascii	Arcturus_M	UB.ascii	Arcturus_MBR.asci		
			Arcturus OB	V.fits	Arcturus	OBU.fits	Arcturus M	UB.fits	Arcturus MBR.fits		
к	Hermes	Eps Eri	Eps_Eri_OBN	l.ascii	Eps_Eri	OBU.ascii	Eps_Eri_M	JB.ascii	Eps_Eri_MBR.ascii		
			Eps Eri OBN	I.fits	Eps Eri	OBN.fits	Eps Eri Of	BN.fits	Eps Eri OBN.fits		
G	Hermes	70 Oph	70-Oph_OBN	I.ascii	7 <u>0-Oph</u>	OBU.ascii	70-Oph_ML	JB.ascii	70-Oph_MBR.ascii		
			70-Oph OBM	I.fits	70-Oph	OBN.fits	70-Oph Of	3N.fits	70-Oph OBN.fits		
G	Hermes	70 Vir	70-Vir_OBN.a	ascii	70-Vir_0	DBU.ascii 70-Vir_MU		3.ascii	70-Vir_MBR.ascii		
			70-Vir OBN.f	fits 70-V		OBN.fits 70-Vir		V.fits	70-Vir OBN.fits		
G	Hermes	51 Peg	51-Peg_OBN	.ascii	51-Peg	51-Peg_OBU.ascii		JB.ascii	51-Peg_MBR.ascii		
			51-Peg OBN	.fits	51-Peq	51-Peg_OBN.fits		BN.fits	51-Peg OBN.fits		
F	Hermes	10 Tau	10-Tau_OBN	.ascii	<u>10-Tau</u>	10-Tau_OBU.ascii		IB.ascii	10-Tau_MBR.ascii		
			10-Tau OBN	.fits	10-Tau	10-Tau OBN.fits		N.fits	10-Tau OBN.fits		
F	Hermes	Beta Com	Bet_Com_OE	3N.ascii	Bet_Co	Bet_Com_OBU.ascii		/UB.ascii	Bet_Com_MBR.asc	ii	
			Bet Com OE	3N.fits	Bet Cor	Bet Com OBN.fits		OBN.fits	Bet Com OBN.fits		
F	Hermes	Procyon	Procyon_OB	V.ascii	Procyon_OBU.ascii		Procyon_MUB.ascii		Procyon_MBR.asci		
			Procyon OB	V.fits	Procyon OBN.fits		Procyon OBN.fits		Procyon OBN.fits		
Α	Hermes	68 Tau	68-Tau_OBN	.ascii	<u>68-Tau</u>	68-Tau OBU.ascii		B.ascii	68-Tau_MBR.ascii		
			68-Tau OBN	.fits	68-Tau	OBN.fits	68-Tau OB	N.fits	68-Tau OBN.fits		
В	Hermes	HR 7512	HR_7512_0	3N.ascii	HR_751	2_OBU.ascii	HR_7512_	MUB.ascii	HR_7512_MBR.as	cii	
			HR 7512 OF	BN.fits	HR 751	2 OBN.fits	HR 7512	OBN.fits	HR 7512 OBN.fits		
More to come	me Other Other Other			Other		Other		Other			
-	·								·		
BRASS REFERE	ENCE STAR S	PECTRA									
Sne	ctral Type		nstrument	Star	name	Snec	trum		Spectrum		
Ope				- Ciarr		OBSERVED		OBSERVE	D		
						NORMALIZED		NOT NOR	IOT NORMALIZED		
Under construct	tion	Other		Other		Other		Other			
					© BRASS 2	019					

- Offers un/normalized benchmark spectra.
- Offers un/broadened theoretical spectra calculated with BRASS quality assessed atomic data values.

BRASS Help
HELP PAGES LINES BDI SPECTRA BDI SAVE DATA CONTACT
LINES BDI
How do I query BRASS for atomic line data?
Play video tutorial
How do I make a plot of BRASS cross-matched log(gf)-values?
Play video tutorial
SPECTRA BDI
How do I interactively display BRASS stellar spectra?
Play video tutorial
How do I make a plot of graded BRASS lines?
SAVE DATA
How do I save a list of graded BRASS lines?
How do I measure equivalent line widths?
C BRASS 2019

Summary

- BRASS centralizes atomic data needed in quantitave stellar spectroscopy.
- Atomic data are retrieved from literature of the past half century, and from 7 main atomic databases with ~ half million lines for synthetic spectrum modelling.
- BRASS provides semi-empiric assessments of the quality of log(*gf*)-values and restwavelengths of ~1100 unblended atomic absorption lines observed in stellar benchmark spectra, fully covering 400 – 680 nm.
- 11 benchmark spectra currently incorporated in BRASS repository for combined interactive display of line identifications, atomic data quality assessments, and observed line properties (% blending, EWs, depths).
- Currently based on FGK benchmark stars. Will be further expanded to hot (lateB & A) benchmarks with focus on more and higher ionic lines (requiring non-LTE RT).