CONTRIBUTION OF MASSIVE STAR STELLAR WINDS TO FLUORINE 19

An element for which stellar winds may play a role

- Georges Meynet, Sylvia Ekström, Cyril Georgy (UNIGE)
- Stéphane Goriely, Marcel Arnould, Sophie Van Eck and Alain Jorissen (ULB)
- Hannah Brinkmann and Maria Lugaro (Konkoly Observatory, Budapest)

Stellar winds can save them from destruction!

- Enriched layers have to be removed at the right moment
- Other elements share this property \rightarrow He, ¹²C, ¹³C, ²²Ne, ²⁶Al

Why is this element interesting?

Comparisons with observations – Tests of stellar physics and nucleosynthesis

¹⁹F in AGB stars

Jorissen+,1992 Uttenthaler+,2008 Abbia+,2009,10,15,19

¹⁹F in red giants

Jönsson+2017

¹⁹F in normal G and K stars in the thin disk

Pilachowski & pace +2015

¹⁹F in dwarf stars

Recio-Blanco+2012

Physics of AGB stars

Which are the potential sources of ¹⁹F?

AGB stars

Karakas 2010 Cristallo + 2014

Massive stars

Meynet & Arnould 2000 Palacios + 2005 Prantzos+ 2018

<u>v–process</u>

Woosley & Haxton 2002

<u>Novae</u>

José & Hernanz 1998

Synthesis in He-burning Regions

Both intermediate and massive stars

Explosive processes can contribute to both

THE NUCLEOSYNTHETIC PATH

PRODUCED AT VERY BEGIINNING OF THE He-BURNING CORE

$$(\beta^{+})^{18}O(p,\alpha)^{15}N(\alpha,\gamma)^{19}F$$

$$\stackrel{\checkmark}{\rightarrow} (n,p)^{18}O(p,\alpha)^{15}N(\alpha,\gamma)^{19}F(\alpha,p)^{22}Ne.$$

$$\stackrel{\checkmark}{\searrow} (n,\alpha)^{15}N(\alpha,\gamma)^{19}F$$

$$^{13}C(\alpha, n)$$
 ¹⁶O and ¹⁴N (n, p) ¹⁴C
Goriely et al. (1989)

EJECTED WHEN He-CORE IS UNCOVERED AT AN EARLY STAGE OF CORE He-BURNING

WEAK MASS LOSSES \rightarrow He-core uncovered late when 19F already in part destroyed

GM & Arnould 2000

 X_{19}^{c} [10⁻⁴], 6+ X_{19}^{s} [10⁻⁴]

STRONGER MASS LOSSES \rightarrow He-core uncovered early when ¹⁹F has reached max. value

 X_{19}^{c} [10⁻⁴], 6+ X_{19}^{s} [10⁻⁴]

But He-core so small that mass lost is less than in Z=0.02!

 X_{19}^{C} [10⁻⁴], 6+ X_{19}^{S} [10⁻⁴]

More recent computations with GENEC

Ekström + 2012 Z=0.014 Georgy+ 2013 Z=0.002 Groh+ 2019 Z=0.0004

In preparation Z=0.006 Z=0.000 Z=0.020

With respect to GM & Arnould 2000

Mass loss different (reduced) Nuclear reaction rates CF88-Nacre Initial abundances Z=0.014 Rotational mixing effect included

Negative stellar yields : the H-rich layers are depleted in ¹⁹F and overcome the effect of nthe ejection of ¹⁹F rich layers

 $p_{19}^{\text{wind}}(M_{i}, Z) = \int_{0}^{\tau(M_{i}, Z)} [X_{19,S}(M_{i}, Z, t) - X_{19,S}(Z, 0)] \dot{M}(M_{i}, Z, t) dt.$

Rotation has small effects

 $p_{19}^{\text{wind}}(M_{i}, Z) = \int_{0}^{\tau(M_{i}, Z)} [X_{19,S}(M_{i}, Z, t) - X_{19,S}(Z, 0)]\dot{M}(M_{i}, Z, t)dt.$

Change of initial composition, but same physics as Ekstöm+ 2012

 $p_{19}^{\text{wind}}(M_{i}, Z) = \int_{0}^{\tau(M_{i}, Z)} [X_{19,S}(M_{i}, Z, t) - X_{19,S}(Z, 0)]\dot{M}(M_{i}, Z, t)dt.$

Change of initial composition+rotation, but same physics as Ekstöm+ 2012

Non-rotating Z=0.020 Palacios+ 2005

 $p_{19}^{\text{wind}}(M_{i}, Z) = \int_{0}^{\tau(M_{i}, Z)} [X_{19,S}(M_{i}, Z, t) - X_{19,S}(Z, 0)] \dot{M}(M_{i}, Z, t) dt.$

MESA models

 $p_{19}^{\text{wind}}(M_{\rm i}, Z) = \int_{0}^{\tau(M_{\rm i}, Z)} [X_{19,\rm S}(M_{\rm i}, Z, t) - X_{19,\rm S}(Z, 0)] \dot{M}(M_{\rm i}, Z, t) dt.$

Close binaries

50 M_{sol}+45M_{sol}, P_{ini}=72.3 day

Brinkman+ 2019

CLOSE BINARIES

 J_0

Models by Ekström+2012 No Rot Z=0.014

Non-rotating

Very massive stars > $120 M_{sol}$

<u>Milky way, NGC 3603</u>: $10^4 M_{sol,}$, age ~1.5 Myr Masses \rightarrow 83 - 180 M_{sol} LMC, R136 : 5 10⁴ M_{sol,} , age ~1.7 Myr

Crowther, Schnurr, Hirschi, Yusof, Parker, Goodwin, Abu Kassim, 2010

STARS WITH MASSES ABOVE 150 M_{sol}

Yusof+ 2013

Very long phase during which material depleted in fluorine is ejected Little mass removed when He-core uncorvered

Spinstars: metal-poor fast rotating massive stars

At low metallicity, rotational mixing is boosted Mixing between the H-burning shell and the He-burning core enhance ¹³C, ¹⁴N,¹⁹F,²²Ne,s-process elements

Choplin+ 2019

Application: origin of the Carbon enhanced metal poor stars

STRONG STELLAR WINDS AT THE RIGHT MOMENT

He-core has to be uncovered at the right moment: very early in the core Heburning phase and when this occurs, a lot of mass has to be wind ejected.

NO FREQUENT OCCURRENCE

These circumstances do not appear to occur frequently according to present day stellar models (GENEC-MESA) for single and binary stars, for very mass stars too.

ROLE OF MASSIVE STAR STELLAR WINDS

With the present day reduced mass losses from massive stars, Models predict that stellar winds cannot contribute to the ¹⁹F enrichment of the ISM

SPINSTARS AND ¹⁹F

Strong production of ¹⁹F expected. A prediction of Spinstar's model for CEMP stars. What is the impact at the level of the MW?

And the ²⁶Al? What is the importance of stellar winds?

STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

Situation is much more favorable

¹⁹F and ²⁶Al share a common property

Built in stars at some stage and destroyed if kept locked in the star

²⁶Al \rightarrow core H-burning phase ¹⁹F \rightarrow core He-burning phase

Stellar winds can save them from destruction!

- Enriched layers have to be removed at the right moment

- Other elements share this property \rightarrow He, ¹²C, ¹³C, ²²Ne

Comparison of stellar winds impacts on ¹⁹F and ²⁶Al

FLUORINE 19

Produced at the beginning of the core He-burning phase In the He-burning core

He-core needs be uncovered at early time and star still have Kept sufficient mass for strong mass losses

Rotation has little impact Very massive stars have little impact, close binaries have some effects

ALUMINIUM 26

Produced during the core Hburning phase in the H-burning core

H-rich stellar winds during the Main-Sequence phase and the Phases before any WC phase

Rotation has an impact, Very massive stars have an impact, Close binaries have some effects

Aluminium-26 from Massive Binary Stars. I. Nonrotating Models*

H. E. Brinkman^{1,2}, C. L. Doherty^{1,3}, O. R. Pols⁴, E. T. Li⁵, B. Côté^{1,6}, and M. Lugaro^{1,3}

VERY MASSIVE STARS

		$M_{ m ini}~[{ m M}_{\odot}]$								
	$v_{ m ini}$	40	60	85	120	150	200	300	500	
0.002	0		0,060	$0,\!157$	$0,\!651$					
0,002	$40 \%(v_{\text{critique}})$		0,057	0,284	0,311					
0.014	0		0,718	$1,\!680$	3,714	6,217	$11,\!94$	32,58	76, 11	
0,014	$40 \% (v_{\text{critique}})$	$0,\!422$	$1,\!100$	$2,\!643$	7,289					
$2\pi r\sigma(r) dr \int_{M_{\star}=8} \Phi(M_{\star}) dM_{\star} = 2 \times 10^4 \text{ Ma}^{-1}.$ SNe in the last 1 Myr (2 per century)										
$a_{26} = \int_0^R 2\pi r\sigma$	$(r) \int_{M_{\star}=M_{\min}}^{M_{\max}} \Phi(r)$	$M_{\star}) \cdot M_{\star}$	$I_{\rm ^{26}Al}^{\rm totale}(M)$	$[_{\star}) _{v_{\star},Z_{\star}}$	$\mathrm{d}M_\star\;\mathrm{d}r$	p	lass of a	26Al pro time in	oduced the MV	V
$T_{26}(t) = \tau + P_{26} \equiv M_{26}^{\text{gal}}$. Mass present in the MW now, assuming steady state, $\tau \sim 1 \text{ Mm}$										

vitesse	$[\%(v_{ m critique})]$	${ m M_{26}}_{ m Al} \ [{ m M}_{\odot}]$	$M_{\star} \in$	méthode
Z=0.014	0	0,141	$[0,1; 120] M_{\odot}$	calculé
	0	0,931	$[0,1; 500] M_{\odot}$	$\operatorname{calcul\acute{e}}$
	40	0,560	$[0,1; 120] M_{\odot}$	calculé
	40	$3,\!698$	$[0,1;500]~{ m M}_{\odot}$	extrapolé

SOLAR METALLICITY MASSIVE STARS

Models by Ekström + 2012 \rightarrow ~0.5 M_{sol} of ²⁶Al from stellar winds in the MW

SOLAR METALLICITY VERY MASSIVE STARS

May enhance significantly the ${}^{26}Al$ production by massive stellar winds, up to 1 to 4 M_{sol}

Change of initial composition \rightarrow 0.020 \rightarrow 0.014 tends to lower the yields

 $p_{19}^{\text{wind}}(M_{i}, Z) = \int_{0}^{\tau(M_{i}, Z)} [X_{19,S}(M_{i}, Z, t) - X_{19,S}(Z, 0)]\dot{M}(M_{i}, Z, t)dt.$

Effect of rotation?

Phase when Fluorine is abundant in the core is too short for allowing rotational mixing to play a big role (at solar Z)

Rotation changes the tracks in the HRD, modifies the impact of mass loss by stellar winds

Solar abundances revisited

logarithmic scale with H defined to have 12.00

Element	Anders & Grevesse (1989)	Asplund et al. (2005)	Mass fractions Decreased
Carbon	8.56+/-0.06	8.39+/-0.05	-32%
Nitrogen	8.05+/-0.04	7.80+/-0.05	-44%
Oxygen	8.93+/-0.03	8.66+/-0.05	-54%
	$C+N+O \rightarrow 0.015$	$C+N+O \rightarrow 0$.080

3D hydrodynamical solar model atmosphere

• Non-LTE line formation when necessary

Atomic and molecular lines with improved data

Nuclear reactions

Effects of nuclear cross sections on ¹⁹F nucleosynthesis at low metallicities (Research Note)

S. Cristallo^{1,2}, A. Di Leva^{3,2}, G. Imbriani^{3,2}, L. Piersanti^{1,2}, C. Abia⁴, L. Gialanella^{5,2}, and O. Straniero^{1,2}

Reaction rate	Old source	New source		
1 Proton captures				
$^{14}N(p,\gamma)^{15}O$	Formicola et al. (2004)	Adelberger et al. (2011)		
$^{15}N(p,\gamma)^{16}O$	Angulo et al. (1999)	Leblanc et al. (2010)		
$^{17}O(p,\gamma)^{18}F$	Angulo et al. (1999)	Scott et al. (2012)		
$^{18}O(p,\gamma)^{19}F$	Angulo et al. (1999)	Iliadis et al. (2010)		
$^{15}N(p,\alpha)^{12}C$	Angulo et al. (1999)	Angulo et al. (1999)		
$^{17}O(p,\alpha)^{14}N$	Angulo et al. (1999)	Iliadis et al. (2010)		
$^{18}O(p,\alpha)^{15}N$	Angulo et al. (1999)	Iliadis et al. (2010)		
$^{19}F(p,\alpha)^{16}O$	Angulo et al. (1999)	La Cognata et al. (2011)		
α captures				
$^{14}C(\alpha,\gamma)^{18}O$	Caughlan & Fowler (1988)	Lugaro et al. (2004)		
$^{14}N(\alpha,\gamma)^{18}F$	Görres et al. (2000)	Iliadis et al. (2010)		
$^{15}N(\alpha,\gamma)^{19}F$	Angulo et al. (1999)	Iliadis et al. (2010)		
$^{18}O(\alpha,\gamma)^{22}Ne$	Giesen et al. (1994)	Iliadis et al. (2010)		
$^{19}\mathrm{F}(\alpha,\mathbf{p})^{22}\mathrm{Ne}$	Ugalde (2005)	Ugalde et al. (2008)		
$^{13}C(\alpha,n)^{16}O$	Drotleff et al. (1993)	Heil et al. (2008)		

 \rightarrow Minor effects

 ${}^{15}N(\alpha,\gamma){}^{19}F$ and the ${}^{19}F(\alpha,p){}^{22}Ne$

The thermonuclear production of ¹⁹F by Wolf-Rayet stars revisited

A. Palacios¹, M. Arnould¹, and G. Meynet²

