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Outline & Motivations

▶ (Near-)Extremal black holes in de Sitter spacetime

▶ Study deviations away from extremality for RNdS4 and
Kerr-dS4 BHs

▶ Characterise the differences between BHs in de Sitter
(Λ > 0) versus AdS (Λ < 0) and Minkowski (Λ = 0)
→ more extremal limits & richer phase space of solutions

▶ Charged and rotating dS BH; dimensional reduction and
gravitational perturbations. Are they described by JT?

▶ Review of Reissner-Nordström dS and presentation of
Kerr-dS

2 / 22



De Sitter black holes

Solutions of Einstein’s equations with a positive Cosmological
Constant (Λ > 0).
Presence of Λ has qualitative and quantitative repercussions on
our understanding of black holes:
▶ adds a cosmological horizon, rc
▶ Thermodynamics at the cosmological horizon [’77 Gibbons,

Hawking][’22 Banihashemi, Jacobson, Svesko, Visser]

dM = −TcdS +ΦcdQ+ΩcdJ

→ to what extent can we treat the cosmological horizon as
a thermal entity?

▶ New (near-)extremal limits & near horizon geometries
BHs suffer modifications due to the surroundings, de Sitter BHs
ideal lab to epxlore and quantify these differences.
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(Near-)Extremality

Extremality: two or three horizons coincide

▶ Temperature at the extremal horizon vanishes
→ Trh = 0

▶ in Minkowski, Extremal BHs have minimum
value of mass, given a fixed value of charge:
M = Q

▶ Geometry develops a throat, near horizon
region completely decouples from far away
region:
AdS2 factor NH geometry ⇒ enhancement of
symmetry

Near-extremality: the horizons are slightly separated from each
other
▶ The system acquires a little temperature: Trh ̸= 0

▶ Mass increases, δM ∼ T 2
rh

, δS ∼ Trh
▶ Finite distance separates the NH region from the far away region
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Reissner-Nordström black holes in de Sitter

Charged BHs with spherical symmetry:

S =
1

16πG

∫
d4x

√
−g (R− 2Λ− FµνF

µν) ,

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

2, V (r) = 1− 2M

r
+
Q2

r2
− Λ

3
r2

▶ Three horizons as solutions of V (r) = 0 at r = {r−, r+, rc}
RNdS4

Decoupling limit

▶ Three different extremal limits: Cold, Nariai, Ultracold
▶ Near horizon geometries are of the form M2 × S2

M2 = {AdS2, dS2,Mink2}

→ We build the effective gravitational theory on S2

[’22 A. Castro, FM, C. Toldo]

5 / 22



Phase space of RNdS4

▶ Main difference with AdS and Minkowski BHs: finite region
of admitted physical solutions & naked singularities outside
of it
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Thermodynamics of RNdS4

▶ Thermodynamics of Cold and Nariai at fixed charge, δQ = 0:

T+ ∼ O(λ), M =Mext,c +
T 2
+

Mgap
+ · · ·, S+ = Sc+

2T+
Mgap

, M cold
gap > 0

Tc ∼ O(λ), M =Mext,n +
T 2
c

Mgap
+ · · ·, Sc = Sn−

2Tc
Mgap

, MNariai
gap < 0

▶ Thermodynamics of Ultracold is different and present some
subtleties

δQ ̸= 0, δSc ∼ δΦc

Change in entropy driven by a change in chemical potential rather
than a change in temperature → infinite specific heat!

C−1
S =

1

T

(
dT

dS

) ∣∣∣∣
Q=const

→ reminiscent of flat 2D gravity [’19 Afshar, Gonzalez, Grumiller][’19 Vassilevich]
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Effective two-dimensional theory

Dimensional reduction of Einstein-Maxwell theory on
S2 :

I4D =
1

16πG

∫
d4x

√
−g

(
R(4) − 2Λ4 − FµνF

µν
)

ds24 = g(4)µν x
µxν =

Φ0

Φ
gabdx

adxb +Φ2
(
dθ2 sin2 θdϕ2

)
F = Fabx

a ∧ xb

I2D =
1

4G4

∫
d2x

√
g(2)Φ2

(
R(2) +

2Φ0

Φ3
− 2Λ4

Φ0

Φ
− Φ

Φ0
FabF

ab

)
▶ Φ = dilaton, scalar field parametrizing the size of the

2-sphere
▶ Fµν purely electric
▶ The 2D system that we obtain shares many features with

JT gravity
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Effective two-dimensional theory

Link between 4D and 2D language:
Extremal NH background = constant IR background:

Φ(x) = Φ0 , gab = ḡab , Aa = Āa .

Φ(x) = Φ0 means:
▶ Constant radius of the 2D sphere
▶ Constant curvature of the 2D manifold M2:

R(2)
0 = − 2

ℓ22
= − 2

Φ2
0

(1− 2Λ4Φ
2
0)


Φ2
0 <

1
2Λ4

⇒ AdS2

Φ2
0 >

1
2Λ4

⇒ dS2

Φ2
0 =

1
2Λ4

⇒ Mink2

Near-Extremal NH configuration = perturbations IR
background

Φ(x) = Φ0 + λY(x) , gab = ḡab + λhab , Aa = Āa + λAa .
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Effective two dimensional theory

▶ Solutions to the equations of motion of this 2D JT-like
system are solutions of the 4D system as well

Strategy:
▶ Solve 2D equations for the three different near-extremal

systems (Cold, Nariai & Ultracold) and compute 2D
on-shell action (Cold & Ultracold)

▶ Match 2D and 4D thermodynamic behaviour
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Cold

IR backaground is the locally AdS2 solution, in radial gauge

ḡabdx
adxb = dρ2 + γTTdT

2 , γTT = −
(
α(T )eρ/ℓA + β(T )e−ρ/ℓA

)
has a horizon at γTT (ρ = ρh) = 0 → 2D black hole with
associated temperature and entropy:

T2D =
1

2π
∂ρ
√
γ|ρ=ρh , S2D = πΦ(x)2horizon = πΦ2

0+2πΦ0λY(x)|horizon .

Contact with 4D thermodynamics:

Upon identification of Φ0 = r0 and M cold
gap = 1/2π2ℓ2AΦ0 ,

T+ =
λ

ℓ2A
T2D , S+ = S2D
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Ultracold

IR background is Mink2, in Eddington-Finkelstein coordinates

ḡabdx
adxb = −2 (P(u)r + T (u)) du2 − 2dudr .

We specify to static solutions, along the lines of [Godet, Marteau
‘21][Grumiller, Ruzziconi, Zwickel ‘22],

P(u) = P0 , T (u) = T0 .

▶ Dilaton independent from background metric at fixed
charge, different from AdS2 case. Strange interplay between
deformations of dilaton and heating up Mink2. Same
solutions found from [‘21 Godet, Marteau] in ĈGHS models,
we impose the same boundary conditions for the JT field
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Holographic renormalization

2D renormalized on-shell action for constant P0 and T0:

I2D,UC = −2πΦ0b0λ+ Iglobal
1

We extract the entropy

S2D = β

(
∂I

∂β

)
− I ⇒ S2D = −I2D,UC

⇒ The temperature does not affect the on-shell action! In
agreement with the 4D behaviour found for ultracold.

1Iglobal is the value of the integral evaluated at the horizon.
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Kerr black holes

▶ Characterized by a more complicated metric, no spherical
symmetry

▶ Kerr BHs in 3+1d Minkowski: JT gravity description of
near-extremal dynamics

[’19 U. Moitra, S. K. Sake, S. P. Trivedi, V. Vishal]
[’20 V. Godet, C. Marteau]

[’20 A. Castro, V. Godet]

[’21 A. Castro, V. Godet, J. Simón, W .Song, B. Yu]

▶ Can we extend the analysis also to Kerr-de Sitter?
▶ Anti de Sitter: NH geometry, perturbations above

extremality and holographic renormalization



Kerr black holes in de Sitter

Rotating BHs in a spacetime with a positive cosmological
constant (Λ > 0):

S =
1

16πG

∫
d4x

√
−g(R− 2Λ),

ds2 = −∆r

ρ2

(
du− a

Ξ
sin2 θdϕ

)2

+ 2dudr − 2a sin2 θ

Ξ
drdϕ

+
ρ2

∆θ
dθ2 +

∆θ

ρ2
sin2θ

(
adu− r2 + a2

Ξ
dϕ

)2

∆r = (r2 + a2)(1− r2

ℓ2
)− 2mr, ∆θ = 1 +

a2

ℓ2
cos2θ,

ρ2 = r2 + a2cos2θ, Ξ = 1 +
a2

ℓ2

▶ Horizons at ∆r = 0 ⇒ r = {r−, r+, rc}
▶ Three extremal solutions: Cold, Nariai, ultracold

[2009 T. Hartman, K. Murata, T. Nishioka, A. Strominger]
[’10 D. Anninos, T. Anous]

[’10 D. Anninos, T. Hartman]
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Kerr-dS4

Extremal solutions still have 3 different NH geometries:

ds2 = Γ(θ)
(
g̃abdx

adxb + α(θ)dθ2
)
+ γ(θ) (dϕ+ krdu)2

g̃abdx
adxb =


−r2du2 + 2dudr, cold → AdS2

−du2 + 2dudr, ultracold → Mink2
r2du2 + 2dudr, Nariai → dS2

▶ Similar phase-space diagram (M,J) with a finite region of
admitted physical solutions as RNdS4

▶ Similar thermodynamics as RNdS4, with Mgap for Cold and
Nariai
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Thermodynamics and phase-space diagram

Th =
|∆′

r(rh)|
4πr2h

=
r2h − a2 + 2r4h/ℓ

2

2πrh(r2h + a2)
,

Fixed angular momentum: δJ = 0:

Mcold =M0 +
T 2
+

M cold
gap

+ · · · , M cold
gap > 0, S+ = S0 +

2T+
M cold

gap
+ · · ·

MNariai =Mn +
T 2

n

Mn
gap

+ · · · , Mn
gap < 0, Sn = Sc +

2Tc
Mn

gap
+ · · ·
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Gravitatational perturbations of Kerr-dS4

Goal:
▶ Understand whether a JT mode is responsible for

deviations away from extremality also for Kerr-dS4 BHs
Strategy:

▶ Consider gravitational perturbations around extremal
NHEK background (Cold, Nariai, Ultracold)

▶ Solve linearized Einstein’s equations

▶ See if one of the modes perturbing the NH geometry
satisfies a JT-like equation
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Linearized Einstein’s equations

Perturb the background extremal metric by looking at higher
orders contributions in the NH geometry [’20 V. Godet, C. Marteau]:

ds2Kerr
Dec. limit−−−−−−→ ḡµν,NHEKdx

µdxν + λhµνdx
µdxν + · · ·

▶ hµνdx
µdxν is the O(λ) contribution to the NH geometry

▶ We will perturb the extremal metric with an ansatz that is
motivated by the NH geometry:

ds2 =
(
Γ(θ) + ϵχ(u, r)

)( (
κr2 + rP(u) + T (u)

)
du2 + ϵψ(u, r)du2 + α(θ)dθ2

)
+

(
2Γ(θ) + ϵη(u, r) sin2 θ

)
dudr + Γ(θ)γ(θ)

(
1 + ϵΦ(u, r)

Γ(θ) + ϵχ(u, r)

)
(dϕ+ krdu+ ϵA)2
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Linearized Einstein’s equations

Ansatz for the perturbed metric, motivated by geometric
considerations [’20 V. Godet, C. Marteau]:
ds2 =

(
Γ(θ) + ϵχ(u, r)

)( (
κr2 + rP(u) + T (u)

)
du2 + ϵψ(u, r)du2 + α(θ)dθ2

)
+

(
2Γ(θ) + ϵη(u, r) sin2 θ

)
dudr + Γ(θ)γ(θ)

(
1 + ϵΦ(u, r)

Γ(θ) + ϵχ(u, r)

)
(dϕ+ krdu+ ϵA)2

κ =


−1, cold
0, ultracold

+1, Nariai

▶ Perturbations parametrized in terms of the fields χ, η, Φ
and ψ and the Gauge field A:

A(u, r, θ) = Au(u, r, θ)du+Ar(u, r, θ)dr

▶ Dynamics is however dictated solely by the dilaton field Φ
if we impose conditions to avoid conical singularities:

χ ∝ Φ, η ∝ Φ, ψ ∝ r2Φ
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Linearized Einstein’s equations

Look for solutions of linearized Einstein’s equations:

Rµν − Λgµν = 0, Rµν = R(0)
µν +R(ϵ)

µν , gµν = g(0)µν + g(ϵ)µν

From R
(ϵ)
µν − Λg

(ϵ)
µν = 0 → solutions for the modes and for the

Gauge field:

Φ(u, r) = rϕ1(u) + ϕ0(u)

□2χ = −2κχ

□2 ≡ Laplacian on the 1+1d metrics

gabdx
adxb =

(
κr2 + rP(u) + T (u)

)
du2 + 2dudr

From R
(ϵ)
tϕ − Λg

(ϵ)
tϕ = R

(ϵ)
tt − Λg

(ϵ)
tt = 0 → JT equations:

(∇a∇b − gab□) Φ− κgabΦ = 0

20 / 22



Conclusions & future outlook

▶ Our work shows that the dynamics of de Sitter black holes
is classically described by JT gravity
→ For RNdS4 dimensional reduction and analysis of 2D
system
→ For Kerr-dS4 gravitational perturbations around
extremal 4D metric

▶ Generalization to Kerr-AdS4 & holographic renormalization
(work in progress)

▶ Introduction of quantum corrections
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Thank you!
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