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Goal :

In this talk, we will explain our some of our recent works about
understanding quantization of orbifolds and its relation to
deformation of singularities. Dunkl operator leads us to some
very interesting construction.

Plan of this talk

1 Orbifold and deformation quantization

2 Hochschild cohomology of an orbifold algebra

3 Dunkl operator and a construction for Z2 orbifolds
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Part I : Orbifold and deformation quantization

In this part, we will briefly introduce a noncommutative
geometry approach to study an orbifold. We will explain the
problem of deformation quantization of an orbifold algebra.
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Orbifold

An orbifold is a separable Hausdorff topological space which is
locally modeled on the quotient of Rn by a linear action of a
finite group. Such a topological space is very important in both
mathematics and physics.

Example

1 C2/Z2, and Cn/Zn.

2 tear drop

3 moduli spaces of curves
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Noncommutative algebra

Let’s look at the example that a finite group Γ acts on a
manifold M . When the action is not free, the quotient space
M/Γ is an orbifold.

Let OM be the algebra of functions on M . Γ acts OM by
translation. We consider an algebra generated by OM and γ ∈ Γ
with the relation

γf = γ(f)γ, for f ∈ OM .

This algebra is denoted by O o Γ, which is a noncommutative
algebra associated to the Γ action on M .

Example

When M is a vector space V , then the noncommutative algebra
is S(V ∗) o Γ.
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Orbifold algebra

In general, given an orbifold X, one may find different
representations of it by different group actions. The associated
noncommutative algebras are all Morita equivalent. For our talk
today, we will focus on the example OM o Γ. And most of our
results generalize to general orbifold algebras.

The orbifold algebra OM o Γ contains numerous information of
the orbifold M/Γ. For example, the K-theory and cohomology
of M/Γ are isomorphic to the K-theory and cohomology of
OM o Γ.
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Symplectic Manifold and quantization

A symplectic manifold M is the phase space of a classical
mechanic system. The physical observables of this system are
functions on the symplectic manifold.

A quantum mechanic system is described by a Hilbert space H.
The physical observables are represented by self-adjoint
operators on the Hilbert space.
A “quantization map” relating a classical mechanic system to
its quantum version can be described by a linear map

Q : OM → Op(H).

The “pull back” of the operator product to OM defines a new
associative product.
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Formal deformation quantization and Moyal-Weyl
product

The above idea of quantization can be formulated in the
framework of deformation quantization introduced by Bayen,
Flato, Fronsdal, Lichnerowicz, and Sternheimer in 1977.

A formal deformation quantization of a Poisson manifold (M,ω)
is an associative product ∗~ on C∞(M)[[~]], such that
(i) f ∗~ g = fg + ~{f, g}+

∑
i≥2 ~iCi(f, g),

(ii) Ci’s are bilinear local differential operators.
De Wilde and Lecome solved the existence of a formal
deformation quantization on a symplectic manifold in 1983.
Kontsevich solved both the existence and classification
problems of formal deformation quantizations on a Poisson
manifold in 1997.
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Examples of deformation quantization

In the case of R2 with the standard symplectic 2-form
dx1 ∧ dx2, the standard quantization procedure defines a
product on C∞(R2)[[~]],

f ? g(x) = exp(− i~
2
ωij

∂

∂yi
∂

∂zj
)f(y, ~)g(z, ~)|x=y=z,

where ωij is the inverse of the symplectic matrix ω.

In the case of dual of a Lie algebra g, the universal enveloping
algebra can be viewed as a formal deformation of S(g).
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Deformation quantization of orbifold algebra

A formal deformation quantization of (A, [Π]) is an associative
product

? : A[[~]]×A[[~]]→ A[[~]], (a1, a2) 7→ a1 ?a2 =

∞∑
k=0

~kck(a1, a2)

satisfying the following properties :

1 Each one of the maps ck : A[[~]]⊗A[[~]]→ A[[~]] is
C[[~]]-bilinear ;

2 One has c0(a1, a2) = a1 · a2 for all a1, a2 ∈ A ;

3 The relation

a1 ? a2 − c0(a1, a2)− i

2
~Π(a1, a2) ∈ ~2A[[~]].
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Part II : Hochschild cohomology of orbifold algebras

In this part, we will discuss some Hochschild cohomology
results of orbifold algebras and explain its connections to formal
deformation quantization.
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An example of twisted derivation

Consider the Z2 = {1, e} action on R by reflection, i.e.
e : x 7→ −x. Then e lifts to act on C∞(R)→ C∞(R) by

ê(f)(x) = f(−x).

We are interested in linear operators on C∞(R) satisfying the
generalized Leibniz rule

D̃(fg) = fD̃(g) + D̃(f)ê(g).

Example

D̃(f)(x) = f(x)−f(−x)
x .

Note : D̃2(f) = 0.
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Hochschild cohomology

Let A be an algebra over a field k, and M be a A-bimodule.

Definition

Define Ck(A;M) to be Hom(A⊗k;M), and a differential
∂ : Ck(A;M) −→ Ck+1(A;M) by

∂(ϕ)(a1, · · · , ak+1) = a1ϕ(a2, · · · , ak+1)− ϕ(a1a2, · · · , ak+1)+

· · ·+ (−1)iϕ(a1, · · · , aiai+1, · · · , ak+1) + · · ·+ ϕ(a1, · · · , ak)ak+1.

The Hochschild cohomology H•(A;M) is defined to be the
cohomology of (C•(A;M), ∂).

Example

1 H0(A;M) = {m ∈M | am = ma}.
2 H1(A;M) = {ϕ ∈ Homk(A;M)|aϕ(b) + ϕ(a)b = ϕ(ab)}.
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Hochschild cohomology of a smooth manifold

Let M be a smooth manifold, and OM be the algebra of smooth
functions on M .

Theorem (Hochschild-Kostant-Rosenberg)

H•(OM ;OM ) ∼= Γ∞(∧•TM).

Let Γ be a finite group acting on M . For γ ∈ Γ, define an
OM -bimodule OγM by

(a · ξ · b)(x) := a(x)ξ(x)γ(b)(x).

Theorem (Neumaier-Pflaum-Posthuma-T)

H•(OM ;OγM ) ∼= Γ(∧•−`TMγ ⊗ ∧`Nγ).
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Hochschild cohomology of orbifolds

Let M be a smooth manifold and Γ be a finite group acting on
M by diffeomorphisms.

Definition

We consider the orbifold X = M/Γ. Let Mγ be the γ fixed
point submanifold of M . And Γ acts on

⊔
γ∈ΓM

γ by

α(γ, x) = (αγα−1, α(x)). The associated inertia orbifold is the
quotient space IX =

⊔
γ∈ΓM

γ/Γ.

Theorem (Neumaier-Pflaum-Posthuma-T)

H•(C∞(M) o Γ, C∞(M) o Γ) =
(⊕
γ∈Γ

Γ(∧•−`TMγ ⊗ ∧`Nγ)
)Γ
,

where Nγ is the normal bundle of Mγ in M , and ` is the
codimension of Mγ in M .
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point submanifold of M . And Γ acts on

⊔
γ∈ΓM

γ by

α(γ, x) = (αγα−1, α(x)). The associated inertia orbifold is the
quotient space IX =

⊔
γ∈ΓM

γ/Γ.

Theorem (Neumaier-Pflaum-Posthuma-T)

H•(C∞(M) o Γ, C∞(M) o Γ) =
(⊕
γ∈Γ

Γ(∧•−`TMγ ⊗ ∧`Nγ)
)Γ
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where Nγ is the normal bundle of Mγ in M , and ` is the
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Example of R/Z2

When Z2 acts on R by reflection, Hk(C∞(R)oZ2, C
∞(R)oZ2)

is computed as follows.

k = 0, H0 = C∞(R)Z2 ;

k = 1, H1 = (C∞(R) d
dx)Z2 ⊕ CD̃ ;

k ≥ 2, H• = 0.
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Infinitesimal deformation and noncommutative Poisson
structure

Let A be an algebra, and ? be a deformation quantization of A.
We write

a ? b = ab+ ~m1(a, b) + ~2m2(a, b) + · · · .

The associativity property of ? implies the following identities

∂m1(a, b, c) = 0

∂m2(a, b, c) = m1(m1(a, b), c)−m1(a,m1(b, c))

= [m,m]G(a, b, c)

Definition

A degree 2 Hochschild cohomology class like [m1] is called a
noncommutative Poisson structure on A.

When A is OM , the Hochschild-Kostant-Rosenberg theorem
implies that Poisson structures on OM are in 1-1
correspondence with Poisson brackets {−,−} on OM .
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Questions I

In general,

H2(C∞(M) o Γ, C∞(M) o Γ)

= Γ(∧2TM)Γ ⊕
( ⊕
γ∈Γ,`(γ)=2

Γ(∧2Nγ)
)Γ
.

Question

What does the second component in the above expression do to
deformations of the algebra C∞(M) o Γ ?
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Hochschild Cohomology of Deformation Quantization

Let M be a symplectic manifold, and Γ acts on M preserving
the symplectic structure. Let (C∞(M)[[~]], ?) be a Γ invariant
star product on M .

Theorem (Dolgushev-Etingof, Neumaier-Pflaum-Posthuma-T)

H•(C∞(M)((~)) o Γ, C∞(M)((~)) o Γ)
= H•−`(IX,C((~))).

Example (Alev-Farinati-Lembre-Solotar)

When M is a symplectic vector space V and Γ acts on V by
linear symplectic transformation. Let W be the Weyl algebra on
V . The k-th Hochschild cohomology group of W [~−1] o Γ is a
vector space over C((~)) with the dimension equal to the
number of conjugacy classes of Γ whose codimension is equal to
k.

Xiang Tang
Dunkl Operator and Quantization of Orbifolds



Hochschild Cohomology of Deformation Quantization

Let M be a symplectic manifold, and Γ acts on M preserving
the symplectic structure. Let (C∞(M)[[~]], ?) be a Γ invariant
star product on M .

Theorem (Dolgushev-Etingof, Neumaier-Pflaum-Posthuma-T)

H•(C∞(M)((~)) o Γ, C∞(M)((~)) o Γ)
= H•−`(IX,C((~))).

Example (Alev-Farinati-Lembre-Solotar)

When M is a symplectic vector space V and Γ acts on V by
linear symplectic transformation. Let W be the Weyl algebra on
V . The k-th Hochschild cohomology group of W [~−1] o Γ is a
vector space over C((~)) with the dimension equal to the
number of conjugacy classes of Γ whose codimension is equal to
k.

Xiang Tang
Dunkl Operator and Quantization of Orbifolds



Hochschild Cohomology of Deformation Quantization

Let M be a symplectic manifold, and Γ acts on M preserving
the symplectic structure. Let (C∞(M)[[~]], ?) be a Γ invariant
star product on M .

Theorem (Dolgushev-Etingof, Neumaier-Pflaum-Posthuma-T)

H•(C∞(M)((~)) o Γ, C∞(M)((~)) o Γ)
= H•−`(IX,C((~))).

Example (Alev-Farinati-Lembre-Solotar)

When M is a symplectic vector space V and Γ acts on V by
linear symplectic transformation. Let W be the Weyl algebra on
V .

The k-th Hochschild cohomology group of W [~−1] o Γ is a
vector space over C((~)) with the dimension equal to the
number of conjugacy classes of Γ whose codimension is equal to
k.

Xiang Tang
Dunkl Operator and Quantization of Orbifolds



Hochschild Cohomology of Deformation Quantization

Let M be a symplectic manifold, and Γ acts on M preserving
the symplectic structure. Let (C∞(M)[[~]], ?) be a Γ invariant
star product on M .

Theorem (Dolgushev-Etingof, Neumaier-Pflaum-Posthuma-T)

H•(C∞(M)((~)) o Γ, C∞(M)((~)) o Γ)
= H•−`(IX,C((~))).

Example (Alev-Farinati-Lembre-Solotar)

When M is a symplectic vector space V and Γ acts on V by
linear symplectic transformation. Let W be the Weyl algebra on
V . The k-th Hochschild cohomology group of W [~−1] o Γ is a
vector space over C((~)) with the dimension equal to the
number of conjugacy classes of Γ whose codimension is equal to
k.

Xiang Tang
Dunkl Operator and Quantization of Orbifolds



Questions II

Let C(γ) be the centralizer group of γ in Γ.

The 2nd Hochschild
cohomology group of C∞(M)((~)) o Γ is equal to

H2(X,C((~)))⊕
⊕

<γ>,`(γ)=2

H0(Mγ/C(γ),C((~))).

Conjecture (Dolgushev-Etingof)

Deformations of the algebra (C∞(M)Z2((~)), ?) are
unobstructed. In particular, the algebra (C∞(M)Z2((~)), ?) has
a deformation coming from every γ fixed point component with
codimension 2.

Evidences of the above conjecture include : symplectic reflection
algebras, cotangent bundles, · · ·
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Part III : Dunkl operator and a construction for
Z2 orbifolds

In this part, we will discuss some progress toward answering the
two questions raised in Part II about formal deformation
quantization of orbifold algebras.
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Symplectic Reflection Algebra

Let V be a symplectic vector space, and Γ be a finite subgroup
of Sp(V ). Let π be the corresponding constant Poisson bivector
on V .

• Invariant subspace and normal space : For every γ ∈ Γ, V γ is
a symplectic subspace. Let Nγ be the symplectic orthogonal
subspace to V γ . For γ with `(γ) = 2, define πγ to be the
restriction of π along Nγ .
• Noncommutative Poisson structure : The bilinear operator
Π = tπ +

∑
γ,`(γ)=2 cγπγUγ with cαγα−1 = cγ defines a degree 2

Hochschild class on S(V ∗) o Γ with [Π,Π]G = 0.

Theorem (Etingof-Ginzburg)

The algebra Ht,c := T (V ∗) o Γ/ < xy − yx = Π(x, y) > is the
symplectic reflection algebra introduced by Etingof-Ginzburg,
which is a universal deformation of W o Γ.
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Generalization to Linear Cases

Let g be a Lie algebra, and Γ act on g by Lie algebra
automorphisms. Assume that for every γ, `(γ) is even.

• Linear structure : Let V be the dual g∗, and π be the linear
Poisson structure on V associated to the Lie bracket structure
on g. For every γ ∈ Γ with `(γ) = 2, let πγ be the restriction of
π on V ∗γ ⊗Nγ ∧Nγ .
• Noncommutative Poisson structure : The bilinear operator
Π = tπ +

∑
γ,`(γ)=2 cγπγUγ with cαγα−1 = cγ for any α defines a

degree 2 Hochschild cohomology class on S(V ∗) o Γ with
[Π,Π]G = 0.

Theorem (Halbout-Oudom-T)

Associated to such a bilinear operator Π, one can construct a
deformation of the algebra Ugo Γ.
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A particular type of Poisson structure

Let M be a symplectic manifold, and Γ act on M by symplectic
diffeomorphisms.

Proposition

Let π be the Poisson structure associated to the symplectic form
on M , and πγ is the restriction of π to the normal bundle of Mγ

with `(γ) = 2. Then Π = π +
∑

γ,`(γ)=2 cγπγUγ for cγ = cαγα−1

defines a noncommutative Poisson structure on C∞(M) o Γ.

In the next part, we discuss how to quantize such a Poisson
structure Π in the case that Γ = Z2.
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Dunkl operator

We can define a bilinear operator ∆ : C∞(R)→ C∞(R2) by

∆(f)(x, y) =
f(x)− f(y)

x− y
.

Proposition

1 ∆(f)(x, x) = D(f)(x) = df
dx(x),

∆(f)(x,−x) = D̃(f)(x) = f(x)−f(−x)
2x .

2 ∆ is coassociative and cocommutative.

3 ∆(f) = (f ⊗ 1)∆(g) + ∆(f)(1⊗ g).

Define the Dunkl operator to be

Tk(f)(x) =
df

dx
(x) + k

f(x)− f(−x)

x
: C∞(R)→ C∞(R).
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Operator product

We the following two sets of linear operator on C∞(R).

1 The operator Opk(x) acts on C∞(R) by
Opk(x)(f)(x) = xf(x).

2 The operator Opk(p) acts on C∞(R) by
Opk(p)(f)(x) = −iTk(f)(x).

The commutator [Opk(p),Opk(x)] is equal to −i(1 + 2kê).
In general, Opk(a1) ◦Opk(a2) has the following form.∑

j,l

kl
(

Opk
(
C0
j,l(a1, a2)

)
+ Opk

(
C1
j,l(a1, a2)

)
◦ γ̂
)
.
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A “Moyal” type formula

Definition

Define an associative product ? on C∞(R2) o Z2[[~1, ~2]] by

1 ? is C[[~1, ~2]] linear ;

2 For a1, a2 ∈ C∞(R2), a1 ? a2 is defined by

a1 ? a2 =
∑
j,l

~j1~
l
2(C0

j,l(a1, a2) + C1
j,l(a1, a2)Uγ).

This algebra (C∞(R2) o Z2[[~1, ~2]], ?) is called the
“Dunkl-Weyl” algebra.

When ~2 = 0, a1 ? a2 =
∑∞

j=0
(−i)j~j1

j! ∂jp(a1)∂jx(a2).
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Quantization of Z2-orbifolds

Theorem (Halbout-T)

Let M be a symplectic manifold, and Z2 act on M
symplectically.

Let (C∞(M)[[~]], ?) be a Z2-invariant star
product on M with the characteristic class being −ω.

The invariant algebra (C∞(M)((~))Z2 , ?) has a deformation
corresponding to every codimension 2 fixed point submanifold.

In a joint work with Ramadoss, we studied the cyclic
cohomology and local algebraic index theory on the deformation
constructed in the above theorem.
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Outlook :

1 Many of our constructions and results rely heavily on the
assumption that we are working with R and C. Many
questions we are discussing today have natural
generalizations to an arbitrary field.

2 Generalize the Z2 result to general cyclic groups.

3 In the Z2 case, we have only considered a special type of
Poisson structure naturally from the symplectic form.

4 Sharapov and Skvortsov recently discovered an interesting
connection to high spin gravity.

5 Construct a right sigma model to solve the quantization
problem.
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Thank you for your attention !
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