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Nonassociative Gravity?

I In certain non-geometric flux compactifications of string theory,

low-energy effective dynamics of closed strings may be described by

noncommutative or even nonassociative deformations of gravity
(Blumenhagen & Plauschinn ’10; Lüst ’10; Mylonas, Schupp & Sz ’12; . . . )

I Metric aspects of nonassociative differential geometry only partially

developed, no version of the Einstein-Hilbert action is known
(Blumenhagen & Fuchs ’16; Aschieri, Dimitrijević Ćirić & Sz ’17)

I Try to treat as a deformation of ‘gauge theory’:

Use Einstein-Cartan principal bundle formulation, corresponding

action is the Palatini action (Barnes, Schenkel & Sz ’16)

I Problems with naive definition of gauge transformations:

δ?αA = dα + [α,A]? = dα + α ? A− A ? α

Nonassociativity obstructs closure of gauge algebra:

(δ?α δ
?
β − δ?β δ?α)A 6= δ?[α,β]?

A
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L∞-Algebras in Physics & Mathematics

I Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers & van Dam ’85)

(δα δβ − δβ δα)Φ = δC(α,β,Φ)Φ

I “Generalized” gauge symmetries of closed string field theory involve

higher brackets: (Zwiebach ’92)

δαΦ =
∑
n

`n(α,Φn−1)

I Dual to differential graded (commutative) algebras (Lada & Stasheff ’92)

I Deformation theory: Kontsevich’s Formality Theorem based on

L∞-quasi-isomorphims of differential graded Lie algebras

I Any classical field theory with “generalized” gauge symmetries is

determined by an L∞-algebra, due to duality with BV–BRST
(Hohm & Zwiebach ’17; Jurčo, Raspollini, Sämann & Wolf ’18)
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L∞-Algebras in Physics & Mathematics

I Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers & van Dam ’85)

(δα δβ − δβ δα)Φ = δC(α,β,Φ)Φ

I “Generalized” gauge symmetries of closed string field theory involve

higher brackets: (Zwiebach ’92)

δαΦ =
∑
n

`n(α,Φn−1)

I Dual to differential graded (commutative) algebras (Lada & Stasheff ’92)

I Deformation theory: Kontsevich’s Formality Theorem based on

L∞-quasi-isomorphims of differential graded Lie algebras

I Any classical field theory with “generalized” gauge symmetries is

determined by an L∞-algebra, due to duality with BV–BRST
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L∞-Algebras: Gravity/Noncommutative Gauge Theory

I L∞-algebras of Einstein-Hilbert gravity: Requires perturbation

about flat background, involves infinitely-many brackets
(Hohm & Zwiebach ’17; Nützi & Reiterer ’18; Reiterer & Trubowitz ’18)

Einstein-Cartan-Palatini theory only requires finitely-many brackets

I L∞-algebras of noncomm./nonass. gauge theories typically also

require infinitely-many brackets (Blumenhagen, Brunner, Kupriyanov & Lüst ’18)

Undeformed differential does not obey Leibniz rule

I Twisted diffeomorphism symmetry does not fit (nicely) into

L∞-algebra picture =⇒ deform L∞-algebra to make it compatible

I In this talk: Explain L∞-algebra formulation of ECP gravity,

define deformation with braided gauge symmetries, and then present

braided L∞-algebra determining noncommutative gravity
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What is an L∞-Algebra?

I Graded vector space: V = · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ,
with graded exterior algebra ΛV = ∧•(V [1]) viewed as a free

cocommutative coalgebra

I L : ΛV −→ ΛV coderivation of degree |L| = 1 , with L2 = 0

I Write L2 = 0 in ‘components’ L = {`n} where
`n : ∧n(V [1]) −→ V [1] with |`n| = 1, or restoring original grading
`n : ∧nV −→ V with |`n| = 2− n :

`1(`1(v)) = 0 (V , `1) is a cochain complex

`1(`2(v ,w)) = `2(`1(v),w)± `2(v , `1(w)) `1 is a derivation of `2

`2(v , `2(w , u)) + cyclic = (`1 ◦ `3 ± `3 ◦ `1)(v ,w , u) Jacobi up to homotopy

plus “higher homotopy Jacobi identities”

I L∞-algebras are generalizations of differential graded Lie algebras

I Dualizing gives graded commutative algebra derivation
Q = L∗ : Λ∗V −→ Λ∗V with |Q| = 1 , Q2 = 0
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L∞-Quasi-Isomorphisms

I L∞-morphism: Degree-preserving coalgebra homomorphism

Ψ : ΛV −→ ΛV ′ intertwining codifferentials: Ψ ◦ L = L′ ◦Ψ

I In ‘components’ Ψ = {ψn} where ψn : ∧nV −→ V ′ with
|ψn| = 1− n :

ψ1 `1 = `′1 ψ1 ψ1 is a cochain map

ψ1(`2(v ,w))− `′2(ψ1(v), ψ1(w)) = homotopy in ψ2

plus cumbersome higher relations

I L∞-morphisms generalize homomorphisms of dg Lie algebras

I L∞-quasi-isomorphism if induced ψ1∗ : H•(V , `1)
'−−→ H•(V ′, `′1)

I Quasi-isomorphism is an equivalence relation on L∞-algebras
(contrary to dg Lie algebras)
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Cyclic L∞-Algebras

I Cyclic pairing 〈−,−〉 : V × V −→ R is non-degenerate, graded

symmetric, bilinear and satisfies cyclicity:

〈v0, `n(v1, v2, . . . , vn)〉 = ±〈v1, `n(v0, v2, . . . , vn)〉

I Cyclic L∞-algebras generalize quadratic Lie algebras

I Dually a graded symplectic 2-form ω ∈ Ω2(V [1]) which is

Q-invariant

I Cyclic L∞-morphisms Ψ : ΛV −→ ΛV ′ preserve cyclic pairings:

〈ψ1(v), ψ1(w)〉′ = 〈v ,w〉

n−1∑
i=1

〈ψi (v1, . . . , vi ), ψn−i (vi+1, . . . , vn)〉′ = 0
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L∞-Algebras of Classical Field Theories

I BV formalism constructs a dg algebra (C∞• (V [1]),QBV) on graded

vector space V of BV fields (ghosts, fields and antifields)

I Translate coordinate functions ξ to elements of vector spaces, then

action of QBV is a polynomial in ghosts, fields and antifields and

their derivatives, dual to sum over all brackets `n on V :

QBVξ = `1(ξ) +
1

2
`2(ξ, ξ) + · · ·

I BV symplectic form (inducing antibracket) of degree −1 on V

induces cyclic pairing of degree −3

· · · V0 V1 V2 V3 · · ·
· · · gauge par. fields field eqs. Noether ids. · · ·

I V−k encode ‘higher gauge transformations’ (ghosts-for-ghosts, etc.)
for reducible symmetries
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L∞-Algebras of Classical Field Theories

I Gauge transformations of fields A ∈ V1 by λ ∈ V0:

δλA = `1(λ) + `2(λ,A) + · · ·

I Closure of gauge algebra: [δλ1 , δλ2 ]A = δC(λ1,λ2;A)A

C (λ1, λ2;A) = `2(λ1, λ2) + `3(λ1, λ2,A) + · · ·

I Field equations: FA = `1(A)− 1
2 `2(A,A) + · · ·

I Noether identities: Iλ = `1(FA) + `2(FA,A) + · · · = 0 (off-shell)

I Action: S = 1
2 〈A, `1(A)〉 − 1

3! 〈A, `2(A,A)〉+ · · ·

I Moduli space = field equations / gauge transformations

I Quasi-isomorphic L∞-algebras give equivalent field theories
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Example: Chern-Simons Theory

I dim(M) = 3 , g = quadratic Lie algebra with pairing Trg

I Cochain complex = (de Rham complex)⊗ g: V = Ω•(M, g)

I Brackets: `1 = d , `2 = [−,−]g

I Cyclic pairing: 〈α, β〉 =

∫
M

Trg(α ∧ β)

I Field equations for A ∈ V1 = Ω1(M, g): FA = dA + 1
2 [A,A]g

I Moduli space = flat connections on M

I Noether identity = Bianchi identity: Iλ = dFA + [FA,A]g = 0

I Action: S =

∫
M

Trg

(1

2
A ∧ dA +

1

3!
A ∧ [A,A]g

)
I Chern-Simons gauge theory is organised by a dg Lie algebra
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Einstein-Cartan-Palatini Gravity (4d)

S =

∫
M

Tr(e ∧ e ∧ R) =

∫
M

εabcd
(
ea ∧ eb ∧ Rcd

)
I Fields: e : TM −→ V bundle isomorphism onto ‘fake tangent

bundle’ V with Minkowski metric η, defines coframe e ∈ Ω1(M,V)

R = dω + 1
2 [ω, ω] ∈ Ω2(M,P ×ad so(1, 3)) curvature of spin

connection ω on associated principal SO(1, 3)-bundle P −→ M

Tr : Ω4(M,∧4V) −→ Ω4(M)

I Locally, or globally if M parallelizable:

e ∈ Ω1(M,R1,3) , ω ∈ Ω1(M, so(1, 3)) , Tr : ∧4(R1,3) −→ R

I Bianchi identities: dωT = R ∧ e , dωR = 0

T = dωe = de + ω ∧ e = torsion of ω
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Einstein-Cartan-Palatini Gravity (4d)

I (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

Γ(TM) o Ω0(M, so(1, 3))

I Field equations: e ∧ T = 0 , e ∧ R = 0

For e non-degenerate, equivalent to torsion-free + vacuum Einstein

equations

I In any dimension d : e2 −→ ed−2 in action

I For d = 3: T = R = 0

I Note: In contrast to Einstein-Hilbert formulation,

ECP theory makes sense for degenerate coframes e

(required for L∞-algebra formulation)
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L∞-Algebra Picture of ECP Gravity (3d)

I Cochain complex: V0
`1−−−→ V1

`1−−−→ V2
`1−−−→ V3

I Gauge transformations: (ξ, λ) ∈ V0 = Γ(TM)× Ω0(M, so(3))

I Physical fields: (e, ω) ∈ V1 = Ω1(M,R3)× Ω1(M, so(3))

I Field equations: (E ,Ω) ∈ V2 = Ω2(M,∧2(R3))× Ω2(M,R3)

I Noether identities: (Ξ,Λ) ∈ V3 = Ω1(M,Ω3(M))× Ω3(M,R3)

I Differential: `1(ξ, λ) = (0,dλ) `1(e, ω) = (0, 0) `1(E ,Ω) = (0,dΩ)

I Higher brackets:

`2((ξ1, λ1), (ξ2, λ2)) = ([ξ1, ξ2],−[λ1, λ2] + Lξ1λ2 − Lξ2λ1)

`2((ξ, λ), (e, ω)) = (−λ · e + Lξe,−[λ, ω] + Lξω)

`2((e1, ω1), (e2, ω2)) = −(2ω2 ∧ ω1, ω1 ∧ e2 + ω2 ∧ e1)

+ more `2 related to field equations and Noether identities
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L∞-Algebra Picture of ECP Gravity (3d)

I 3d gravity is organised by a dg Lie algebra:

I Gauge symmetry:

δ(ξ,λ)(e, ω) = (−λ·e+Lξe , dλ−[λ, ω]+Lξω) = `1(ξ, λ)+`2((ξ, λ), (e, ω))

I Field equations: F(e,ω) = (R,T ) = `1(e, ω)− 1
2
`2((e, ω), (e, ω))

I Noether identities:

I(ξ,λ) =
(
dxµ ⊗ Tr(ι∂µe ∧ dR − ι∂µde ∧ R) + (e ↔ ω) , dωT − R ∧ e

)
= `1(F(e,ω))− `2((e, ω),F(e,ω)) = (0, 0) (off-shell)

I Cyclic pairing: 〈(e, ω), (E ,Ω)〉 :=

∫
M

Tr(e ∧ E + Ω ∧ ω) encodes:

I ECP action: S = 〈(e, ω) , `1(e, ω) + `2((e, ω), (e, ω))〉
I Extend to 〈−,−〉 : V0 × V3 −→ R using gauge invariance and

integration by parts; then cyclicity on V0 implies Noether identities

I Describes BV–BRST formulation of ECP gravity
(with higher brackets for d ≥ 4) (Cattaneo & Schiavina ’17)
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Application: Chern-Simons Gravity

I 3d gravity is equivalent to Chern-Simons theory with gauge algebra

g = iso(3) = R3 o so(3), A = (e, ω), FA = (R,T ) (Witten ’88)

I For invertible e, diffeos ξ ∈ Γ(TM) are equivalent on-shell to gauge

transfs by (τξ, λξ) = (ιξe, ιξω) ∈ Ω0(M, g):

δξA = LξA = δ(τξ,λξ)A + ιξFA

I Diffeos are redundant symmetries: trivialise by extending V0 (V3)

by extra “shift” symmetries Ω0(M,R3) (Ω3(M, so(3))), and adding

V−1 = Γ(TM) (V4 = Ω1(M,Ω3(M)) with `1 : V−1 ↪→ V0

(`1 : V3 � V4); then H•(V ext
ECP, `1) ' H•(VCS, `1)

I There is an (off-shell) cyclic L∞-quasi-isomorphism {ψn} with

ψn = 0 for n ≥ 3 from the Chern-Simons dg Lie algebra to the

ECP dg Lie algebra
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Braided Noncommutative Deformation

I Let F = fα ⊗ fα ∈ UΓ(TM)⊗ UΓ(TM) be a Drinfel’d twist;

e.g. Moyal-Weyl twist F = exp
(
− i

2 θ
µν ∂µ ⊗ ∂ν

)

I If A is a UΓ(TM)-module algebra, deform product on A into a

star-product:

a ? b = ·F−1(a⊗ b) = f̄α(a) · f̄α(b)

I Defines noncommutative algebra A? carrying representation of

twisted Hopf algebra UFΓ(TM):

ξ(a ? b) = ξ(1)(a) ? ξ(2)(b) , ∆(ξ) = ξ(1) ⊗ ξ(2)

I If A is commutative, then A? is braided-commutative:

a ? b = R̄α(b) ? R̄α(a)

R = F−2 = Rα ⊗ Rα = triangular R-matrix

I More generally, if F is a cochain twist, then UFΓ(TM) is a

quasi-Hopf algebra and A? is a nonassociative algebra
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star-product:

a ? b = ·F−1(a⊗ b) = f̄α(a) · f̄α(b)

I Defines noncommutative algebra A? carrying representation of

twisted Hopf algebra UFΓ(TM):

ξ(a ? b) = ξ(1)(a) ? ξ(2)(b) , ∆(ξ) = ξ(1) ⊗ ξ(2)

I If A is commutative, then A? is braided-commutative:

a ? b = R̄α(b) ? R̄α(a)

R = F−2 = Rα ⊗ Rα = triangular R-matrix

I More generally, if F is a cochain twist, then UFΓ(TM) is a

quasi-Hopf algebra and A? is a nonassociative algebra
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Braided Gauge Symmetry

I Braided Lie algebra Ω0
?(M, so(3)): [λ1, λ2]? := [−,−] ◦ F−1(λ1 ⊗ λ2)

I Braided antisymmetric: [λ1, λ2]? = −[R̄αλ2, R̄αλ1]?, braided Jacobi

I Braided spin connection, coframe ω ∈ Ω1
?(M, so(3)) ,

e ∈ Ω1
?(M,R3) transform in braided representations:

δ?λe = −λ ? e , δ?λω = dλ− [λ, ω]?

I Braided gauge transformations satisfy braided Leibniz rule:

δ?λ(e ⊗ ω) = δ?λe ⊗ ω + R̄αe ⊗ δ?
R̄αλ

ω

I Braided covariant derivative gives braided curvature and torsion:

R := dω + 1
2 [ω, ω]? , T := de + ω ∧? e

I Braided diffeomorphisms Γ?(TM): L?ξe := Lf̄αξ (̄fαe)
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Braided ECP Gravity

S? =

∫
M

Tr(e ∧? R) =

∫
M

εabc
(
ea ∧? Rbc

)

I Invariant under braided semi-direct product: Γ?(TM) o Ω0
?(M, so(3))

No extra degrees of freedom introduced

I Field equations: R = 0 , T = 1
2 ω ∧? e −

1
2 R̄

αω ∧? R̄αe
Braiding induces torsion

I Bianchi identities modified: dR = R ∧? ω − ω ∧? R

I Field equations are braided covariant, but braided gauge symmetries

do not produce new solutions:

δ?λR[ω] 6= R[ω + δ?λω]

I Braided version of Noether’s Second Theorem gives “braided”

Noether identities off-shell, justifies interpretation of local braided

symmetries as “gauge”
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Braided L∞-Algebras

I If (V , {`n}) is a classical L∞-algebra in the category of

UΓ(TM)-modules, then (V , {`?n}) is a braided L∞-algebra in the

category of UFΓ(TM)-modules, where

`?n(v1 ∧ · · · ∧ vn) := `n(v1 ∧? · · · ∧? vn)

I Braided graded antisymmetry:

`?n(. . . , v , v ′, . . . ) = −(−1)|v | |v
′| `?n(. . . , R̄α(v ′), R̄α(v), . . . )

+ braided homotopy Jacobi identities (unchanged for n = 1, 2)

I Cyclic pairing: 〈−,−〉? := 〈−,−〉 ◦ F−1
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Braided L∞-Algebra of Noncommutative Gravity

I For braided ECP gravity, underlying cochain complex (V , `1) is

formally unchanged

I Higher brackets:

`?2 ((ξ1, λ1), (ξ2, λ2)) = ([ξ1, ξ2]?,−[λ1, λ2]? + L?ξ1
λ2 − L?R̄αξ2

R̄αλ1)

`?2 ((ξ, λ), (e, ω)) = (−λ ? e + L?ξe,−[λ, ω]? + L?ξω)

`?2 ((e1, ω1), (e2, ω2)) = −(2ω2 ∧? ω1, ω1 ∧? e2 + R̄αω2 ∧? R̄αe1)

+ more `?2 related to field equations and Noether identities

I Organises all dynamics of 3d noncommutative gravity:

I Gauge symmetry and field equations as classically (A = (e, ω)):

δ?(ξ,λ)A = `?1 (A) + `?2 ((ξ, λ),A) , F?A = `?1 (A)− 1
2
`?2 (A,A)

I Noether identities due to braided Leibniz rule:

I?(ξ,λ) = `?1 (F?A)− 1
2

(
`?2 (A,F?A)− `?2 (F?A ,A)

)
+ 1

4
`?2
(
R̄αA, `?2 (R̄αA,A)

)
= (0, 0)
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