L_∞-Algebras of Gravity
and their Braided Deformations

Richard Szabo
Outline

▶ Introduction/Motivation

▶ L_∞-algebras and classical field theories

▶ Einstein-Cartan-Palatini (ECP) gravity and its L_∞-algebras

▶ Noncommutative ECP gravity and braided L_∞-algebras

with M. Dimitrijević Ćirić, G. Giotopoulos & V. Radovanović
Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity

 (Blumenhagen & Plauschinn '10; Lüst '10; Mylonas, Schupp & Sz '12; ...)

- Metric aspects of nonassociative differential geometry only partially developed, no version of the Einstein-Hilbert action is known

 (Blumenhagen & Fuchs '16; Aschieri, Dimitrijević Ćirić & Sz '17)

- Try to treat as a deformation of 'gauge theory':

 Use Einstein-Cartan principal bundle formulation, corresponding action is the Palatini action

 (Barnes, Schenkel & Sz '16)

- Problems with naive definition of gauge transformations:

 $\delta \star \alpha A = d \alpha + [\alpha, A] \star = d \alpha + \alpha \star A - A \star \alpha$

 Nonassociativity obstructs closure of gauge algebra:

 $(\delta \star \alpha \delta \star \beta - \delta \star \beta \delta \star \alpha) A \neq \delta \star [\alpha, \beta] \star A$
Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity
 (Blumenhagen & Plauschinn '10; Lüst '10; Mylonas, Schupp & Sz '12; ...)

- Metric aspects of nonassociative differential geometry only partially developed, no version of the Einstein-Hilbert action is known
 (Blumenhagen & Fuchs '16; Aschieri, Dimitrijević Ćirić & Sz '17)
Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity
 (Blumenhagen & Plauschinn '10; Lüst '10; Mylonas, Schupp & Sz '12; ...)

- Metric aspects of nonassociative differential geometry only partially developed, no version of the Einstein-Hilbert action is known
 (Blumenhagen & Fuchs '16; Aschieri, Dimitrijević Ćirić & Sz '17)

- Try to treat as a deformation of ‘gauge theory’:
 Use Einstein-Cartan principal bundle formulation, corresponding action is the Palatini action
 (Barnes, Schenkel & Sz '16)
Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity

 (Blumenhagen & Plauschinn '10; Lüst '10; Mylonas, Schupp & Sz '12; ...)

- Metric aspects of nonassociative differential geometry only partially developed, no version of the Einstein-Hilbert action is known

 (Blumenhagen & Fuchs '16; Aschieri, Dimitrijević Ćirić & Sz '17)

- Try to treat as a deformation of ‘gauge theory’:

 Use Einstein-Cartan principal bundle formulation, corresponding action is the Palatini action

 (Barnes, Schenkel & Sz '16)

- Problems with naive definition of gauge transformations:

 \[\delta^*_{\alpha} A = d\alpha + [\alpha, A]_{\star} = d\alpha + \alpha \star A - A \star \alpha \]

 Nonassociativivity obstructs closure of gauge algebra:

 \[(\delta^*_{\alpha} \delta^*_{\beta} - \delta^*_{\beta} \delta^*_{\alpha})A \neq \delta^*_{[\alpha, \beta]} A \]
Higher spin gauge theories with field-dependent gauge parameters:

\[(\delta_\alpha \delta_\beta - \delta_\beta \delta_\alpha) \Phi = \delta_{C(\alpha,\beta,\Phi)} \Phi \]

(Berends, Burgers & van Dam ’85)

"Generalized" gauge symmetries of closed string field theory involve higher brackets:

\[\delta_\alpha \Phi = \sum_{n, \ell} n_{\ell}(\alpha, \Phi)_{n-1} \]

(Zwiebach ’92)

Dual to differential graded (commutative) algebras

(Lada & Stasheff ’92)

Deformation theory: Kontsevich’s Formality Theorem based on \(L_\infty \)-quasi-isomorphisms of differential graded Lie algebras

Any classical field theory with "generalized" gauge symmetries is determined by an \(L_\infty \)-algebra, due to duality with BV–BRST

(Hohm & Zwiebach ’17; Jurčo, Raspollini, Sämann & Wolf ’18)
Higher spin gauge theories with field-dependent gauge parameters:

\((\delta_\alpha \delta_\beta - \delta_\beta \delta_\alpha) \Phi = \delta_{C(\alpha, \beta, \Phi)} \Phi\)

“Generalized” gauge symmetries of closed string field theory involve higher brackets:

\(\delta_\alpha \Phi = \sum_n \ell_n(\alpha, \Phi^{n-1})\)
Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers & van Dam '85)

\[(\delta_\alpha \delta_\beta - \delta_\beta \delta_\alpha)\Phi = \delta_{C(\alpha,\beta,\Phi)}\Phi\]

“Generalized” gauge symmetries of closed string field theory involve higher brackets:
(Zwiebach '92)

\[\delta_\alpha \Phi = \sum_n \ell_n(\alpha, \Phi^{n-1})\]

Dual to differential graded (commutative) algebras
(Lada & Stasheff '92)
L_∞-Algebras in Physics & Mathematics

- Higher spin gauge theories with field-dependent gauge parameters:

 \[
 (\delta_\alpha \delta_\beta - \delta_\beta \delta_\alpha) \Phi = \delta_{C(\alpha,\beta,\Phi)} \Phi
 \]

 \[\text{(Berends, Burgers & van Dam '85)}\]

- “Generalized” gauge symmetries of closed string field theory involve higher brackets:

 \[
 \delta_\alpha \Phi = \sum_n \ell_n(\alpha, \Phi^{n-1})
 \]

 \[\text{(Zwiebach '92)}\]

- Dual to differential graded (commutative) algebras \[\text{(Lada & Stasheff '92)}\]

- Deformation theory: Kontsevich’s Formality Theorem based on L_∞-quasi-isomorphisms of differential graded Lie algebras
Higher spin gauge theories with field-dependent gauge parameters: (Berends, Burgers & van Dam '85)

\[(\delta_\alpha \delta_\beta - \delta_\beta \delta_\alpha) \Phi = \delta_{C(\alpha, \beta, \Phi)} \Phi\]

“Generalized” gauge symmetries of closed string field theory involve higher brackets: (Zwiebach '92)

\[\delta_\alpha \Phi = \sum_n \ell_n(\alpha, \Phi^{n-1})\]

Dual to differential graded (commutative) algebras (Lada & Stasheff '92)

Deformation theory: Kontsevich’s Formality Theorem based on \(L_\infty\)-quasi-isomorphisms of differential graded Lie algebras

Any classical field theory with “generalized” gauge symmetries is determined by an \(L_\infty\)-algebra, due to duality with BV–BRST (Hohm & Zwiebach '17; Jurčo, Raspollini, Sämann & Wolf '18)
L_∞-Algebras: Gravity/Noncommutative Gauge Theory

- L_∞-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets
 (Hohm & Zwiebach ’17; Nützi & Reiterer ’18; Reiterer & Trubowitz ’18)

Einstein-Cartan-Palatini theory only requires finitely-many brackets
L_∞-Algebras: Gravity/Noncommutative Gauge Theory

- L_∞-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets
 (Hohm & Zwiebach ’17; Nützi & Reiterer ’18; Reiterer & Trubowitz ’18)

 Einstein-Cartan-Palatini theory only requires finitely-many brackets

- L_∞-algebras of noncomm./nonass. gauge theories typically also require infinitely-many brackets
 (Blumenhagen, Brunner, Kupriyanov & Lüst ’18)

 Undeformed differential does not obey Leibniz rule
L_∞-Algebras: Gravity/Noncommutative Gauge Theory

- L_∞-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets

 (Hohm & Zwiebach '17; Nützi & Reiterer '18; Reiterer & Trubowitz '18)

 Einstein-Cartan-Palatini theory only requires finitely-many brackets

- L_∞-algebras of noncomm./nonass. gauge theories typically also require infinitely-many brackets (Blumenhagen, Brunner, Kupriyanov & Lüst '18)

 Undeformed differential does not obey Leibniz rule

- Twisted diffeomorphism symmetry does not fit (nicely) into L_∞-algebra picture \implies deform L_∞-algebra to make it compatible
L_∞-Algebras: Gravity/Noncommutative Gauge Theory

- L_∞-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets
 (Hohm & Zwiebach ’17; Nützi & Reiterer ’18; Reiterer & Trubowitz ’18)

 Einstein-Cartan-Palatini theory only requires finitely-many brackets

- L_∞-algebras of noncomm./nonass. gauge theories typically also require infinitely-many brackets (Blumenhagen, Brunner, Kupriyanov & Lüst ’18)

 Undeformed differential does not obey Leibniz rule

- Twisted diffeomorphism symmetry does not fit (nicely) into L_∞-algebra picture \Rightarrow deform L_∞-algebra to make it compatible

- **In this talk:** Explain L_∞-algebra formulation of ECP gravity, define deformation with braided gauge symmetries, and then present braided L_∞-algebra determining noncommutative gravity
What is an L_∞-Algebra?

- Graded vector space: $V = \cdots \oplus V_{-1} \oplus V_0 \oplus V_1 \oplus \cdots$, with graded exterior algebra $\Lambda_V = \wedge^\bullet(V[1])$ viewed as a free cocommutative coalgebra

- $L : \Lambda_V \longrightarrow \Lambda_V$ coderivation of degree $|L| = 1$, with $L^2 = 0$
What is an L_∞-Algebra?

- Graded vector space: $V = \cdots \oplus V_{-1} \oplus V_0 \oplus V_1 \oplus \cdots$, with graded exterior algebra $\Lambda_V = \wedge^\bullet(V[1])$ viewed as a free cocommutative coalgebra.

- $L : \Lambda_V \longrightarrow \Lambda_V$ coderivation of degree $|L| = 1$, with $L^2 = 0$.

- Write $L^2 = 0$ in ‘components’ $L = \{\ell_n\}$ where $\ell_n : \wedge^n(V[1]) \longrightarrow V[1]$ with $|\ell_n| = 1$, or restoring original grading $\ell_n : \wedge^n V \longrightarrow V$ with $|\ell_n| = 2 - n$:

 $\ell_1(\ell_1(v)) = 0$
 (V, ℓ_1) is a cochain complex

 $\ell_1(\ell_2(v, w)) = \ell_2(\ell_1(v), w) \pm \ell_2(v, \ell_1(w))$
 ℓ_1 is a derivation of ℓ_2

 $\ell_2(v, \ell_2(w, u)) + \text{cyclic} = (\ell_1 \circ \ell_3 \pm \ell_3 \circ \ell_1)(v, w, u)$
 Jacobi up to homotopy

 plus “higher homotopy Jacobi identities”

Dualizing gives graded commutative algebra derivation $Q = L^* : \Lambda^* V \longrightarrow \Lambda^* V$ with $|Q| = 1$, $Q^2 = 0$. L_∞-algebras are generalizations of differential graded Lie algebras.
What is an L_∞-Algebra?

- Graded vector space: $V = \cdots \oplus V_{-1} \oplus V_0 \oplus V_1 \oplus \cdots$, with graded exterior algebra $\Lambda_V = \wedge^\bullet(V[1])$ viewed as a free cocommutative coalgebra

- $L : \Lambda_V \longrightarrow \Lambda_V$ coderivation of degree $|L| = 1$, with $L^2 = 0$

- Write $L^2 = 0$ in ‘components’ $L = \{\ell_n\}$ where

 $\ell_n : \wedge^n(V[1]) \longrightarrow V[1]$ with $|\ell_n| = 1$, or restoring original grading

 $\ell_n : \wedge^n V \longrightarrow V$ with $|\ell_n| = 2 - n$:

 \[
 \ell_1(\ell_1(v)) = 0 \quad (V, \ell_1) \text{ is a cochain complex}
 \]

 \[
 \ell_1(\ell_2(v, w)) = \ell_2(\ell_1(v), w) \pm \ell_2(v, \ell_1(w)) \quad \ell_1 \text{ is a derivation of } \ell_2
 \]

 $\ell_2(v, \ell_2(w, u)) + \text{cyclic} = (\ell_1 \circ \ell_3 \pm \ell_3 \circ \ell_1)(v, w, u)$ Jacobi up to homotopy

 plus “higher homotopy Jacobi identities”

- L_∞-algebras are generalizations of differential graded Lie algebras
What is an L_∞-Algebra?

- Graded vector space: $V = \cdots \oplus V_{-1} \oplus V_0 \oplus V_1 \oplus \cdots$, with graded exterior algebra $\Lambda_V = \bigwedge^\bullet(V[1])$ viewed as a free cocommutative coalgebra.

- $L : \Lambda_V \longrightarrow \Lambda_V$ coderivation of degree $|L| = 1$, with $L^2 = 0$.

- Write $L^2 = 0$ in ‘components’ $L = \{\ell_n\}$ where $\ell_n : \bigwedge^n(V[1]) \longrightarrow V[1]$ with $|\ell_n| = 1$, or restoring original grading $\ell_n : \bigwedge^n V \longrightarrow V$ with $|\ell_n| = 2 - n$:

\[
\ell_1(\ell_1(v)) = 0 \quad \quad \quad \quad \text{(V, } \ell_1) \text{ is a cochain complex}
\]

\[
\ell_1(\ell_2(v, w)) = \ell_2(\ell_1(v), w) \pm \ell_2(v, \ell_1(w)) \quad \ell_1 \text{ is a derivation of } \ell_2
\]

\[
\ell_2(v, \ell_2(w, u)) + \text{cyclic} = (\ell_1 \circ \ell_3 \pm \ell_3 \circ \ell_1)(v, w, u) \quad \text{Jacobi up to homotopy}
\]

- L_∞-algebras are generalizations of differential graded Lie algebras.

- Dualizing gives graded commutative algebra derivation $Q = L^* : \Lambda^*_V \longrightarrow \Lambda^*_V$ with $|Q| = 1$, $Q^2 = 0$.

L_∞-Quasi-Isomorphisms

- **L_∞-morphism**: Degree-preserving coalgebra homomorphism
 \[\Psi : \Lambda_V \rightarrow \Lambda_{V'} \]
 intertwining codifferentials:
 \[\Psi \circ L = L' \circ \Psi \]
\(L_\infty\)-Quasi-Isomorphisms

- **\(L_\infty\)-morphism:** Degree-preserving coalgebra homomorphism
 \(\Psi : \Lambda_V \longrightarrow \Lambda_{V'}\), intertwining codifferentials: \(\Psi \circ L = L' \circ \Psi\)

- In ‘components’ \(\Psi = \{\psi_n\}\) where \(\psi_n : \wedge^n V \longrightarrow V'\) with \(|\psi_n| = 1 - n\):
 \[\psi_1 \ell_1 = \ell'_1 \psi_1\]
 \(\psi_1\) is a cochain map
 \[\psi_1(\ell_2(v, w)) - \ell'_2(\psi_1(v), \psi_1(w)) = \text{homotopy in } \psi_2\]
 plus cumbersome higher relations
\textbf{L_∞-Quasi-Isomorphisms}

\begin{itemize}
 \item \textbf{L_∞-morphism:} Degree-preserving coalgebra homomorphism
 \[\Psi : \Lambda V \longrightarrow \Lambda V' \]
 intertwining codifferentials: \[\Psi \circ L = L' \circ \Psi \]
 \item In ‘components’ \[\Psi = \{ \psi_n \} \]
 where \[\psi_n : \wedge^n V \longrightarrow V' \]
 with \[|\psi_n| = 1 - n \] :
 \[\psi_1 \ell_1 = \ell'_1 \psi_1 \]
 \[\psi_1(\ell_2(v, w)) - \ell'_2(\psi_1(v), \psi_1(w)) = \text{homotopy in } \psi_2 \]
 plus cumbersome higher relations
 \end{itemize}

\begin{itemize}
 \item \textbf{L_∞-morphisms generalize homomorphisms of dg Lie algebras}
\end{itemize}
L_{∞}-Quasi-Isomorphisms

- **L_{∞}-morphism**: Degree-preserving coalgebra homomorphism
 \[\Psi : \Lambda_{\mathcal{V}} \rightarrow \Lambda_{\mathcal{V}'} \text{, intertwining codifferentials: } \Psi \circ L = L' \circ \Psi \]

- In ‘components’ \(\Psi = \{\psi_n\} \) where \(\psi_n : \wedge^n \mathcal{V} \rightarrow \mathcal{V}' \) with \(|\psi_n| = 1 - n \) :
 \[
 \psi_1 \ell_1 = \ell'_1 \psi_1 \quad \text{\(\psi_1 \) is a cochain map}
 \]
 \[
 \psi_1(\ell_2(v, w)) - \ell'_2(\psi_1(v), \psi_1(w)) = \text{homotopy in } \psi_2
 \]
 plus cumbersome higher relations

- **L_{∞}-morphisms** generalize homomorphisms of dg Lie algebras

- **L_{∞}-quasi-isomorphism** if induced \(\psi_{1\ast} : H^\bullet(\mathcal{V}, \ell_1) \xrightarrow{\simeq} H^\bullet(\mathcal{V}', \ell'_1) \)
L∞-Quasi-Isomorphisms

- **L∞-morphism**: Degree-preserving coalgebra homomorphism
 \(\Psi : \Lambda V \longrightarrow \Lambda V' \) intertwining codifferentials:
 \(\Psi \circ L = L' \circ \Psi \)

- In ‘components’ \(\Psi = \{ \psi_n \} \) where \(\psi_n : \wedge^n V \longrightarrow V' \)
 with \(|\psi_n| = 1 - n \):

 \[
 \psi_1 \ell_1 = \ell'_1 \psi_1 \quad \text{\(\psi_1 \) is a cochain map}
 \]

 \[
 \psi_1(\ell_2(v, w)) - \ell'_2(\psi_1(v), \psi_1(w)) = \text{homotopy in} \ \psi_2
 \]

 plus cumbersome higher relations

- **L∞-morphisms** generalize homomorphisms of dg Lie algebras

- **L∞-quasi-isomorphism** if induced \(\psi_1^* : H^\bullet(V, \ell_1) \overset{\sim}{\longrightarrow} H^\bullet(V', \ell'_1) \)

- Quasi-isomorphism is an equivalence relation on \(L_\infty \)-algebras
 (contrary to dg Lie algebras)
Cyclic L_∞-Algebras

- Cyclic pairing $\langle - , - \rangle : V \times V \rightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$\langle v_0, \ell_n(v_1, v_2, \ldots, v_n) \rangle = \pm \langle v_1, \ell_n(v_0, v_2, \ldots, v_n) \rangle$$
Cyclic L_∞-Algebras

- Cyclic pairing $\langle -, - \rangle : V \times V \rightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

 $$\langle v_0, \ell_n(v_1, v_2, \ldots, v_n) \rangle = \pm \langle v_1, \ell_n(v_0, v_2, \ldots, v_n) \rangle$$

- Cyclic L_∞-algebras generalize quadratic Lie algebras
Cyclic L_∞-Algebras

- Cyclic pairing $\langle -, - \rangle : V \times V \to \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$\langle v_0, \ell_n(v_1, v_2, \ldots, v_n) \rangle = \pm \langle v_1, \ell_n(v_0, v_2, \ldots, v_n) \rangle$$

- Cyclic L_∞-algebras generalize quadratic Lie algebras

- Dually a graded symplectic 2-form $\omega \in \Omega^2(V[1])$ which is Q-invariant
Cyclic L_∞-Algebras

- Cyclic pairing $\langle -,- \rangle : V \times V \to \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

 $$\langle v_0, \ell_n(v_1, v_2, \ldots, v_n) \rangle = \pm \langle v_1, \ell_n(v_0, v_2, \ldots, v_n) \rangle$$

- Cyclic L_∞-algebras generalize quadratic Lie algebras

- Dually a graded symplectic 2-form $\omega \in \Omega^2(V[1])$ which is Q-invariant

- Cyclic L_∞-morphisms $\Psi : \Lambda_V \to \Lambda_{V'}$ preserve cyclic pairings:

 $$\langle \psi_1(v), \psi_1(w) \rangle' = \langle v, w \rangle$$

 $$\sum_{i=1}^{n-1} \langle \psi_i(v_1, \ldots, v_i), \psi_{n-i}(v_{i+1}, \ldots, v_n) \rangle' = 0$$
L_∞-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $(\mathcal{C}_\infty(V[1]), Q_{BV})$ on graded vector space V of BV fields (ghosts, fields and antifields)
L∞-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra \((C_\infty(V[1]), Q_{BV})\) on graded vector space \(V\) of BV fields (ghosts, fields and antifields).

- Translate coordinate functions \(\xi\) to elements of vector spaces, then action of \(Q_{BV}\) is a polynomial in ghosts, fields and antifields and their derivatives, dual to sum over all brackets \(\ell_n\) on \(V\):

\[
Q_{BV}\xi = \ell_1(\xi) + \frac{1}{2} \ell_2(\xi, \xi) + \cdots
\]
L_∞-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $(\mathcal{C}_\infty(V[1]), Q_{BV})$ on graded vector space V of BV fields (ghosts, fields and antifields).

- Translate coordinate functions ξ to elements of vector spaces, then action of Q_{BV} is a polynomial in ghosts, fields and antifields and their derivatives, dual to sum over all brackets ℓ_n on V:

 \[
 Q_{BV}\xi = \ell_1(\xi) + \frac{1}{2} \ell_2(\xi,\xi) + \cdots
 \]

- BV symplectic form (inducing antibracket) of degree -1 on V induces cyclic pairing of degree -3

 \[
 \cdots V_0 \quad V_1 \quad V_2 \quad V_3 \quad \cdots
 \]
 \[
 \cdots \text{gauge par. fields field eqs. Noether ids. } \cdots
 \]
L_∞-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $(\mathcal{C}_\infty(V[1]), Q_{BV})$ on graded vector space V of BV fields (ghosts, fields and antifields)

- Translate coordinate functions ξ to elements of vector spaces, then action of Q_{BV} is a polynomial in ghosts, fields and antifields and their derivatives, dual to sum over all brackets ℓ_n on V:

\[
Q_{BV}\xi = \ell_1(\xi) + \frac{1}{2} \ell_2(\xi, \xi) + \cdots
\]

- BV symplectic form (inducing antibracket) of degree -1 on V induces cyclic pairing of degree -3

\[
\begin{array}{cccccc}
\cdots & V_0 & V_1 & V_2 & V_3 & \cdots \\
\cdots & \text{gauge par.} & \text{fields} & \text{field eqs.} & \text{Noether ids.} & \cdots
\end{array}
\]

- V_{-k} encode ‘higher gauge transformations’ (ghosts-for-ghosts, etc.) for reducible symmetries
L_∞-Algebras of Classical Field Theories

- **Gauge transformations** of fields $A \in V_1$ by $\lambda \in V_0$:
 \[
 \delta_\lambda A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots
 \]
L_∞-Algebras of Classical Field Theories

- **Gauge transformations** of fields $A \in V_1$ by $\lambda \in V_0$:
 \[
 \delta_\lambda A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots
 \]

- **Closure of gauge algebra**:
 \[
 [\delta_\lambda_1, \delta_\lambda_2]A = \delta_{C(\lambda_1, \lambda_2; A)} A
 \]
 \[
 C(\lambda_1, \lambda_2; A) = \ell_2(\lambda_1, \lambda_2) + \ell_3(\lambda_1, \lambda_2, A) + \cdots
 \]
\textit{L}_{\infty}-\textbf{Algebras of Classical Field Theories}

- \textbf{Gauge transformations} of fields $A \in V_1$ by $\lambda \in V_0$:
 \[
 \delta_{\lambda} A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots
 \]

- \textbf{Closure of gauge algebra}:
 \[
 [\delta_{\lambda_1}, \delta_{\lambda_2}] A = \delta_{C(\lambda_1, \lambda_2; A)} A
 \]
 \[
 C(\lambda_1, \lambda_2; A) = \ell_2(\lambda_1, \lambda_2) + \ell_3(\lambda_1, \lambda_2, A) + \cdots
 \]

- \textbf{Field equations}:
 \[
 \mathcal{F}_A = \ell_1(A) - \frac{1}{2} \ell_2(A, A) + \cdots
 \]
L_∞-Algebras of Classical Field Theories

- **Gauge transformations** of fields $A \in V_1$ by $\lambda \in V_0$:
 \[\delta_\lambda A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots \]

- **Closure of gauge algebra**:
 \[[\delta_\lambda_1, \delta_\lambda_2]A = \delta_{C(\lambda_1, \lambda_2; A)} A \]
 \[C(\lambda_1, \lambda_2; A) = \ell_2(\lambda_1, \lambda_2) + \ell_3(\lambda_1, \lambda_2, A) + \cdots \]

- **Field equations**: \[F_A = \ell_1(A) - \frac{1}{2} \ell_2(A, A) + \cdots \]

- **Noether identities**: \[I_\lambda = \ell_1(F_A) + \ell_2(F_A, A) + \cdots = 0 \text{ (off-shell)} \]
\textbf{L_∞-Algebras of Classical Field Theories}

- **Gauge transformations** of fields $A \in V_1$ by $\lambda \in V_0$:
 \[\delta_\lambda A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots \]

- **Closure of gauge algebra**:
 \[[\delta_\lambda_1, \delta_\lambda_2] A = \delta_{C(\lambda_1, \lambda_2; A)} A \]
 \[C(\lambda_1, \lambda_2; A) = \ell_2(\lambda_1, \lambda_2) + \ell_3(\lambda_1, \lambda_2, A) + \cdots \]

- **Field equations**:
 \[F_A = \ell_1(A) - \frac{1}{2} \ell_2(A, A) + \cdots \]

- **Noether identities**:
 \[I_\lambda = \ell_1(F_A) + \ell_2(F_A, A) + \cdots = 0 \text{ (off-shell)} \]

- **Action**:
 \[S = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \cdots \]
L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_1$ by $\lambda \in V_0$:
 \[
 \delta_\lambda A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots
 \]

- Closure of gauge algebra:
 \[
 [\delta_{\lambda_1}, \delta_{\lambda_2}]A = \delta_{C(\lambda_1, \lambda_2; A)}A
 \]
 \[
 C(\lambda_1, \lambda_2; A) = \ell_2(\lambda_1, \lambda_2) + \ell_3(\lambda_1, \lambda_2, A) + \cdots
 \]

- Field equations:
 \[
 \mathcal{F}_A = \ell_1(A) - \frac{1}{2} \ell_2(A, A) + \cdots
 \]

- Noether identities:
 \[
 \mathcal{I}_\lambda = \ell_1(\mathcal{F}_A) + \ell_2(\mathcal{F}_A, A) + \cdots = 0 \text{ (off-shell)}
 \]

- Action:
 \[
 S = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \cdots
 \]

- Moduli space = field equations / gauge transformations
L_∞-Algebras of Classical Field Theories

- **Gauge transformations** of fields $A \in V_1$ by $\lambda \in V_0$:
 $$\delta_\lambda A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots$$

- **Closure of gauge algebra**:
 $$[\delta_{\lambda_1}, \delta_{\lambda_2}]A = \delta_{\mathcal{C}(\lambda_1, \lambda_2; A)}A$$
 $$\mathcal{C}(\lambda_1, \lambda_2; A) = \ell_2(\lambda_1, \lambda_2) + \ell_3(\lambda_1, \lambda_2, A) + \cdots$$

- **Field equations**:
 $$\mathcal{F}_A = \ell_1(A) - \frac{1}{2} \ell_2(A, A) + \cdots$$

- **Noether identities**:
 $$\mathcal{I}_\lambda = \ell_1(\mathcal{F}_A) + \ell_2(\mathcal{F}_A, A) + \cdots = 0 \text{ (off-shell)}$$

- **Action**:
 $$S = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \cdots$$

- **Moduli space** = field equations / gauge transformations

- **Quasi-isomorphic L_∞-algebras give equivalent field theories**
Example: Chern-Simons Theory

- $\dim(M) = 3$, $\mathfrak{g} =$ quadratic Lie algebra with pairing Tr_g
Example: Chern-Simons Theory

- $\dim(M) = 3$, \mathfrak{g} = quadratic Lie algebra with pairing $\text{Tr}_\mathfrak{g}$
- Cochain complex = (de Rham complex) $\otimes \mathfrak{g}$: $V = \Omega^\bullet(M, \mathfrak{g})$
- Brackets: $\ell_1 = d$, $\ell_2 = [-,-]_\mathfrak{g}$
- Cyclic pairing: $\langle \alpha, \beta \rangle = \int_M \text{Tr}_\mathfrak{g}(\alpha \wedge \beta)$
Example: Chern-Simons Theory

- \(\dim(M) = 3 \), \(g \) = quadratic Lie algebra with pairing \(\text{Tr}_g \)
- Cochain complex = (de Rham complex) \(\otimes g \): \(V = \Omega^\bullet(M, g) \)
- Brackets: \(\ell_1 = d \), \(\ell_2 = [-,-]_g \)
- Cyclic pairing: \(\langle \alpha, \beta \rangle = \int_M \text{Tr}_g(\alpha \wedge \beta) \)
- Field equations for \(A \in V_1 = \Omega^1(M, g) \): \(\mathcal{F}_A = dA + \frac{1}{2} [A, A]_g \)
- Moduli space = flat connections on \(M \)
- Noether identity = Bianchi identity: \(\mathcal{I}_\lambda = d\mathcal{F}_A + [\mathcal{F}_A, A]_g = 0 \)
- Action: \(S = \int_M \text{Tr}_g \left(\frac{1}{2} A \wedge dA + \frac{1}{3!} A \wedge [A, A]_g \right) \)
Example: Chern-Simons Theory

- \(\dim(M) = 3 \), \(g \) = quadratic Lie algebra with pairing \(\text{Tr}_g \)
- Cochain complex = (de Rham complex) \(\otimes g \): \(V = \Omega^\bullet(M, g) \)
- Brackets: \(\ell_1 = d \), \(\ell_2 = [-,-]_g \)
- Cyclic pairing: \(\langle \alpha, \beta \rangle = \int_M \text{Tr}_g(\alpha \wedge \beta) \)
- Field equations for \(A \in V_1 = \Omega^1(M, g) \): \(F_A = dA + \frac{1}{2} [A, A]_g \)
- Moduli space = flat connections on \(M \)
- Noether identity = Bianchi identity: \(\mathcal{I}_\lambda = dF_A + [F_A, A]_g = 0 \)
- Action: \(S = \int_M \text{Tr}_g \left(\frac{1}{2} A \wedge dA + \frac{1}{3!} A \wedge [A, A]_g \right) \)
- Chern-Simons gauge theory is organised by a dg Lie algebra
Einstein-Cartan-Palatini Gravity (4d)

\[S = \int_M \text{Tr}(e \wedge e \wedge R) = \int_M \varepsilon_{abcd} (e^a \wedge e^b \wedge R^{cd}) \]

Fields:
\(e : TM \rightarrow V \) bundle isomorphism onto ‘fake tangent bundle’ \(V \) with Minkowski metric \(\eta \), defines coframe \(e \in \Omega^1(M, V) \)
\(R = d\omega + \frac{1}{2} [\omega, \omega] \in \Omega^2(M, P \times_{\text{ad}} \mathfrak{so}(1, 3)) \) curvature of spin connection \(\omega \) on associated principal \(SO(1, 3) \)-bundle \(P \rightarrow M \)
\(\text{Tr} : \Omega^4(M, \wedge^4 V) \rightarrow \Omega^4(M) \)
Einstein-Cartan-Palatini Gravity (4d)

\[S = \int_M \text{Tr}(e \wedge e \wedge R) = \int_M \varepsilon_{abcd} (e^a \wedge e^b \wedge R^{cd}) \]

- **Fields:** \(e : TM \rightarrow \mathcal{V} \) bundle isomorphism onto ‘fake tangent bundle’ \(\mathcal{V} \) with Minkowski metric \(\eta \), defines coframe \(e \in \Omega^1(M, \mathcal{V}) \)

\[R = d\omega + \frac{1}{2} [\omega, \omega] \in \Omega^2(M, P \times_{ad} \mathfrak{so}(1, 3)) \] curvature of spin connection \(\omega \) on associated principal \(SO(1, 3) \)-bundle \(P \rightarrow M \)

\[\text{Tr} : \Omega^4(M, \wedge^4 \mathcal{V}) \rightarrow \Omega^4(M) \]

- **Locally, or globally if \(M \) parallelizable:**

\[e \in \Omega^1(M, \mathbb{R}^{1,3}) , \quad \omega \in \Omega^1(M, \mathfrak{so}(1, 3)) , \quad \text{Tr} : \wedge^4(\mathbb{R}^{1,3}) \rightarrow \mathbb{R} \]
Einstein-Cartan-Palatini Gravity (4d)

\[
S = \int_M \text{Tr}(e \wedge e \wedge R) = \int_M \varepsilon_{abcd} (e^a \wedge e^b \wedge R^{cd})
\]

▶ Fields: \(e : TM \longrightarrow \mathcal{V} \) bundle isomorphism onto ‘fake tangent bundle’ \(\mathcal{V} \) with Minkowski metric \(\eta \), defines coframe \(e \in \Omega^1(M, \mathcal{V}) \)

\[
R = d\omega + \frac{1}{2} [\omega, \omega] \in \Omega^2(M, P \times_{\text{ad}} \mathfrak{so}(1, 3)) \quad \text{curvature of spin connection} \quad \omega \quad \text{on associated principal} \quad SO(1, 3)-\text{bundle} \quad P \longrightarrow M
\]

\[
\text{Tr} : \Omega^4(M, \wedge^4 \mathcal{V}) \longrightarrow \Omega^4(M)
\]

▶ Locally, or globally if \(M \) parallelizable:

\(e \in \Omega^1(M, \mathbb{R}^{1,3}) \), \(\omega \in \Omega^1(M, \mathfrak{so}(1, 3)) \), \(\text{Tr} : \wedge^4(\mathbb{R}^{1,3}) \longrightarrow \mathbb{R} \)

▶ Bianchi identities: \(d\omega \, T = R \wedge e \), \(d\omega \, R = 0 \)

\[
T = d\omega \, e = de + \omega \wedge e = \text{torsion of} \, \omega
\]
Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz
 \[\Gamma(TM) \rtimes \Omega^0(M, \mathfrak{so}(1, 3)) \]
Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz
 \[\Gamma(TM) \rtimes \Omega^0(M, \mathfrak{so}(1, 3)) \]

- Field equations: \(e \wedge T = 0 \), \(e \wedge R = 0 \)

For \(e \) non-degenerate, equivalent to torsion-free + vacuum Einstein equations
Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz
 \[\Gamma(TM) \ltimes \Omega^0(M, \mathfrak{so}(1, 3)) \]

- Field equations: \[e \wedge T = 0, \quad e \wedge R = 0 \]
 For \(e \) non-degenerate, equivalent to torsion-free + vacuum Einstein equations

- In any dimension \(d \):
 \[e^2 \rightarrow e^{d-2} \text{ in action} \]

- For \(d = 3 \):
 \[T = R = 0 \]

Note: In contrast to Einstein-Hilbert formulation, ECP theory makes sense for degenerate coframes (required for \(\mathbb{L}_\infty \)-algebra formulation).
Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz
 \[\Gamma(TM) \ltimes \Omega^0(M, \mathfrak{so}(1,3)) \]

- Field equations: \(e \wedge T = 0 \), \(e \wedge R = 0 \)
 For \(e \) non-degenerate, equivalent to torsion-free + vacuum Einstein equations

- In any dimension \(d \): \(e^2 \rightarrow e^{d-2} \) in action

- For \(d = 3 \): \(T = R = 0 \)

- **Note:** In contrast to Einstein-Hilbert formulation, ECP theory makes sense for degenerate coframes \(e \) (required for \(L_\infty \)-algebra formulation)
\textit{L}_\infty\text{-Algebra Picture of ECP Gravity (3d)}

- **Cochain complex:** \(V_0 \xrightarrow{\ell_1} V_1 \xrightarrow{\ell_1} V_2 \xrightarrow{\ell_1} V_3 \)

- **Gauge transformations:** \((\xi, \lambda) \in V_0 = \Gamma(TM) \times \Omega^0(M, so(3))\)

- **Physical fields:** \((e, \omega) \in V_1 = \Omega^1(M, \mathbb{R}^3) \times \Omega^1(M, so(3))\)

- **Field equations:** \((E, \Omega) \in V_2 = \Omega^2(M, \Lambda^2(\mathbb{R}^3)) \times \Omega^2(M, \mathbb{R}^3)\)

- **Noether identities:** \((\Xi, \Lambda) \in V_3 = \Omega^1(M, \Omega^3(M)) \times \Omega^3(M, \mathbb{R}^3)\)

- **Differential:** \(\ell_1(\xi, \lambda) = (0, d\lambda)\) \(\ell_1(e, \omega) = (0, 0)\) \(\ell_1(E, \Omega) = (0, d\Omega)\)
\(L_\infty \)-Algebra Picture of ECP Gravity (3d)

- **Cochain complex:** \(V_0 \xrightarrow{\ell_1} V_1 \xrightarrow{\ell_1} V_2 \xrightarrow{\ell_1} V_3 \)

- **Gauge transformations:** \((\xi, \lambda) \in V_0 = \Gamma(TM) \times \Omega^0(M, so(3))\)

- **Physical fields:** \((e, \omega) \in V_1 = \Omega^1(M, \mathbb{R}^3) \times \Omega^1(M, so(3))\)

- **Field equations:** \((E, \Omega) \in V_2 = \Omega^2(M, \wedge^2(\mathbb{R}^3)) \times \Omega^2(M, \mathbb{R}^3)\)

- **Noether identities:** \((\Xi, \Lambda) \in V_3 = \Omega^1(M, \Omega^3(M)) \times \Omega^3(M, \mathbb{R}^3)\)

- **Differential:** \(\ell_1(\xi, \lambda) = (0, d\lambda) \quad \ell_1(e, \omega) = (0, 0) \quad \ell_1(E, \Omega) = (0, d\Omega)\)

- **Higher brackets:**

\[
\ell_2((\xi_1, \lambda_1), (\xi_2, \lambda_2)) = ([\xi_1, \xi_2], -[\lambda_1, \lambda_2] + \mathcal{L}_{\xi_1} \lambda_2 - \mathcal{L}_{\xi_2} \lambda_1)
\]

\[
\ell_2((\xi, \lambda), (e, \omega)) = (-\lambda \cdot e + \mathcal{L}_\xi e, -[\lambda, \omega] + \mathcal{L}_\xi \omega)
\]

\[
\ell_2((e_1, \omega_1), (e_2, \omega_2)) = -(2 \omega_2 \wedge \omega_1, \omega_1 \wedge e_2 + \omega_2 \wedge e_1)
\]

+ more \(\ell_2\) related to field equations and Noether identities
L_∞-Algebra Picture of ECP Gravity (3d)

- 3d gravity is organised by a dg Lie algebra:
 - Gauge symmetry:
 \[
 \delta_{(\xi,\lambda)}(e,\omega) = (-\lambda \cdot e + \mathcal{L}_\xi e, \ d\lambda - [\lambda, \omega] + \mathcal{L}_\xi \omega) = \ell_1(\xi, \lambda) + \ell_2((\xi, \lambda), (e, \omega))
 \]
 - Field equations: $\mathcal{F}_{(e,\omega)} = (R, T) = \ell_1(e, \omega) - \frac{1}{2} \ell_2((e, \omega), (e, \omega))$
 - Noether identities:
 \[
 \mathcal{I}_{(\xi,\lambda)} = \left(dx^\mu \otimes \text{Tr}(\nu_{\partial_\mu} e \wedge dR - \nu_{\partial_\mu} de \wedge R) + (e \leftrightarrow \omega), \ d\omega \ T - R \wedge e \right) \\
 = \ell_1(\mathcal{F}_{(e,\omega)}) - \ell_2((e, \omega), \mathcal{F}_{(e,\omega)}) = (0, 0) \ (\text{off-shell})
 \]
3d gravity is organised by a dg Lie algebra:

- **Gauge symmetry:**
 \[
 \delta_{(\xi,\lambda)}(e, \omega) = (-\lambda \cdot e + \mathcal{L}_\xi e, \ d\lambda - [\lambda, \omega] + \mathcal{L}_\xi \omega) = \ell_1(\xi, \lambda) + \ell_2((\xi, \lambda), (e, \omega))
 \]

- **Field equations:**
 \[
 \mathcal{F}(e, \omega) = (R, T) = \ell_1(e, \omega) - \frac{1}{2} \ell_2((e, \omega), (e, \omega))
 \]

- **Noether identities:**
 \[
 \mathcal{I}(\xi, \lambda) = (dx^\mu \otimes \text{Tr}(\nu_{\partial\mu} e \wedge dR - \nu_{\partial\mu} de \wedge R) + (e \leftrightarrow \omega), \ d\omega T - R \wedge e)
 = \ell_1(\mathcal{F}(e, \omega)) - \ell_2((e, \omega), \mathcal{F}(e, \omega)) = (0, 0) \quad \text{(off-shell)}
 \]

- **Cyclic pairing:**
 \[
 \langle (e, \omega), (E, \Omega) \rangle := \int_M \text{Tr}(e \wedge E + \Omega \wedge \omega) \quad \text{encodes:}
 \]
 - **ECP action:**
 \[
 S = \langle (e, \omega), \ell_1(e, \omega) + \ell_2((e, \omega), (e, \omega)) \rangle
 \]
 - **Extend to** \(\langle - , - \rangle : \mathcal{V}_0 \times \mathcal{V}_3 \rightarrow \mathbb{R} \) using gauge invariance and integration by parts; then cyclicity on \(\mathcal{V}_0 \) implies Noether identities.
\textit{\(L_\infty\)-Algebra Picture of ECP Gravity (3d)}

- 3d gravity is organised by a dg Lie algebra:
 \[\delta_{(\xi,\lambda)}(e, \omega) = (-\lambda \cdot e + \mathcal{L}_\xi e, \; d\lambda - [\lambda, \omega] + \mathcal{L}_\xi \omega) = \ell_1(\xi, \lambda) + \ell_2((\xi, \lambda), (e, \omega)) \]

- Gauge symmetry:
 \[F_{(e, \omega)} = (R, T) = \ell_1(e, \omega) - \frac{1}{2} \ell_2((e, \omega), (e, \omega)) \]

- Field equations: \(I_{(\xi, \lambda)} = (dx^\mu \otimes \text{Tr}(\iota_{\partial_\mu} e \wedge dR - \iota_{\partial_\mu} de \wedge R) + (e \leftrightarrow \omega), \; d\omega T - R \wedge e) = \ell_1(F_{(e, \omega)}) - \ell_2((e, \omega), F_{(e, \omega)}) = (0, 0) \quad \text{(off-shell)} \]

- Noether identities:

- Cyclic pairing: \(\langle (e, \omega), (E, \Omega) \rangle := \int_M \text{Tr}(e \wedge E + \Omega \wedge \omega) \) encodes:
 - ECP action: \(S = \langle (e, \omega), \ell_1(e, \omega) + \ell_2((e, \omega), (e, \omega)) \rangle \)

- Extend to \(\langle - , - \rangle : V_0 \times V_3 \rightarrow \mathbb{R} \) using gauge invariance and integration by parts; then cyclicity on \(V_0 \) implies Noether identities

- Describes BV–BRST formulation of ECP gravity
 (with higher brackets for \(d \geq 4 \))

(Cattaneo & Schiavina '17)
Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra
 \[g = \text{iso}(3) = \mathbb{R}^3 \ltimes \mathfrak{so}(3), \quad A = (e, \omega), \quad \mathcal{F}_A = (R, T) \]
 (Witten '88)
Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra
 \(g = \text{iso}(3) = \mathbb{R}^3 \rtimes \mathfrak{so}(3), \quad A = (e, \omega), \quad \mathcal{F}_A = (R, T) \) (Witten '88)

- For invertible \(e \), diffeos \(\xi \in \Gamma(TM) \) are equivalent on-shell to gauge transfs by \((\tau_\xi, \lambda_\xi) = (\iota_\xi e, \iota_\xi \omega) \in \Omega^0(M, g) \):
 \[
 \delta_\xi A = \mathcal{L}_\xi A = \delta(\tau_\xi, \lambda_\xi)A + \iota_\xi \mathcal{F}_A
 \]
Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra $g = \mathfrak{iso}(3) = \mathbb{R}^3 \ltimes \mathfrak{so}(3)$, $A = (e, \omega)$, $\mathcal{F}_A = (R, T)$ (Witten '88)

- For invertible e, diffeos $\xi \in \Gamma(TM)$ are equivalent on-shell to gauge transfs by $(\tau_\xi, \lambda_\xi) = (\iota_\xi e, \iota_\xi \omega) \in \Omega^0(M, g)$:

 $$\delta_\xi A = L_\xi A = \delta(\tau_\xi, \lambda_\xi)A + \iota_\xi \mathcal{F}_A$$

- Diffeos are redundant symmetries: trivialise by extending $V_0 (V_3)$ by extra “shift” symmetries $\Omega^0(M, \mathbb{R}^3)$ ($\Omega^3(M, \mathfrak{so}(3))$), and adding $V_{-1} = \Gamma(TM) (V_4 = \Omega^1(M, \Omega^3(M))$ with $\ell_1 : V_{-1} \hookrightarrow V_0 (\ell_1 : V_3 \twoheadrightarrow V_4)$; then $H^\bullet(V_{\text{Ext}}^{\text{ECP}}, \ell_1) \cong H^\bullet(V_{\text{CS}}, \ell_1)$
Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra \(g = \text{iso}(3) = \mathbb{R}^3 \rtimes \mathfrak{so}(3) \), \(A = (e, \omega) \), \(\mathcal{F}_A = (R, T) \) (Witten '88)

- For invertible \(e \), diffeos \(\xi \in \Gamma(TM) \) are equivalent on-shell to gauge transfs by \((\tau_\xi, \lambda_\xi) = (\iota_\xi e, \iota_\xi \omega) \in \Omega^0(M, g) \):
 \[
 \delta_\xi A = \mathcal{L}_\xi A = \delta_{(\tau_\xi, \lambda_\xi)} A + \iota_\xi \mathcal{F}_A
 \]

- Diffeos are redundant symmetries: trivialise by extending \(V_0 \) (\(V_3 \)) by extra "shift" symmetries \(\Omega^0(M, \mathbb{R}^3) \) (\(\Omega^3(M, \mathfrak{so}(3)) \)), and adding \(V_{-1} = \Gamma(TM) \) (\(V_4 = \Omega^1(M, \Omega^3(M)) \)) with \(\ell_1 : V_{-1} \hookrightarrow V_0 \) (\(\ell_1 : V_3 \twoheadrightarrow V_4 \)); then \(H^\bullet(V^\text{ext}_{\text{ECP}}, \ell_1) \cong H^\bullet(V_{\text{CS}}, \ell_1) \)

- There is an (off-shell) cyclic \(L_\infty \)-quasi-isomorphism \(\{ \psi_n \} \) with \(\psi_n = 0 \) for \(n \geq 3 \) from the Chern-Simons dg Lie algebra to the ECP dg Lie algebra
Braided Noncommutative Deformation

Let \(\mathcal{F} = f^\alpha \otimes f_\alpha \in U\Gamma(TM) \otimes U\Gamma(TM) \) be a Drinfel’d twist;

- e.g. Moyal-Weyl twist \(\mathcal{F} = \exp\left(-\frac{i}{2} \theta^{\mu \nu} \partial_\mu \otimes \partial_\nu \right) \)
Braided Noncommutative Deformation

Let $\mathcal{F} = f^\alpha \otimes f^\alpha \in U\Gamma(TM) \otimes U\Gamma(TM)$ be a Drinfel’d twist; e.g. Moyal-Weyl twist $\mathcal{F} = \exp\left(-\frac{i}{2} \theta^{\mu\nu} \partial_\mu \otimes \partial_\nu\right)$

If A is a $U\Gamma(TM)$-module algebra, deform product on A into a star-product:

$$a \star b = \mathcal{F}^{-1}(a \otimes b) = \tilde{f}^\alpha(a) \cdot \tilde{f}_\alpha(b)$$
Braided Noncommutative Deformation

Let \(\mathcal{F} = f^\alpha \otimes f^\alpha \in U\Gamma(TM) \otimes U\Gamma(TM) \) be a Drinfel’d twist; e.g. Moyal-Weyl twist \(\mathcal{F} = \exp\left(-\frac{i}{2} \theta^{\mu\nu} \partial_\mu \otimes \partial_\nu \right) \)

If \(\mathcal{A} \) is a \(U\Gamma(TM) \)-module algebra, deform product on \(\mathcal{A} \) into a star-product:

\[
a \star b = \mathcal{F}^{-1}(a \otimes b) = \bar{f}^\alpha(a) \cdot \bar{f}_\alpha(b)
\]

Defines noncommutative algebra \(\mathcal{A}_\star \) carrying representation of twisted Hopf algebra \(U_{\mathcal{F}} \Gamma(TM) \):

\[
\xi(a \star b) = \xi_{(1)}(a) \star \xi_{(2)}(b) , \quad \Delta(\xi) = \xi_{(1)} \otimes \xi_{(2)}
\]
Braided Noncommutative Deformation

Let \(\mathcal{F} = f^{\alpha} \otimes f_{\alpha} \in \mathcal{U} \Gamma(TM) \otimes \mathcal{U} \Gamma(TM) \) be a Drinfel’d twist; e.g. Moyal-Weyl twist
\[
\mathcal{F} = \exp \left(-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu} \right)
\]

If \(\mathcal{A} \) is a \(\mathcal{U} \Gamma(TM) \)-module algebra, deform product on \(\mathcal{A} \) into a star-product:
\[
a \star b = \mathcal{F}^{-1}(a \otimes b) = \bar{f}^{\alpha}(a) \cdot \bar{f}_{\alpha}(b)
\]

Defines noncommutative algebra \(\mathcal{A}_{\star} \) carrying representation of twisted Hopf algebra \(\mathcal{U}_{\mathcal{F}} \Gamma(TM) \):
\[
\xi(a \star b) = \xi_{(1)}(a) \star \xi_{(2)}(b) \ , \ \Delta(\xi) = \xi_{(1)} \otimes \xi_{(2)}
\]

If \(\mathcal{A} \) is commutative, then \(\mathcal{A}_{\star} \) is braided-commutative:
\[
a \star b = \bar{R}^{\alpha}(b) \star \bar{R}_{\alpha}(a)
\]
\[
\mathcal{R} = \mathcal{F}^{-2} = R^{\alpha} \otimes R_{\alpha} = \text{triangular } \mathcal{R}-\text{matrix}
\]
Braided Noncommutative Deformation

- Let $\mathcal{F} = f^\alpha \otimes f^\alpha \in U\Gamma(TM) \otimes U\Gamma(TM)$ be a Drinfel’d twist; e.g. Moyal-Weyl twist $\mathcal{F} = \exp\left(-\frac{i}{2} \theta^{\mu\nu} \partial_\mu \otimes \partial_\nu\right)$

- If \mathcal{A} is a $U\Gamma(TM)$-module algebra, deform product on \mathcal{A} into a star-product:
 \[a \star b = \cdot \mathcal{F}^{-1}(a \otimes b) = \bar{f}_\alpha(a) \cdot \bar{f}_\alpha(b) \]

- Defines noncommutative algebra \mathcal{A}_\star carrying representation of twisted Hopf algebra $U\mathcal{F}\Gamma(TM)$:
 \[\xi(a \star b) = \xi(1)(a) \star \xi(2)(b) \quad , \quad \Delta(\xi) = \xi(1) \otimes \xi(2) \]

- If \mathcal{A} is commutative, then \mathcal{A}_\star is braided-commutative:
 \[a \star b = \bar{R}_\alpha(b) \star \bar{R}_\alpha(a) \]
 \[\mathcal{R} = \mathcal{F}^{-2} = R^\alpha \otimes R_\alpha = \text{triangular } \mathcal{R}-\text{matrix} \]

- More generally, if \mathcal{F} is a cochain twist, then $U\mathcal{F}\Gamma(TM)$ is a quasi-Hopf algebra and \mathcal{A}_\star is a nonassociative algebra
Braided Gauge Symmetry

- Braided Lie algebra $\Omega^0_\star(M, so(3))$: $[\lambda_1, \lambda_2]_\star := [-, -] \circ F^{-1}(\lambda_1 \otimes \lambda_2)$
- Braided antisymmetric: $[\lambda_1, \lambda_2]_\star = -[\bar{R}^\alpha \lambda_2, \bar{R}_\alpha \lambda_1]_\star$, braided Jacobi
Braided Gauge Symmetry

- **Braided Lie algebra** \(\Omega_0^0(M,\mathfrak{so}(3)) \): \([\lambda_1, \lambda_2]_* := [-, -] \circ \mathcal{F}^{-1}(\lambda_1 \otimes \lambda_2) \)

- **Braided antisymmetric**: \([\lambda_1, \lambda_2]_* = -[\mathcal{R}^\alpha \lambda_2, \mathcal{R}_\alpha \lambda_1]_* \), braided Jacobi

- **Braided spin connection, coframe** \(\omega \in \Omega^1_*(M, \mathfrak{so}(3)) \), \(e \in \Omega^1_*(M, \mathbb{R}^3) \) transform in braided representations:
 \[\delta_\lambda^* e = -\lambda \ast e \quad , \quad \delta_\lambda^* \omega = d\lambda - [\lambda, \omega]_* \]
Braided Gauge Symmetry

- **Braided Lie algebra** $\Omega^0_*(M, \mathfrak{so}(3))$: $[\lambda_1, \lambda_2]_* := [-, -] \circ \mathcal{F}^{-1}(\lambda_1 \otimes \lambda_2)$
- **Braided antisymmetric**: $[\lambda_1, \lambda_2]_* = -[\bar{R}^\alpha \lambda_2, \bar{R}_\alpha \lambda_1]_*$, braided Jacobi
- **Braided spin connection, coframe** $\omega \in \Omega^1_*(M, \mathfrak{so}(3))$, $e \in \Omega^1_*(M, \mathbb{R}^3)$ transform in braided representations:
 \[\delta^*_\lambda e = -\lambda \star e \quad , \quad \delta^*_\lambda \omega = d\lambda - [\lambda, \omega]_* \]
- **Braided gauge transformations** satisfy braided Leibniz rule:
 \[\delta^*_\lambda (e \otimes \omega) = \delta^*_\lambda e \otimes \omega + \bar{R}^\alpha e \otimes \delta^*_{\bar{R}_\alpha} \lambda \omega \]
Braided Gauge Symmetry

- **Braided Lie algebra** $\Omega^0(M, \mathfrak{so}(3))$: $[\lambda_1, \lambda_2]_\star := [-, -] \circ \mathcal{F}^{-1}(\lambda_1 \otimes \lambda_2)$
- **Braided antisymmetric**: $[\lambda_1, \lambda_2]_\star = -[\overline{R}^\alpha \lambda_2, \overline{R}_\alpha \lambda_1]_\star$, braided Jacobi
- **Braided spin connection, coframe** $\omega \in \Omega^1_\star(M, \mathfrak{so}(3))$, $e \in \Omega^1_\star(M, \mathbb{R}^3)$ transform in braided representations:
 $$\delta_\lambda^\star e = -\lambda \star e, \quad \delta_\lambda^\star \omega = d\lambda - [\lambda, \omega]_\star$$
- **Braided gauge transformations** satisfy **braided Leibniz rule**:
 $$\delta_\lambda^\star (e \otimes \omega) = \delta_\lambda^\star e \otimes \omega + \overline{R}^\alpha e \otimes \delta_{\overline{R}_\alpha}^\star \lambda \omega$$
- **Braided covariant derivative** gives braided curvature and torsion:
 $$R := d\omega + \frac{1}{2} [\omega, \omega]_\star, \quad T := de + \omega \wedge_\star e$$
Braided Gauge Symmetry

- Braided Lie algebra $\Omega^0_*(M, \mathfrak{so}(3))$: $[\lambda_1, \lambda_2]_* := [-, -] \circ \mathcal{F}^{-1}(\lambda_1 \otimes \lambda_2)$
- Braided antisymmetric: $[\lambda_1, \lambda_2]_* = -[\bar{R}^\alpha \lambda_2, \bar{R}_\alpha \lambda_1]_*$, braided Jacobi
- Braided spin connection, coframe $\omega \in \Omega^1_*(M, \mathfrak{so}(3))$, $e \in \Omega^1_*(M, \mathbb{R}^3)$ transform in braided representations:
 \[\delta^*_\lambda e = -\lambda \star e \quad , \quad \delta^*_\lambda \omega = d\lambda - [\lambda, \omega]_* \]
- Braided gauge transformations satisfy braided Leibniz rule:
 \[\delta^*_\lambda (e \otimes \omega) = \delta^*_\lambda e \otimes \omega + \bar{R}^\alpha e \otimes \delta^*_\bar{R}_\alpha \lambda \omega \]
- Braided covariant derivative gives braided curvature and torsion:
 \[R := d\omega + \frac{1}{2} [\omega, \omega]_* \quad , \quad T := de + \omega \wedge_* e \]
- Braided diffeomorphisms $\Gamma_*(TM)$: $\mathcal{L}_{\xi}^* e := \mathcal{L}_{\bar{f}_\alpha}^* (\bar{f}_\alpha e)$
Braided ECP Gravity

\[S^* = \int_M \text{Tr}(e \wedge_\star R) = \int_M \varepsilon_{abc} (e^a \wedge_\star R^{bc}) \]
Braided ECP Gravity

\[S^* = \int_M \text{Tr}(e \wedge_\star R) = \int_M \varepsilon_{abc} (e^a \wedge_\star R^{bc}) \]

- Invariant under braided semi-direct product: \(\Gamma_\star (TM) \rtimes \Omega^0_\star (M, so(3)) \)
- No extra degrees of freedom introduced
Braided ECP Gravity

\[S^* = \int_M \text{Tr}(e \wedge R) = \int_M \varepsilon_{abc} (e^a \wedge R^{bc}) \]

► Invariant under braided semi-direct product: \(\Gamma_*(TM) \rtimes \Omega_0^*(M, so(3)) \)

No extra degrees of freedom introduced

► Field equations: \(R = 0 \), \(T = \frac{1}{2} \omega \wedge e - \frac{1}{2} \bar{R}^\alpha \omega \wedge \bar{R}_\alpha e \)

Braiding induces torsion
Braided ECP Gravity

\[S^* = \int_M \text{Tr}(e \wedge_{\star} R) = \int_M \varepsilon_{abc} (e^a \wedge_{\star} R^{bc}) \]

- **Invariant** under braided semi-direct product: \(\Gamma_{\star}(TM) \ltimes \Omega^0_{\star}(M, so(3)) \)
 No extra degrees of freedom introduced

- **Field equations:** \(R = 0 \), \(T = \frac{1}{2} \omega \wedge_{\star} e - \frac{1}{2} \bar{R}^\alpha \omega \wedge_{\star} \bar{R}_{\alpha} e \)
 Braiding induces torsion

- **Bianchi identities modified:** \(dR = R \wedge_{\star} \omega - \omega \wedge_{\star} R \)
Braided ECP Gravity

\[S^* = \int_M \text{Tr}(e \wedge R) = \int_M \varepsilon_{abc} (e^a \wedge R^{bc}) \]

- **Invariant** under braided semi-direct product: \(\Gamma_*(TM) \ltimes \Omega^0_*(M, so(3)) \)

 No extra degrees of freedom introduced

- **Field equations:** \(R = 0 \), \(T = \frac{1}{2} \omega \wedge e - \frac{1}{2} \tilde{R}^\alpha \omega \wedge \tilde{R}_\alpha e \)

 Braiding induces torsion

- **Bianchi identities** modified: \(dR = R \wedge \omega - \omega \wedge R \)

- Field equations are braided covariant, but braided gauge symmetries do not produce new solutions:
 \[\delta^*_\lambda R[\omega] \neq R[\omega + \delta^*_\lambda \omega] \]
Braided ECP Gravity

\[S^* = \int_M \text{Tr}(e \wedge \star R) = \int_M \varepsilon_{abc} (e^a \wedge \star R^{bc}) \]

- Invariant under braided semi-direct product: \(\Gamma_*(TM) \rtimes \Omega^0_*(M, \mathfrak{so}(3)) \)
 No extra degrees of freedom introduced

- Field equations: \(R = 0, \ T = \frac{1}{2} \omega \wedge \star e - \frac{1}{2} \bar{R}^\alpha \omega \wedge \star \bar{R}_\alpha e \)
 Braiding induces torsion

- Bianchi identities modified: \(dR = R \wedge \star \omega - \omega \wedge \star R \)

- Field equations are braided covariant, but braided gauge symmetries do not produce new solutions:
 \(\delta^*_\chi R[\omega] \neq R[\omega + \delta^*_\chi \omega] \)

- Braided version of Noether’s Second Theorem gives “braided” Noether identities *off-shell*, justifies interpretation of local braided symmetries as “gauge”
Braided L_∞-Algebras

If $(V, \{\ell_n\})$ is a classical L_∞-algebra in the category of $U\Gamma(TM)$-modules, then $(V, \{\ell^*_n\})$ is a braided L_∞-algebra in the category of $U\mathcal{F}\Gamma(TM)$-modules, where

$$\ell^*_n(v_1 \wedge \cdots \wedge v_n) := \ell_n(v_1 \wedge^* \cdots \wedge^* v_n)$$
Braided L_∞-Algebras

If $(V, \{\ell_n\})$ is a classical L_∞-algebra in the category of $U\Gamma(TM)$-modules, then $(V, \{\ell^*_n\})$ is a braided L_∞-algebra in the category of $U\mathcal{F}\Gamma(TM)$-modules, where

$$\ell^*_n(v_1 \wedge \cdots \wedge v_n) := \ell_n(v_1 \wedge^* \cdots \wedge^* v_n)$$

Braided graded antisymmetry:

$$\ell^*_n(\ldots, v, v', \ldots) = -(-1)^{|v||v'|} \ell_n^*(\ldots, \bar{R}^\alpha(v'), \bar{R}_\alpha(v), \ldots)$$

+ braided homotopy Jacobi identities (unchanged for $n = 1, 2$)
Braided L_∞-Algebras

- If $(V, \{\ell_n\})$ is a classical L_∞-algebra in the category of $U\Gamma(TM)$-modules, then $(V, \{\ell^*_n\})$ is a braided L_∞-algebra in the category of $U\mathcal{F}\Gamma(TM)$-modules, where

$$\ell^*_n(v_1 \wedge \cdots \wedge v_n) := \ell_n(v_1 \wedge_{\ast} \cdots \wedge_{\ast} v_n)$$

- Braided graded antisymmetry:

$$\ell^*_n(\ldots, v, v', \ldots) = -(-1)^{|v||v'|} \ell^*_n(\ldots, \bar{R}_\alpha(v'), \bar{R}_\alpha(v), \ldots)$$

+ braided homotopy Jacobi identities (unchanged for $n = 1, 2$)

- Cyclic pairing: $\langle -,- \rangle_\ast := \langle -,- \rangle \circ \mathcal{F}^{-1}$
Braided L_∞-Algebra of Noncommutative Gravity

For braided ECP gravity, underlying cochain complex (V, ℓ_1) is formally unchanged.
Braided L_∞-Algebra of Noncommutative Gravity

- For braided ECP gravity, underlying cochain complex (V, ℓ_1) is formally unchanged

- Higher brackets:

 \[
 \ell^*_2((\xi_1, \lambda_1), (\xi_2, \lambda_2)) = ([\xi_1, \xi_2]_*, -[\lambda_1, \lambda_2]_* + \mathcal{L}^*_\xi_1 \lambda_2 - \mathcal{L}^*_{\bar{R}_\alpha \xi_2} \bar{R}_\alpha \lambda_1)
 \]

 \[
 \ell^*_2((\xi, \lambda), (e, \omega)) = (-\lambda \ast e + \mathcal{L}^*_\xi e, -[\lambda, \omega]_* + \mathcal{L}^*_\xi \omega)
 \]

 \[
 \ell^*_2((e_1, \omega_1), (e_2, \omega_2)) = -(2 \omega_2 \wedge_* \omega_1, \omega_1 \wedge_* e_2 + \bar{R}^\alpha \omega_2 \wedge_* \bar{R}_\alpha e_1)
 \]

 + more ℓ^*_2 related to field equations and Noether identities
Braided L_∞-Algebra of Noncommutative Gravity

- For braided ECP gravity, underlying cochain complex (V, ℓ_1) is formally unchanged.

- Higher brackets:
 \[
 \begin{align*}
 \ell_2^*((\xi_1, \lambda_1), (\xi_2, \lambda_2)) &= ([\xi_1, \xi_2]_*, -[\lambda_1, \lambda_2]_* + \mathcal{L}_{\xi_1}^* \lambda_2 - \mathcal{L}_{\bar{R}_\alpha \xi_2}^* \bar{R}_\alpha \lambda_1) \\
 \ell_2^*((\xi, \lambda), (e, \omega)) &= (-\lambda \star e + \mathcal{L}_{\xi}^* e, -[\lambda, \omega]_* + \mathcal{L}_{\xi}^* \omega) \\
 \ell_2^*((e_1, \omega_1), (e_2, \omega_2)) &= -(2 \omega_2 \wedge_* \omega_1, \omega_1 \wedge_* e_2 + \bar{R}_\alpha \omega_2 \wedge_* \bar{R}_\alpha e_1)
 \end{align*}
 \]
 + more ℓ_2^* related to field equations and Noether identities.

- Organises all dynamics of 3d noncommutative gravity:
 - Gauge symmetry and field equations as classically $(A = (e, \omega))$:
 \[
 \delta_{(\xi, \lambda)}^* A = \ell_1^*(A) + \ell_2^*((\xi, \lambda), A) , \quad \mathcal{F}_A^* = \ell_1^*(A) - \frac{1}{2} \ell_2^*(A, A)
 \]
 - Noether identities due to braided Leibniz rule:
 \[
 \mathcal{I}_{(\xi, \lambda)}^* = \ell_1^*(\mathcal{F}_A^*) - \frac{1}{2} \left(\ell_2^*(A, \mathcal{F}_A^*) - \ell_2^*(\mathcal{F}_A^*, A) \right) + \frac{1}{4} \ell_2^*(\bar{R}_\alpha A, \ell_2^*(\bar{R}_\alpha A, A)) = (0, 0)
 \]