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L--algebras and classical field theories
Einstein-Cartan-Palatini (ECP) gravity and its L..-algebras
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Nonassociative Gravity?

In certain non-geometric flux compactifications of string theory,
low-energy effective dynamics of closed strings may be described by

noncommutative or even nonassociative deformations of gravity
(Blumenhagen & Plauschinn '10; Liist '10; Mylonas, Schupp & Sz '12; ...)

Metric aspects of nonassociative differential geometry only partially

developed, no version of the Einstein-Hilbert action is known
(Blumenhagen & Fuchs '16; Aschieri, Dimitrijevi¢ Ciri¢ & Sz '17)

Try to treat as a deformation of ‘gauge theory':

Use Einstein-Cartan principal bundle formulation, corresponding
action is the Palatini action (Barnes, Schenkel & Sz '16)

Problems with naive definition of gauge transformations:
A = da+ [0, A, = da+axA—Axa
Nonassociativity obstructs closure of gauge algebra:

(65,65 — 65 05)A # 0f, 5. A
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Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers & van Dam '85)

(00 0p — 0500)P = Oc(a,p.0)P

“Generalized” gauge symmetries of closed string field theory involve
higher brackets: (Zwiebach '92)

5a® = Y ly(a,®" 1)

Dual to differential graded (commutative) algebras (Lada & Stasheff '92)

Deformation theory: Kontsevich's Formality Theorem based on
L s.-quasi-isomorphims of differential graded Lie algebras

Any classical field theory with “generalized” gauge symmetries is

determined by an L,-algebra, due to duality with BV-BRST
(Hohm & Zwiebach '17; Jur&o, Raspollini, Samann & Wolf '18)
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» [ .-algebras of Einstein-Hilbert gravity: Requires perturbation

about flat background, involves infinitely-many brackets
(Hohm & Zwiebach '17; Niitzi & Reiterer '18; Reiterer & Trubowitz '18)

Einstein-Cartan-Palatini theory only requires finitely-many brackets

> L.-algebras of noncomm./nonass. gauge theories typically also
require infinitely—many brackets (Blumenhagen, Brunner, Kupriyanov & Liist '18)

Undeformed differential does not obey Leibniz rule

» Twisted diffeomorphism symmetry does not fit (nicely) into
Lo-algebra picture — deform L..-algebra to make it compatible

» In this talk: Explain L..-algebra formulation of ECP gravity,
define deformation with braided gauge symmetries, and then present
braided L..-algebra determining noncommutative gravity
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What is an L -Algebra?

Graded vector space: V = ---dpV_ Vo Vi,
with graded exterior algebra Ay = A°*(V][1]) viewed as a free
cocommutative coalgebra

L: Ay — Ay coderivation of degree |L| = 1 , with L2 = 0

Write L2 = 0 in ‘components’ L= {{,} where
L, A"(V[1]) — V1] with |€,] = 1, or restoring original grading
by NV — V with |4, = 2—n

L(l(v)) =0 (V,41) is a cochain complex
L(b2(v,w)) = €o(b1(v), w) £ £a(v, €1(w)) ¢4 is a derivation of />
(v, ba(w, u)) + cyclic = (1043 £ 0304¢1)(v,w,u) Jacobi up to homotopy
plus “higher homotopy Jacobi identities”
L.-algebras are generalizations of differential graded Lie algebras

Dualizing gives graded commutative algebra derivation
Q =LA, — A, with [Q] =1, @ =0
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L..-Quasi-lsomorphisms

L.-morphism: Degree-preserving coalgebra homomorphism
W : Ay — Ay intertwining codifferentials: Wol = LoV

In ‘components’ ¥ = {¢,} where v¢,: A"V — V' with
[ =1—n :

by = 0 11 is a cochain map

r(La(v, w)) — (a(v), ¥r(w)) = homotopy in i
plus cumbersome higher relations
Lo-morphisms generalize homomorphisms of dg Lie algebras
L.-quasi-isomorphism if induced 1. : H*(V,¢1) — H*(V', £;)

Quasi-isomorphism is an equivalence relation on L..-algebras
(contrary to dg Lie algebras)
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Cyclic L,.-Algebras

Cyclic pairing (—, =) : V x V — R is non-degenerate, graded
symmetric, bilinear and satisfies cyclicity:

(Vo, €n(vi,va, ... vp)) = £ (v, ln(vo, va, ..., Vp))

Cyclic Lo.-algebras generalize quadratic Lie algebras

Dually a graded symplectic 2-form w € Q3(V[1]) which is
Q-invariant

Cyclic Lo-morphisms W : Ay, — Ay preserve cyclic pairings:

<'l/}1(v)7'¢)1(w)>l = <V7 W>

Z <1/),‘(V1, ceey V,'), ’l/),,_,'(VH_l, ey Vn)>/ = 0

i=1
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L..-Algebras of Classical Field Theories

BV formalism constructs a dg algebra (CZ°(V[1]), Qszv) on graded
vector space V of BV fields (ghosts, fields and antifields)

Translate coordinate functions £ to elements of vector spaces, then
action of Qgy is a polynomial in ghosts, fields and antifields and
their derivatives, dual to sum over all brackets ¢, on V:

1
Qng = £1(€) + 562(675) +o
BV symplectic form (inducing antibracket) of degree —1 on V

induces cyclic pairing of degree —3

Vo Vi %23 V3
gauge par. fields field eqs. Noether ids.

V_y encode ‘higher gauge transformations’ (ghosts-for-ghosts, etc.)
for reducible symmetries
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» Gauge transformations of fields A€ Vi by A€ Vg
ONA = Li(A) + (A A) +---

> Closure of gauge algebra: [0x;,00,]A = dc(a,nma)A
C(A1, 22, A) = La(A, X)) +43(Ag, A, A) + - -
> Field equations: Fp = (1(A) — 3 (A A) + -
> Noether identities: Zy = ¢1(Fa)+lo(Fa,A)+--- = 0 (off-shell)
> Action: S = 3 (A (1(A)) — 3 (A L2(AA) + -
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L..-Algebras of Classical Field Theories

Gauge transformations of fields A€ Vi by A€ Vg
ONA = Li(A) + (A A) +---

Closure of gauge algebra: [dx;,0,]A = dc(a, 4 A
C(A1, 22, A) = La(A, X)) +43(Ag, A, A) + - -
Field equations: Fa = (1(A) — L (A A) + -
Noether identities: Zn = ¢1(Fa)+{2(Fa,A)+--- = 0 (off-shell)
Action: S = % (A 11(A)) — % (A 6(AA) + -

Moduli space = field equations / gauge transformations



L..-Algebras of Classical Field Theories

Gauge transformations of fields A€ Vi by A€ Vg
ONA = Li(A) + (A A) +---

Closure of gauge algebra: [dx;,0,]A = dc(a, 4 A
C(A1, 22, A) = La(A, X)) +43(Ag, A, A) + - -
Field equations: Fa = (1(A) — L (A A) + -
Noether identities: Zn = ¢1(Fa)+{2(Fa,A)+--- = 0 (off-shell)
Action: S = % (A 11(A)) — % (A 6(AA) + -
Moduli space = field equations / gauge transformations

Quasi-isomorphic L..-algebras give equivalent field theories
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Example:

dim(M) =3, g =
Cochain complex =

Brackets: ¢; = d

Cyclic pairing: {(«a, 8)

Chern-Simons Theory

quadratic Lie algebra with pairing Trg

(de Rham complex)®g: V

, by = [_7_]E

= [ Trans)

Q*(M,g)



Example: Chern-Simons Theory

dim(M) = 3 , g = quadratic Lie algebra with pairing Tr,
Cochain complex = (de Rham complex)®g: V = Q°*(M,g)
Brackets: 61 = d , lr = [—,—]4

Cyclic pairing: {(a,8) = /M Trg(a A B)

Field equations for A€ Vi = QY(M,g): Fa = dA+1[A Al
Moduli space = flat connections on M

Noether identity = Bianchi identity: Zy = dFa+ [Fa,Alg = 0

Action: S :/ Trg(lA/\dA-l- SANA A])
M

3!



Example: Chern-Simons Theory

dim(M) = 3 , g = quadratic Lie algebra with pairing Tr,
Cochain complex = (de Rham complex)®g: V = Q°*(M,g)
Brackets: 61 = d , lr = [—,—]4

Cyclic pairing: {(a,8) = /M Trg(a A B)

Field equations for A€ Vi = QY(M,g): Fa = dA+1[A Al
Moduli space = flat connections on M

Noether identity = Bianchi identity: Zy = dFa+ [Fa,Alg = 0
Action: S = /M Trg(%AAdAJrlAA[A,A]g)

3!
Chern-Simons gauge theory is organised by a dg Lie algebra



Einstein-Cartan-Palatini Gravity (4d)

S:/ Tr(eANeAR) = / 5abcd(ea/\eb/\RCd)
M Jm

Fields: e: TM — V bundle isomorphism onto ‘fake tangent
bundle’ V with Minkowski metric 7, defines coframe e € Q}(M, )

R = dw+ 1 [w,w] € Q*(M, P x,q50(1,3)) curvature of spin
connection w on associated principal SO(1, 3)-bundle P — M

Tr - Q4(M, A%Y) — Q4 (M)
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» Fields: e: TM — V bundle isomorphism onto ‘fake tangent
bundle’ V with Minkowski metric i, defines coframe e € Q}(M, V)
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Einstein-Cartan-Palatini Gravity (4d)

5:/ Tr(eANeAR) = / 5abcd(ea/\eb/\RCd)
M M

» Fields: e: TM — V bundle isomorphism onto ‘fake tangent
bundle’ V with Minkowski metric i, defines coframe e € Q}(M, V)

R = dw+ % [w,w] € Q3(M, P x.q 50(1,3)) curvature of spin
connection w on associated principal SO(1, 3)-bundle P — M

Tr: QY (M, A\*Y) — QH(M)

» Locally, or globally if M parallelizable:
e < QI(M,RL?’) , w c Ql(M750(173)) ' TI' : /\4(R173) N R

» Bianchi identities: d“T = RAe , dR = 0

T = d¥e = de+w A e = torsion of w
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> (Infinitesimal) gauge symmetries: Diffeos + local Lorentz
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> (Infinitesimal) gauge symmetries: Diffeos + local Lorentz
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» Field equations: eAT =0, eAR =0

For e non-degenerate, equivalent to torsion-free 4+ vacuum Einstein
equations
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Einstein-Cartan-Palatini Gravity (4d)
(Infinitesimal) gauge symmetries: Diffeos + local Lorentz
F(TM) x Q°(M, s0(1,3))

Field equations: e AT =0, eAR =0

For e non-degenerate, equivalent to torsion-free + vacuum Einstein
equations

In any dimension d: €?> — 92 in action

Ford=3: T =R =0
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Einstein-Cartan-Palatini Gravity (4d)

(Infinitesimal) gauge symmetries: Diffeos + local Lorentz
F(TM) x Q°(M, s0(1,3))

Field equations: e AT =0, eAR =0

For e non-degenerate, equivalent to torsion-free 4+ vacuum Einstein
equations

In any dimension d: €?> — 92 in action
Ford=3: T =R =0

Note: In contrast to Einstein-Hilbert formulation,
ECP theory makes sense for degenerate coframes e
(required for L..-algebra formulation)



L..-Algebra Picture of ECP Gravity (3d)

21 21

Cochain complex: Vg CENVA Vs Vs

Gauge transformations: (£,\) € Vo = T(TM) x Q%(M, 50(3))
Physical fields: (e,w) € Vi = QYM,R3) x Q}(M, s0(3))
Field equations: (E,Q) € Vo = Q3(M, A2(R3?)) x Q3(M,R3?)
Noether identities: (=,A) € V3 = QY M, Q3(M)) x Q3(M,R3)

Differential: £1(€,X) = (0,d)\) f1(e,w) = (0,0) £1(E,Q) = (0,dR)



L..-Algebra Picture of ECP Gravity (3d)

21 21

Cochain complex: Vg ZEINYVA

Vo V3

Gauge transformations: (£,\) € Vo = T(TM) x Q%(M, 50(3))
Physical fields: (e,w) € Vi = QYM,R3) x Q}(M, s0(3))

Field equations: (E,Q) € Vo = Q3(M, A2(R3?)) x Q3(M,R3?)
Noether identities: (=,A) € V3 = QY M, Q3(M)) x Q3(M,R3)
Differential: £1(6,A) = (0,d\) fi(e,w) = (0,0) £1(E,Q) = (0,dQ)
Higher brackets:

£o((61, A1), (62, A2)) = ([€1, &2], —[A1, Ao] + Ly Ao — Ly M)
L((E,N), (e,w)) = (=X e+ Lee, — [\, w] + Lew)
Oo((e1,w1), (e2,w2)) = —(Qw2 Awi,w1 A & + w2 A er)

+ more /5 related to field equations and Noether identities



L..-Algebra Picture of ECP Gravity (3d)

» 3d gravity is organised by a dg Lie algebra:

>

Gauge symmetry:

Sen(e,w) = (“Aet+Lee, dA—[N\ w]+Lew) = (& N)+£2((E,N), (e,w))

>

>

VTSN

Field equations: Fewy = (R, T) = li(e,w)— 1 la((e,w), (e,w))
Noether identities:

= (dx" ® Tr(ta,e NAR — 1g,de AR) + (e > w),d“T — RAe)
= O(Few) — lo((6,w); Flew)) = (0,0) (off-shell)



L..-Algebra Picture of ECP Gravity (3d)

» 3d gravity is organised by a dg Lie algebra:
> Gauge symmetry:
Sen(ew) = (mAetLee, A=A wl+Lew) = 4i(§ A)+H((€5 A), (e,w))
» Field equations: Fewy = (R, T) = l(e,w)— 1 l((e,w), (e,w))
» Noether identities:
Zeny = (dx" ® Tr(to,e AdR —1p,de AR) + (e 3 w), d”T — R Ae)
= ((Few) — Lo((6,w), Flew)) = (0,0) (off-shell)

» Cyclic pairing: {(e,w), (E,Q)) ::/ Tr(e A E+Q Aw) encodes:
M
» ECP action: S = ((e,w), li(e,w) + £2((e,w), (e,w)))

I

integration by parts; then cyclicity on V4 implies Noether identities

» Extend to (—,—): Vo x V3 — R using gauge invariance and



L..-Algebra Picture of ECP Gravity (3d)

» 3d gravity is organised by a dg Lie algebra:
> Gauge symmetry:
Sen(ew) = (mAetLee, A=A wl+Lew) = 4i(§ A)+H((€5 A), (e,w))
» Field equations: Fewy = (R, T) = l(e,w)— 1 l((e,w), (e,w))
» Noether identities:
Zeny = (dx" ® Tr(to,e AdR —1p,de AR) + (e 3 w), d”T — R Ae)
= ((Few) — Lo((6,w), Flew)) = (0,0) (off-shell)

» Cyclic pairing: {(e,w), (E,Q)) ::/ Tr(e A E+Q Aw) encodes:
M

» ECP action: S = ((e,w), li(e,w) + £2((e,w), (e,w)))

I

integration by parts; then cyclicity on V4 implies Noether identities

» Describes BV-BRST formulation of ECP gravity
(with higher brackets for d > 4) (Cattaneo & Schiavina '17)

» Extend to (—,—): Vo x V3 — R using gauge invariance and
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Application: Chern-Simons Gravity

3d gravity is equivalent to Chern-Simons theory with gauge algebra
g=150(3) =R3x50(3), A= (e,w), Fa=(R,T) (Witten '88)

For invertible e, diffeos £ € [(TM) are equivalent on-shell to gauge
transfs by (7¢,\¢) = (1ee,tew) € QO(M, g):
55A = ,CgA = 5(.,-&)\5)/4 + Lng

Diffeos are redundant symmetries: trivialise by extending Vg (V3)
by extra “shift” symmetries Q°(M,R3) (Q3(M, s0(3))), and adding
Voy = [(TM) (Vs = QY(M,Q3(M)) with £ :V_1 < Vg

(61 Vs — V4); then H®(VESL 1) ~ H*(Ves, (1)

ECP?

There is an (off-shell) cyclic L-quasi-isomorphism {%,} with
¥, = 0 for n > 3 from the Chern-Simons dg Lie algebra to the
ECP dg Lie algebra
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Braided Noncommutative Deformation
Let F = f*®f, € UF(TM)® UF(TM) be a Drinfel'd twist;
e.g. Moyal-Weyl twist F =exp (— %9‘“’ Oy ® 0y)

If Ais a UF(TM)-module algebra, deform product on A into a
star-product:

axb = -Fla®b) = f*(a) - f.(b)

Defines noncommutative algebra A, carrying representation of
twisted Hopf algebra Uzl (TM):
f(axb) = {uy(a) xE)(b) » A(E) = {u)®@ &)
If A is commutative, then A, is braided-commutative:
axb = R%(b) xRq(a)
R = F 2 = R*®R, = triangular R-matrix

More generally, if F is a cochain twist, then Uxz[(TM) is a
quasi-Hopf algebra and A, is a nonassociative algebra
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Braided Gauge Symmetry

Braided Lie algebra Q%(M,50(3)): [A1, Ae]s = [, o F (M ®@N\2)

Braided antisymmetric: [A1, Xo], = —[R%X2, RaAi]«, braided Jacobi

Braided spin connection, coframe w € Q1(M,s0(3)) ,
e € Q1 (M,R3) transform in braided representations:

dye = —Axe , Hw = dX— [\ wlk

Braided gauge transformations satisfy braided Leibniz rule:

fHe®w) = fe®uw+RYe®d \w

Braided covariant derivative gives braided curvature and torsion:

R = dw+ 3 [w,w]. , T = detwA,e

Braided diffeomorphisms [,(TM): Lfe := Lia¢(fue)
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Braided ECP Gravity

S* :/ Tr(e Ay R) = / 5abc(e"/\* Rbc)
M M

Invariant under braided semi-direct product: T.(TM) x Q%(M, s0(3))
No extra degrees of freedom introduced

Field equations: R = 0 , T = %w/\*e—%f_{aw/\* f{ae
Braiding induces torsion

Bianchi identities modified: dR = RA,w—wA, R

Field equations are braided covariant, but braided gauge symmetries
do not produce new solutions:

0XR[w] # Rw + d}w]

Braided version of Noether's Second Theorem gives “braided”
Noether identities off-shell, justifies interpretation of local braided
symmetries as “gauge”
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Braided L. -Algebras

» If (V,{¢,}) is a classical L,.-algebra in the category of
UT(TM)-modules, then (V,{¢}}) is a braided L..-algebra in the
category of Uxl'(TM)-modules, where

(A Avy) 1= Lo(vi Axv e Ay Vi)

» Braided graded antisymmetry:
Cv, ) = —(=D)MIVE g RV, Ra(v), .. )
+ braided homotopy Jacobi identities (unchanged for n = 1,2)

» Cyclic pairing: (—, =), = (—, =)o F1
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Braided L. -Algebra of Noncommutative Gravity

» For braided ECP gravity, underlying cochain complex (V,¢1) is
formally unchanged

» Higher brackets:
G((&1, M), (€2, 22)) = ([€1, &1w, —[M1, Xale + LE X2 — Liag,Radi)
G((& ), (e;w)) = (“Axe+ Lee, =[N Wl + Liw)
0 ((er,w1), (€2,w2)) = —(2w2 Aw w1, w1 Ax € + R%w2 Ay Raer)
+ more /5 related to field equations and Noether identities
» Organises all dynamics of 3d noncommutative gravity:
> Gauge symmetry and field equations as classically (A = (e,w)):
SeA = (A +G((EN),A) , Fa = L(A) - 56(AA)
> Noether identities due to braided Leibniz rule:
Ty = G(F2) — 3 (6(A Fa) — 6(Fi, A)) + : 6 (RYA, 65 (Ra A, A)) = (0,0)



