L_{∞}-Algebras of Gravity and their Braided Deformations

Richard Szabo

Solvay Workshop on Higher Spin Gauge Theories,
Topological Field Theory
and Deformation Quantization
Brussels, 19 February 2020

Outline

- Introduction/Motivation
- L_{∞}-algebras and classical field theories
- Einstein-Cartan-Palatini (ECP) gravity and its L_{∞}-algebras
- Noncommutative ECP gravity and braided L_{∞}-algebras
with M. Dimitrijević Ćirić, G. Giotopoulos \& V. Radovanović

Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity
(Blumenhagen \& Plauschinn '10; Lüst '10; Mylonas, Schupp \& Sz '12; ...)

Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity
(Blumenhagen \& Plauschinn '10; Lüst '10; Mylonas, Schupp \& Sz '12; ...)
- Metric aspects of nonassociative differential geometry only partially developed, no version of the Einstein-Hilbert action is known
(Blumenhagen \& Fuchs '16; Aschieri, Dimitrijević Ćirić \& Sz '17)

Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity
(Blumenhagen \& Plauschinn '10; Lüst '10; Mylonas, Schupp \& Sz '12; . . .)
- Metric aspects of nonassociative differential geometry only partially developed, no version of the Einstein-Hilbert action is known
(Blumenhagen \& Fuchs '16; Aschieri, Dimitrijević Ćirić \& Sz '17)
- Try to treat as a deformation of 'gauge theory':

Use Einstein-Cartan principal bundle formulation, corresponding action is the Palatini action
(Barnes, Schenkel \& Sz '16)

Nonassociative Gravity?

- In certain non-geometric flux compactifications of string theory, low-energy effective dynamics of closed strings may be described by noncommutative or even nonassociative deformations of gravity
(Blumenhagen \& Plauschinn '10; Lüst '10; Mylonas, Schupp \& Sz '12; . . .)
- Metric aspects of nonassociative differential geometry only partially developed, no version of the Einstein-Hilbert action is known
(Blumenhagen \& Fuchs '16; Aschieri, Dimitrijević Ćirić \& Sz '17)
- Try to treat as a deformation of 'gauge theory':

Use Einstein-Cartan principal bundle formulation, corresponding action is the Palatini action
(Barnes, Schenkel \& Sz '16)

- Problems with naive definition of gauge transformations:

$$
\delta_{\alpha}^{\star} A=\mathrm{d} \alpha+[\alpha, A]_{\star}=\mathrm{d} \alpha+\alpha \star A-A \star \alpha
$$

Nonassociativity obstructs closure of gauge algebra:

$$
\left(\delta_{\alpha}^{\star} \delta_{\beta}^{\star}-\delta_{\beta}^{\star} \delta_{\alpha}^{\star}\right) A \neq \delta_{[\alpha, \beta]_{\star}}^{\star} A
$$

L_{∞}-Algebras in Physics \& Mathematics

- Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers \& van Dam '85)

$$
\left(\delta_{\alpha} \delta_{\beta}-\delta_{\beta} \delta_{\alpha}\right) \Phi=\delta_{C(\alpha, \beta, \Phi)} \Phi
$$

L_{∞}-Algebras in Physics \& Mathematics

- Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers \& van Dam '85)

$$
\left(\delta_{\alpha} \delta_{\beta}-\delta_{\beta} \delta_{\alpha}\right) \Phi=\delta_{C(\alpha, \beta, \Phi)} \Phi
$$

- "Generalized" gauge symmetries of closed string field theory involve higher brackets:
(Zwiebach '92)

$$
\delta_{\alpha} \Phi=\sum_{n} \ell_{n}\left(\alpha, \Phi^{n-1}\right)
$$

L_{∞}-Algebras in Physics \& Mathematics

- Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers \& van Dam '85)

$$
\left(\delta_{\alpha} \delta_{\beta}-\delta_{\beta} \delta_{\alpha}\right) \Phi=\delta_{C(\alpha, \beta, \Phi)} \Phi
$$

- "Generalized" gauge symmetries of closed string field theory involve higher brackets:
(Zwiebach '92)

$$
\delta_{\alpha} \Phi=\sum_{n} \ell_{n}\left(\alpha, \Phi^{n-1}\right)
$$

- Dual to differential graded (commutative) algebras (Lada \& Stasheff '92)

L_{∞}-Algebras in Physics \& Mathematics

- Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers \& van Dam '85)

$$
\left(\delta_{\alpha} \delta_{\beta}-\delta_{\beta} \delta_{\alpha}\right) \Phi=\delta_{C(\alpha, \beta, \Phi)} \Phi
$$

- "Generalized" gauge symmetries of closed string field theory involve higher brackets:
(Zwiebach '92)

$$
\delta_{\alpha} \Phi=\sum_{n} \ell_{n}\left(\alpha, \Phi^{n-1}\right)
$$

- Dual to differential graded (commutative) algebras (Lada \& Stasheff '92)
- Deformation theory: Kontsevich's Formality Theorem based on L_{∞}-quasi-isomorphims of differential graded Lie algebras

L_{∞}-Algebras in Physics \& Mathematics

- Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers \& van Dam '85)

$$
\left(\delta_{\alpha} \delta_{\beta}-\delta_{\beta} \delta_{\alpha}\right) \Phi=\delta_{C(\alpha, \beta, \Phi)} \Phi
$$

- "Generalized" gauge symmetries of closed string field theory involve higher brackets:
(Zwiebach '92)

$$
\delta_{\alpha} \Phi=\sum_{n} \ell_{n}\left(\alpha, \Phi^{n-1}\right)
$$

- Dual to differential graded (commutative) algebras (Lada \& Stasheff '92)
- Deformation theory: Kontsevich's Formality Theorem based on L_{∞}-quasi-isomorphims of differential graded Lie algebras
- Any classical field theory with "generalized" gauge symmetries is determined by an L_{∞}-algebra, due to duality with BV-BRST

L_{∞}-Algebras: Gravity/Noncommutative Gauge Theory

- L_{∞}-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets
(Hohm \& Zwiebach '17; Nützi \& Reiterer '18; Reiterer \& Trubowitz '18)
Einstein-Cartan-Palatini theory only requires finitely-many brackets

L_{∞}-Algebras: Gravity/Noncommutative Gauge Theory

- L_{∞}-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets
(Hohm \& Zwiebach '17; Nützi \& Reiterer '18; Reiterer \& Trubowitz '18)
Einstein-Cartan-Palatini theory only requires finitely-many brackets
- L_{∞}-algebras of noncomm./nonass. gauge theories typically also require infinitely-many brackets (Blumenhagen, Brunner, Kupriyanov \& Lüst '18)

Undeformed differential does not obey Leibniz rule

L_{∞}-Algebras: Gravity/Noncommutative Gauge Theory

- L_{∞}-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets
(Hohm \& Zwiebach '17; Nützi \& Reiterer '18; Reiterer \& Trubowitz '18)
Einstein-Cartan-Palatini theory only requires finitely-many brackets
- L_{∞}-algebras of noncomm./nonass. gauge theories typically also require infinitely-many brackets (Blumenhagen, Brunner, Kupriyanov \& Lüst '18) Undeformed differential does not obey Leibniz rule
- Twisted diffeomorphism symmetry does not fit (nicely) into L_{∞}-algebra picture \Longrightarrow deform L_{∞}-algebra to make it compatible

L_{∞}-Algebras: Gravity/Noncommutative Gauge Theory

- L_{∞}-algebras of Einstein-Hilbert gravity: Requires perturbation about flat background, involves infinitely-many brackets
(Hohm \& Zwiebach '17; Nützi \& Reiterer '18; Reiterer \& Trubowitz '18)
Einstein-Cartan-Palatini theory only requires finitely-many brackets
- L_{∞}-algebras of noncomm./nonass. gauge theories typically also require infinitely-many brackets (Blumenhagen, Brunner, Kupriyanov \& Lüst '18) Undeformed differential does not obey Leibniz rule
- Twisted diffeomorphism symmetry does not fit (nicely) into L_{∞}-algebra picture \Longrightarrow deform L_{∞}-algebra to make it compatible
- In this talk: Explain L_{∞}-algebra formulation of ECP gravity, define deformation with braided gauge symmetries, and then present braided L_{∞}-algebra determining noncommutative gravity

What is an L_{∞}-Algebra?

- Graded vector space: $V=\cdots \oplus V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots$, with graded exterior algebra $\Lambda_{V}=\wedge^{\bullet}(V[1])$ viewed as a free cocommutative coalgebra
$-L: \Lambda_{V} \longrightarrow \Lambda_{V}$ coderivation of degree $|L|=1$, with $L^{2}=0$

What is an L_{∞}-Algebra?

- Graded vector space: $V=\cdots \oplus V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots$, with graded exterior algebra $\Lambda_{V}=\wedge^{\bullet}(V[1])$ viewed as a free cocommutative coalgebra
- $L: \Lambda_{V} \longrightarrow \Lambda_{V}$ coderivation of degree $|L|=1$, with $L^{2}=0$
- Write $L^{2}=0$ in 'components' $L=\left\{\ell_{n}\right\}$ where $\ell_{n}: \wedge^{n}(V[1]) \longrightarrow V[1]$ with $\left|\ell_{n}\right|=1$, or restoring original grading $\ell_{n}: \wedge^{n} V \longrightarrow V$ with $\left|\ell_{n}\right|=2-n:$

$$
\begin{aligned}
\ell_{1}\left(\ell_{1}(v)\right) & =0 \quad\left(V, \ell_{1}\right) \text { is a cochain complex } \\
\ell_{1}\left(\ell_{2}(v, w)\right) & =\ell_{2}\left(\ell_{1}(v), w\right) \pm \ell_{2}\left(v, \ell_{1}(w)\right) \quad \ell_{1} \text { is a derivation of } \ell_{2}
\end{aligned}
$$

$\ell_{2}\left(v, \ell_{2}(w, u)\right)+$ cyclic $=\left(\ell_{1} \circ \ell_{3} \pm \ell_{3} \circ \ell_{1}\right)(v, w, u)$ Jacobi up to homotopy
plus "higher homotopy Jacobi identities"

What is an L_{∞}-Algebra?

- Graded vector space: $V=\cdots \oplus V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots$, with graded exterior algebra $\Lambda_{V}=\wedge^{\bullet}(V[1])$ viewed as a free cocommutative coalgebra
- $L: \Lambda_{V} \longrightarrow \Lambda_{V}$ coderivation of degree $|L|=1$, with $L^{2}=0$
- Write $L^{2}=0$ in 'components' $L=\left\{\ell_{n}\right\}$ where $\ell_{n}: \wedge^{n}(V[1]) \longrightarrow V[1]$ with $\left|\ell_{n}\right|=1$, or restoring original grading $\ell_{n}: \wedge^{n} V \longrightarrow V$ with $\left|\ell_{n}\right|=2-n:$

$$
\begin{aligned}
\ell_{1}\left(\ell_{1}(v)\right) & =0 \quad\left(V, \ell_{1}\right) \text { is a cochain complex } \\
\ell_{1}\left(\ell_{2}(v, w)\right) & =\ell_{2}\left(\ell_{1}(v), w\right) \pm \ell_{2}\left(v, \ell_{1}(w)\right) \quad \ell_{1} \text { is a derivation of } \ell_{2}
\end{aligned}
$$

$\ell_{2}\left(v, \ell_{2}(w, u)\right)+$ cyclic $=\left(\ell_{1} \circ \ell_{3} \pm \ell_{3} \circ \ell_{1}\right)(v, w, u)$ Jacobi up to homotopy
plus "higher homotopy Jacobi identities"

- L_{∞}-algebras are generalizations of differential graded Lie algebras

What is an L_{∞}-Algebra?

- Graded vector space: $V=\cdots \oplus V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots$, with graded exterior algebra $\Lambda_{V}=\Lambda^{\bullet}(V[1])$ viewed as a free cocommutative coalgebra
- $L: \Lambda_{V} \longrightarrow \Lambda_{V}$ coderivation of degree $|L|=1$, with $L^{2}=0$
- Write $L^{2}=0$ in 'components' $L=\left\{\ell_{n}\right\}$ where $\ell_{n}: \wedge^{n}(V[1]) \longrightarrow V[1]$ with $\left|\ell_{n}\right|=1$, or restoring original grading $\ell_{n}: \wedge^{n} V \longrightarrow V$ with $\left|\ell_{n}\right|=2-n:$

$$
\begin{aligned}
\ell_{1}\left(\ell_{1}(v)\right) & =0 \quad\left(V, \ell_{1}\right) \text { is a cochain complex } \\
\ell_{1}\left(\ell_{2}(v, w)\right) & =\ell_{2}\left(\ell_{1}(v), w\right) \pm \ell_{2}\left(v, \ell_{1}(w)\right) \quad \ell_{1} \text { is a derivation of } \ell_{2}
\end{aligned}
$$

$\ell_{2}\left(v, \ell_{2}(w, u)\right)+$ cyclic $=\left(\ell_{1} \circ \ell_{3} \pm \ell_{3} \circ \ell_{1}\right)(v, w, u)$ Jacobi up to homotopy
plus "higher homotopy Jacobi identities"

- L_{∞}-algebras are generalizations of differential graded Lie algebras
- Dualizing gives graded commutative algebra derivation $Q=L^{*}: \Lambda_{V}^{*} \longrightarrow \Lambda_{V}^{*}$ with $|Q|=1, Q^{2}=0$

L_{∞}-Quasi-Isomorphisms

- L_{∞}-morphism: Degree-preserving coalgebra homomorphism $\Psi: \Lambda_{V} \longrightarrow \Lambda_{V^{\prime}}$ intertwining codifferentials: $\Psi \circ L=L^{\prime} \circ \Psi$

L_{∞}-Quasi-Isomorphisms

- L_{∞}-morphism: Degree-preserving coalgebra homomorphism $\Psi: \Lambda_{V} \longrightarrow \Lambda_{V^{\prime}}$ intertwining codifferentials: $\Psi \circ L=L^{\prime} \circ \Psi$
- In 'components' $\Psi=\left\{\psi_{n}\right\}$ where $\psi_{n}: \wedge^{n} V \longrightarrow V^{\prime}$ with $\left|\psi_{n}\right|=1-n$:

$$
\begin{aligned}
& \psi_{1} \ell_{1}=\ell_{1}^{\prime} \psi_{1} \quad \psi_{1} \text { is a cochain map } \\
& \psi_{1}\left(\ell_{2}(v, w)\right)-\ell_{2}^{\prime}\left(\psi_{1}(v), \psi_{1}(w)\right)=\text { homotopy in } \psi_{2}
\end{aligned}
$$

plus cumbersome higher relations

L_{∞}-Quasi-Isomorphisms

- L_{∞}-morphism: Degree-preserving coalgebra homomorphism $\Psi: \Lambda_{V} \longrightarrow \Lambda_{V^{\prime}}$ intertwining codifferentials: $\Psi \circ L=L^{\prime} \circ \Psi$
- In 'components' $\Psi=\left\{\psi_{n}\right\}$ where $\psi_{n}: \wedge^{n} V \longrightarrow V^{\prime}$ with $\left|\psi_{n}\right|=1-n$:

$$
\begin{aligned}
& \psi_{1} \ell_{1}=\ell_{1}^{\prime} \psi_{1} \quad \psi_{1} \text { is a cochain map } \\
& \psi_{1}\left(\ell_{2}(v, w)\right)-\ell_{2}^{\prime}\left(\psi_{1}(v), \psi_{1}(w)\right)=\text { homotopy in } \psi_{2}
\end{aligned}
$$

plus cumbersome higher relations

- L_{∞}-morphisms generalize homomorphisms of dg Lie algebras

L_{∞}-Quasi-Isomorphisms

- L_{∞}-morphism: Degree-preserving coalgebra homomorphism $\Psi: \Lambda_{V} \longrightarrow \Lambda_{V^{\prime}}$ intertwining codifferentials: $\Psi \circ L=L^{\prime} \circ \Psi$
- In 'components' $\Psi=\left\{\psi_{n}\right\}$ where $\psi_{n}: \wedge^{n} V \longrightarrow V^{\prime}$ with $\left|\psi_{n}\right|=1-n$:

$$
\begin{aligned}
& \psi_{1} \ell_{1}=\ell_{1}^{\prime} \psi_{1} \quad \psi_{1} \text { is a cochain map } \\
& \psi_{1}\left(\ell_{2}(v, w)\right)-\ell_{2}^{\prime}\left(\psi_{1}(v), \psi_{1}(w)\right)=\text { homotopy in } \psi_{2}
\end{aligned}
$$

plus cumbersome higher relations

- L_{∞}-morphisms generalize homomorphisms of dg Lie algebras
- L_{∞}-quasi-isomorphism if induced $\psi_{1_{*}}: H^{\bullet}\left(V, \ell_{1}\right) \xrightarrow{\simeq} H^{\bullet}\left(V^{\prime}, \ell_{1}^{\prime}\right)$

L_{∞}-Quasi-Isomorphisms

- L_{∞}-morphism: Degree-preserving coalgebra homomorphism $\Psi: \Lambda_{V} \longrightarrow \Lambda_{V^{\prime}}$ intertwining codifferentials: $\Psi \circ L=L^{\prime} \circ \Psi$
- In 'components' $\Psi=\left\{\psi_{n}\right\}$ where $\psi_{n}: \wedge^{n} V \longrightarrow V^{\prime}$ with $\left|\psi_{n}\right|=1-n:$

$$
\begin{aligned}
& \psi_{1} \ell_{1}=\ell_{1}^{\prime} \psi_{1} \quad \psi_{1} \text { is a cochain map } \\
& \psi_{1}\left(\ell_{2}(v, w)\right)-\ell_{2}^{\prime}\left(\psi_{1}(v), \psi_{1}(w)\right)=\text { homotopy in } \psi_{2}
\end{aligned}
$$

plus cumbersome higher relations

- L_{∞}-morphisms generalize homomorphisms of dg Lie algebras
- L_{∞}-quasi-isomorphism if induced $\psi_{1 *}: H^{\bullet}\left(V, \ell_{1}\right) \xrightarrow{\simeq} H^{\bullet}\left(V^{\prime}, \ell_{1}^{\prime}\right)$
- Quasi-isomorphism is an equivalence relation on L_{∞}-algebras (contrary to dg Lie algebras)

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{1}, \ell_{n}\left(v_{0}, v_{2}, \ldots, v_{n}\right)\right\rangle
$$

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{1}, \ell_{n}\left(v_{0}, v_{2}, \ldots, v_{n}\right)\right\rangle
$$

- Cyclic L_{∞}-algebras generalize quadratic Lie algebras

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{1}, \ell_{n}\left(v_{0}, v_{2}, \ldots, v_{n}\right)\right\rangle
$$

- Cyclic L_{∞}-algebras generalize quadratic Lie algebras
- Dually a graded symplectic 2 -form $\omega \in \Omega^{2}(V[1])$ which is Q-invariant

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{1}, \ell_{n}\left(v_{0}, v_{2}, \ldots, v_{n}\right)\right\rangle
$$

- Cyclic L_{∞}-algebras generalize quadratic Lie algebras
- Dually a graded symplectic 2 -form $\omega \in \Omega^{2}(V[1])$ which is Q-invariant
- Cyclic L_{∞}-morphisms $\Psi: \Lambda_{V} \longrightarrow \Lambda_{V^{\prime}}$ preserve cyclic pairings:

$$
\begin{aligned}
& \left\langle\psi_{1}(v), \psi_{1}(w)\right\rangle^{\prime}=\langle v, w\rangle \\
& \sum_{i=1}^{n-1}\left\langle\psi_{i}\left(v_{1}, \ldots, v_{i}\right), \psi_{n-i}\left(v_{i+1}, \ldots, v_{n}\right)\right\rangle^{\prime}=0
\end{aligned}
$$

L_{∞}-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $\left(C_{\bullet}^{\infty}(V[1]), Q_{\mathrm{BV}}\right)$ on graded vector space V of BV fields (ghosts, fields and antifields)

L_{∞}-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $\left(C_{\bullet}^{\infty}(V[1]), Q_{\mathrm{BV}}\right)$ on graded vector space V of BV fields (ghosts, fields and antifields)
- Translate coordinate functions ξ to elements of vector spaces, then action of Q_{BV} is a polynomial in ghosts, fields and antifields and their derivatives, dual to sum over all brackets ℓ_{n} on V :

$$
Q_{\mathrm{BV}} \xi=\ell_{1}(\xi)+\frac{1}{2} \ell_{2}(\xi, \xi)+\cdots
$$

L_{∞}-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $\left(C_{\bullet}^{\infty}(V[1]), Q_{\mathrm{BV}}\right)$ on graded vector space V of BV fields (ghosts, fields and antifields)
- Translate coordinate functions ξ to elements of vector spaces, then action of Q_{BV} is a polynomial in ghosts, fields and antifields and their derivatives, dual to sum over all brackets ℓ_{n} on V :

$$
Q_{\mathrm{Bv}} \xi=\ell_{1}(\xi)+\frac{1}{2} \ell_{2}(\xi, \xi)+\cdots
$$

- BV symplectic form (inducing antibracket) of degree -1 on V induces cyclic pairing of degree -3

L_{∞}-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $\left(C_{\bullet}^{\infty}(V[1]), Q_{\mathrm{BV}}\right)$ on graded vector space V of BV fields (ghosts, fields and antifields)
- Translate coordinate functions ξ to elements of vector spaces, then action of Q_{BV} is a polynomial in ghosts, fields and antifields and their derivatives, dual to sum over all brackets ℓ_{n} on V :

$$
Q_{\mathrm{Bv}} \xi=\ell_{1}(\xi)+\frac{1}{2} \ell_{2}(\xi, \xi)+\cdots
$$

- BV symplectic form (inducing antibracket) of degree -1 on V induces cyclic pairing of degree -3

- V_{-k} encode 'higher gauge transformations' (ghosts-for-ghosts, etc.) for reducible symmetries

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $\mathcal{F}_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $\mathcal{F}_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Noether identities: $\mathcal{I}_{\lambda}=\ell_{1}\left(\mathcal{F}_{A}\right)+\ell_{2}\left(\mathcal{F}_{A}, A\right)+\cdots=0$ (off-shell)

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $\mathcal{F}_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Noether identities: $\mathcal{I}_{\lambda}=\ell_{1}\left(\mathcal{F}_{A}\right)+\ell_{2}\left(\mathcal{F}_{A}, A\right)+\cdots=0$ (off-shell)
- Action: $S=\frac{1}{2}\left\langle A, \ell_{1}(A)\right\rangle-\frac{1}{3!}\left\langle A, \ell_{2}(A, A)\right\rangle+\cdots$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $\mathcal{F}_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Noether identities: $\mathcal{I}_{\lambda}=\ell_{1}\left(\mathcal{F}_{A}\right)+\ell_{2}\left(\mathcal{F}_{A}, A\right)+\cdots=0$ (off-shell)
- Action: $S=\frac{1}{2}\left\langle A, \ell_{1}(A)\right\rangle-\frac{1}{3!}\left\langle A, \ell_{2}(A, A)\right\rangle+\cdots$
- Moduli space $=$ field equations / gauge transformations

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $\mathcal{F}_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Noether identities: $\mathcal{I}_{\lambda}=\ell_{1}\left(\mathcal{F}_{A}\right)+\ell_{2}\left(\mathcal{F}_{A}, A\right)+\cdots=0$ (off-shell)
- Action: $S=\frac{1}{2}\left\langle A, \ell_{1}(A)\right\rangle-\frac{1}{3!}\left\langle A, \ell_{2}(A, A)\right\rangle+\cdots$
- Moduli space $=$ field equations / gauge transformations
- Quasi-isomorphic L_{∞}-algebras give equivalent field theories

Example: Chern-Simons Theory

- $\operatorname{dim}(M)=3, \mathfrak{g}=$ quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$

Example: Chern-Simons Theory

- $\operatorname{dim}(M)=3, \mathfrak{g}=$ quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$
- Cochain complex $=($ de Rham complex $) \otimes \mathfrak{g}: \quad V=\Omega^{\bullet}(M, \mathfrak{g})$
- Brackets: $\ell_{1}=\mathrm{d}, \ell_{2}=[-,-]_{\mathfrak{g}}$
- Cyclic pairing: $\langle\alpha, \beta\rangle=\int_{M} \operatorname{Tr}_{\mathfrak{g}}(\alpha \wedge \beta)$

Example: Chern-Simons Theory

- $\operatorname{dim}(M)=3, \mathfrak{g}=$ quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$
- Cochain complex $=($ de Rham complex $) \otimes \mathfrak{g}: \quad V=\Omega^{\bullet}(M, \mathfrak{g})$
- Brackets: $\ell_{1}=\mathrm{d}, \ell_{2}=[-,-]_{\mathfrak{g}}$
- Cyclic pairing: $\langle\alpha, \beta\rangle=\int_{M} \operatorname{Tr}_{\mathfrak{g}}(\alpha \wedge \beta)$
- Field equations for $A \in V_{1}=\Omega^{1}(M, \mathfrak{g}): \mathcal{F}_{A}=\mathrm{d} A+\frac{1}{2}[A, A]_{\mathfrak{g}}$
- Moduli space $=$ flat connections on M
- Noether identity $=$ Bianchi identity: $\mathcal{I}_{\lambda}=\mathrm{d} \mathcal{F}_{A}+\left[\mathcal{F}_{A}, A\right]_{\mathfrak{g}}=0$
- Action: $S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge \mathrm{~d} A+\frac{1}{3!} A \wedge[A, A]_{\mathfrak{g}}\right)$

Example: Chern-Simons Theory

- $\operatorname{dim}(M)=3, \mathfrak{g}=$ quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$
- Cochain complex $=($ de Rham complex $) \otimes \mathfrak{g}: \quad V=\Omega^{\bullet}(M, \mathfrak{g})$
- Brackets: $\ell_{1}=\mathrm{d}, \ell_{2}=[-,-]_{\mathfrak{g}}$
- Cyclic pairing: $\langle\alpha, \beta\rangle=\int_{M} \operatorname{Tr}_{\mathfrak{g}}(\alpha \wedge \beta)$
- Field equations for $A \in V_{1}=\Omega^{1}(M, \mathfrak{g}): \quad \mathcal{F}_{A}=\mathrm{d} A+\frac{1}{2}[A, A]_{\mathfrak{g}}$
- Moduli space $=$ flat connections on M
- Noether identity $=$ Bianchi identity: $\mathcal{I}_{\lambda}=\mathrm{d} \mathcal{F}_{A}+\left[\mathcal{F}_{A}, A\right]_{\mathfrak{g}}=0$
- Action: $S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge \mathrm{~d} A+\frac{1}{3!} A \wedge[A, A]_{\mathfrak{g}}\right)$
- Chern-Simons gauge theory is organised by a dg Lie algebra

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}(e \wedge e \wedge R)=\int_{M} \varepsilon_{a b c d}\left(e^{a} \wedge e^{b} \wedge R^{c d}\right)
$$

- Fields: $e: T M \longrightarrow \mathcal{V}$ bundle isomorphism onto 'fake tangent bundle' \mathcal{V} with Minkowski metric η, defines coframe $e \in \Omega^{1}(M, \mathcal{V})$
$R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}\left(M, P \times_{\text {ad }} \mathfrak{s o (1 , 3))}\right.$ curvature of spin connection ω on associated principal $S O(1,3)$-bundle $P \longrightarrow M$

$$
\operatorname{Tr}: \Omega^{4}\left(M, \wedge^{4} \mathcal{V}\right) \longrightarrow \Omega^{4}(M)
$$

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}(e \wedge e \wedge R)=\int_{M} \varepsilon_{a b c d}\left(e^{a} \wedge e^{b} \wedge R^{c d}\right)
$$

- Fields: $e: T M \longrightarrow \mathcal{V}$ bundle isomorphism onto 'fake tangent bundle' \mathcal{V} with Minkowski metric η, defines coframe $e \in \Omega^{1}(M, \mathcal{V})$ $R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}\left(M, P \times_{\text {ad }} \mathfrak{s o (1 , 3))}\right.$ curvature of spin connection ω on associated principal $S O(1,3)$-bundle $P \longrightarrow M$

$$
\operatorname{Tr}: \Omega^{4}\left(M, \wedge^{4} \mathcal{V}\right) \longrightarrow \Omega^{4}(M)
$$

- Locally, or globally if M parallelizable:
$e \in \Omega^{1}\left(M, \mathbb{R}^{1,3}\right), \omega \in \Omega^{1}(M, \mathfrak{s o}(1,3)), \operatorname{Tr}: \wedge^{4}\left(\mathbb{R}^{1,3}\right) \longrightarrow \mathbb{R}$

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}(e \wedge e \wedge R)=\int_{M} \varepsilon_{a b c d}\left(e^{a} \wedge e^{b} \wedge R^{c d}\right)
$$

- Fields: $e: T M \longrightarrow \mathcal{V}$ bundle isomorphism onto 'fake tangent bundle' \mathcal{V} with Minkowski metric η, defines coframe $e \in \Omega^{1}(M, \mathcal{V})$ $R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}\left(M, P \times_{\text {ad }} \mathfrak{s o}(1,3)\right)$ curvature of spin connection ω on associated principal $S O(1,3)$-bundle $P \longrightarrow M$

$$
\operatorname{Tr}: \Omega^{4}\left(M, \wedge^{4} \mathcal{V}\right) \longrightarrow \Omega^{4}(M)
$$

- Locally, or globally if M parallelizable:
$e \in \Omega^{1}\left(M, \mathbb{R}^{1,3}\right), \omega \in \Omega^{1}(M, \mathfrak{s o}(1,3)), \operatorname{Tr}: \wedge^{4}\left(\mathbb{R}^{1,3}\right) \longrightarrow \mathbb{R}$
- Bianchi identities: $\mathrm{d}^{\omega} T=R \wedge e, \mathrm{~d}^{\omega} R=0$

$$
T=\mathrm{d}^{\omega} e=\mathrm{de}+\omega \wedge e=\text { torsion of } \omega
$$

Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \rtimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \rtimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

- Field equations: $e \wedge T=0, e \wedge R=0$

For e non-degenerate, equivalent to torsion-free + vacuum Einstein equations

Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \rtimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

- Field equations: $e \wedge T=0, e \wedge R=0$

For e non-degenerate, equivalent to torsion-free + vacuum Einstein equations

- In any dimension $d: e^{2} \longrightarrow e^{d-2}$ in action
- For $d=3: T=R=0$

Einstein-Cartan-Palatini Gravity (4d)

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \rtimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

- Field equations: $e \wedge T=0, e \wedge R=0$

For e non-degenerate, equivalent to torsion-free + vacuum Einstein equations

- In any dimension $d: e^{2} \longrightarrow e^{d-2}$ in action
- For $d=3: T=R=0$
- Note: In contrast to Einstein-Hilbert formulation, ECP theory makes sense for degenerate coframes e (required for L_{∞}-algebra formulation)

L_{∞}-Algebra Picture of ECP Gravity (3d)

- Cochain complex: $V_{0} \xrightarrow{\ell_{1}} V_{1} \xrightarrow{\ell_{1}} V_{2} \xrightarrow{\ell_{1}} V_{3}$
- Gauge transformations: $(\xi, \lambda) \in V_{0}=\Gamma(T M) \times \Omega^{0}(M, \mathfrak{s o}(3))$
- Physical fields: $(e, \omega) \in V_{1}=\Omega^{1}\left(M, \mathbb{R}^{3}\right) \times \Omega^{1}(M, \mathfrak{s o}(3))$
- Field equations: $(E, \Omega) \in V_{2}=\Omega^{2}\left(M, \wedge^{2}\left(\mathbb{R}^{3}\right)\right) \times \Omega^{2}\left(M, \mathbb{R}^{3}\right)$
- Noether identities: $(\equiv, \wedge) \in V_{3}=\Omega^{1}\left(M, \Omega^{3}(M)\right) \times \Omega^{3}\left(M, \mathbb{R}^{3}\right)$
- Differential: $\ell_{1}(\xi, \lambda)=(0, \mathrm{~d} \lambda) \quad \ell_{1}(e, \omega)=(0,0) \quad \ell_{1}(E, \Omega)=(0, \mathrm{~d} \Omega)$

L_{∞}-Algebra Picture of ECP Gravity (3d)

- Cochain complex: $V_{0} \xrightarrow{\ell_{1}} V_{1} \xrightarrow{\ell_{1}} V_{2} \xrightarrow{\ell_{1}} V_{3}$
- Gauge transformations: $(\xi, \lambda) \in V_{0}=\Gamma(T M) \times \Omega^{0}(M, \mathfrak{s o}(3))$
- Physical fields: $(e, \omega) \in V_{1}=\Omega^{1}\left(M, \mathbb{R}^{3}\right) \times \Omega^{1}(M, \mathfrak{s o}(3))$
- Field equations: $(E, \Omega) \in V_{2}=\Omega^{2}\left(M, \wedge^{2}\left(\mathbb{R}^{3}\right)\right) \times \Omega^{2}\left(M, \mathbb{R}^{3}\right)$
- Noether identities: $(\Xi, \Lambda) \in V_{3}=\Omega^{1}\left(M, \Omega^{3}(M)\right) \times \Omega^{3}\left(M, \mathbb{R}^{3}\right)$
- Differential: $\ell_{1}(\xi, \lambda)=(0, \mathrm{~d} \lambda) \quad \ell_{1}(e, \omega)=(0,0) \quad \ell_{1}(E, \Omega)=(0, \mathrm{~d} \Omega)$
- Higher brackets:

$$
\begin{aligned}
\ell_{2}\left(\left(\xi_{1}, \lambda_{1}\right),\left(\xi_{2}, \lambda_{2}\right)\right) & =\left(\left[\xi_{1}, \xi_{2}\right],-\left[\lambda_{1}, \lambda_{2}\right]+\mathcal{L}_{\xi_{1}} \lambda_{2}-\mathcal{L}_{\xi_{2}} \lambda_{1}\right) \\
\ell_{2}((\xi, \lambda),(e, \omega)) & =\left(-\lambda \cdot e+\mathcal{L}_{\xi} e,-[\lambda, \omega]+\mathcal{L}_{\xi} \omega\right) \\
\ell_{2}\left(\left(e_{1}, \omega_{1}\right),\left(e_{2}, \omega_{2}\right)\right) & =-\left(2 \omega_{2} \wedge \omega_{1}, \omega_{1} \wedge e_{2}+\omega_{2} \wedge e_{1}\right)
\end{aligned}
$$

+ more ℓ_{2} related to field equations and Noether identities

L_{∞}-Algebra Picture of ECP Gravity (3d)

- 3d gravity is organised by a dg Lie algebra:
- Gauge symmetry:
$\delta_{(\xi, \lambda)}(e, \omega)=\left(-\lambda \cdot e+\mathcal{L}_{\xi} e, \mathrm{~d} \lambda-[\lambda, \omega]+\mathcal{L}_{\xi} \omega\right)=\ell_{1}(\xi, \lambda)+\ell_{2}((\xi, \lambda),(e, \omega))$
- Field equations: $\mathcal{F}_{(e, \omega)}=(R, T)=\ell_{1}(e, \omega)-\frac{1}{2} \ell_{2}((e, \omega),(e, \omega))$
- Noether identities:

$$
\begin{aligned}
\mathcal{I}_{(\xi, \lambda)} & =\left(\mathrm{d} x^{\mu} \otimes \operatorname{Tr}\left(\iota_{\mu} e \wedge \mathrm{~d} R-\iota \partial_{\mu} \mathrm{de} \wedge R\right)+(e \leftrightarrow \omega), \mathrm{d}^{\omega} T-R \wedge e\right) \\
& =\ell_{1}\left(\mathcal{F}_{(e, \omega)}\right)-\ell_{2}\left((e, \omega), \mathcal{F}_{(e, \omega)}\right)=(0,0) \quad(\text { off-shell })
\end{aligned}
$$

L_{∞}-Algebra Picture of ECP Gravity (3d)

- 3d gravity is organised by a dg Lie algebra:
- Gauge symmetry:
$\delta_{(\xi, \lambda)}(e, \omega)=\left(-\lambda \cdot e+\mathcal{L}_{\xi} e, \mathrm{~d} \lambda-[\lambda, \omega]+\mathcal{L}_{\xi} \omega\right)=\ell_{1}(\xi, \lambda)+\ell_{2}((\xi, \lambda),(e, \omega))$
- Field equations: $\mathcal{F}_{(e, \omega)}=(R, T)=\ell_{1}(e, \omega)-\frac{1}{2} \ell_{2}((e, \omega),(e, \omega))$
- Noether identities:

$$
\begin{aligned}
\mathcal{I}_{(\xi, \lambda)} & =\left(\mathrm{d} x^{\mu} \otimes \operatorname{Tr}\left(\iota_{\partial} e \wedge \mathrm{~d} R-\iota_{\partial_{\mu}} \mathrm{de} \wedge R\right)+(e \leftrightarrow \omega), \mathrm{d}^{\omega} T-R \wedge e\right) \\
& =\ell_{1}\left(\mathcal{F}_{(e, \omega)}\right)-\ell_{2}\left((e, \omega), \mathcal{F}_{(e, \omega)}\right)=(0,0) \quad(\text { off-shell })
\end{aligned}
$$

- Cyclic pairing: $\langle(e, \omega),(E, \Omega)\rangle:=\int_{M} \operatorname{Tr}(e \wedge E+\Omega \wedge \omega)$ encodes:
- ECP action: $S=\left\langle(e, \omega), \ell_{1}(e, \omega)+\ell_{2}((e, \omega),(e, \omega))\right\rangle$
- Extend to $\langle-,-\rangle: V_{0} \times V_{3} \longrightarrow \mathbb{R}$ using gauge invariance and integration by parts; then cyclicity on V_{0} implies Noether identities

L_{∞}-Algebra Picture of ECP Gravity (3d)

- 3d gravity is organised by a dg Lie algebra:
- Gauge symmetry:
$\delta_{(\xi, \lambda)}(e, \omega)=\left(-\lambda \cdot e+\mathcal{L}_{\xi} e, \mathrm{~d} \lambda-[\lambda, \omega]+\mathcal{L}_{\xi} \omega\right)=\ell_{1}(\xi, \lambda)+\ell_{2}((\xi, \lambda),(e, \omega))$
- Field equations: $\mathcal{F}_{(e, \omega)}=(R, T)=\ell_{1}(e, \omega)-\frac{1}{2} \ell_{2}((e, \omega),(e, \omega))$
- Noether identities:

$$
\begin{aligned}
\mathcal{I}_{(\xi, \lambda)} & =\left(\mathrm{d} x^{\mu} \otimes \operatorname{Tr}\left(\iota_{\partial} e \wedge \mathrm{~d} R-\iota \partial_{\mu} \mathrm{d} e \wedge R\right)+(e \leftrightarrow \omega), \mathrm{d}^{\omega} T-R \wedge e\right) \\
& =\ell_{1}\left(\mathcal{F}_{(e, \omega)}\right)-\ell_{2}\left((e, \omega), \mathcal{F}_{(e, \omega)}\right)=(0,0) \quad(\text { off-shell })
\end{aligned}
$$

- Cyclic pairing: $\langle(e, \omega),(E, \Omega)\rangle:=\int_{M} \operatorname{Tr}(e \wedge E+\Omega \wedge \omega)$ encodes:
- ECP action: $S=\left\langle(e, \omega), \ell_{1}(e, \omega)+\ell_{2}((e, \omega),(e, \omega))\right\rangle$
- Extend to $\langle-,-\rangle: V_{0} \times V_{3} \longrightarrow \mathbb{R}$ using gauge invariance and integration by parts; then cyclicity on V_{0} implies Noether identities
- Describes BV-BRST formulation of ECP gravity (with higher brackets for $d \geq 4$)

Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra $\mathfrak{g}=\mathfrak{i s o}(3)=\mathbb{R}^{3} \rtimes \mathfrak{s o}(3), \quad A=(e, \omega), \quad \mathcal{F}_{A}=(R, T)$ (Witten '88)

Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra $\mathfrak{g}=\mathfrak{i s o}(3)=\mathbb{R}^{3} \rtimes \mathfrak{s o}(3), \quad A=(e, \omega), \quad \mathcal{F}_{A}=(R, T)$ (Witten '88)
- For invertible e, diffeos $\xi \in \Gamma(T M)$ are equivalent on-shell to gauge transfs by $\left(\tau_{\xi}, \lambda_{\xi}\right)=\left(\iota_{\xi} e, \iota_{\xi} \omega\right) \in \Omega^{0}(M, \mathfrak{g})$:

$$
\delta_{\xi} A=\mathcal{L}_{\xi} A=\delta_{\left(\tau_{\xi}, \lambda_{\xi}\right)} A+\iota_{\xi} \mathcal{F}_{A}
$$

Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra $\mathfrak{g}=\mathfrak{i s o}(3)=\mathbb{R}^{3} \rtimes \mathfrak{s o}(3), \quad A=(e, \omega), \quad \mathcal{F}_{A}=(R, T)$
(Witten '88)
- For invertible e, diffeos $\xi \in \Gamma(T M)$ are equivalent on-shell to gauge transfs by $\left(\tau_{\xi}, \lambda_{\xi}\right)=\left(\iota_{\xi} e, \iota_{\xi} \omega\right) \in \Omega^{0}(M, \mathfrak{g})$:

$$
\delta_{\xi} A=\mathcal{L}_{\xi} A=\delta_{\left(\tau_{\xi}, \lambda_{\xi}\right)} A+\iota_{\xi} \mathcal{F}_{A}
$$

- Diffeos are redundant symmetries: trivialise by extending $V_{0}\left(V_{3}\right)$ by extra "shift" symmetries $\Omega^{0}\left(M, \mathbb{R}^{3}\right)\left(\Omega^{3}(M, \mathfrak{s o}(3))\right)$, and adding $V_{-1}=\Gamma(T M)\left(V_{4}=\Omega^{1}\left(M, \Omega^{3}(M)\right)\right.$ with $\ell_{1}: V_{-1} \hookrightarrow V_{0}$ $\left(\ell_{1}: V_{3} \rightarrow V_{4}\right)$; then $H^{\bullet}\left(V_{\mathrm{ECP}}^{\text {ext }}, \ell_{1}\right) \simeq H^{\bullet}\left(V_{\mathrm{CS}}, \ell_{1}\right)$

Application: Chern-Simons Gravity

- 3d gravity is equivalent to Chern-Simons theory with gauge algebra $\mathfrak{g}=\mathfrak{i s o}(3)=\mathbb{R}^{3} \rtimes \mathfrak{s o}(3), \quad A=(e, \omega), \quad \mathcal{F}_{A}=(R, T)$
- For invertible e, diffeos $\xi \in \Gamma(T M)$ are equivalent on-shell to gauge transfs by $\left(\tau_{\xi}, \lambda_{\xi}\right)=\left(\iota_{\xi} e, \iota_{\xi} \omega\right) \in \Omega^{0}(M, \mathfrak{g})$:

$$
\delta_{\xi} A=\mathcal{L}_{\xi} A=\delta_{\left(\tau_{\xi}, \lambda_{\xi}\right)} A+\iota_{\xi} \mathcal{F}_{A}
$$

- Diffeos are redundant symmetries: trivialise by extending $V_{0}\left(V_{3}\right)$ by extra "shift" symmetries $\Omega^{0}\left(M, \mathbb{R}^{3}\right)\left(\Omega^{3}(M, \mathfrak{s o}(3))\right)$, and adding $V_{-1}=\Gamma(T M)\left(V_{4}=\Omega^{1}\left(M, \Omega^{3}(M)\right)\right.$ with $\ell_{1}: V_{-1} \hookrightarrow V_{0}$ $\left(\ell_{1}: V_{3} \rightarrow V_{4}\right)$; then $H^{\bullet}\left(V_{\mathrm{ECP}}^{\text {ext }}, \ell_{1}\right) \simeq H^{\bullet}\left(V_{\mathrm{CS}}, \ell_{1}\right)$
- There is an (off-shell) cyclic L_{∞}-quasi-isomorphism $\left\{\psi_{n}\right\}$ with $\psi_{n}=0$ for $n \geq 3$ from the Chern-Simons dg Lie algebra to the ECP dg Lie algebra

Braided Noncommutative Deformation

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist;
e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$

Braided Noncommutative Deformation

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist; e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra, deform product on \mathcal{A} into a star-product:

$$
a \star b=\cdot \mathcal{F}^{-1}(a \otimes b)=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

Braided Noncommutative Deformation

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist; e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra, deform product on \mathcal{A} into a star-product:

$$
a \star b=\cdot \mathcal{F}^{-1}(a \otimes b)=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

- Defines noncommutative algebra \mathcal{A}_{\star} carrying representation of twisted Hopf algebra $U_{\mathcal{F}} \Gamma(T M)$:

$$
\xi(a \star b)=\xi_{(1)}(a) \star \xi_{(2)}(b) \quad, \quad \Delta(\xi)=\xi_{(1)} \otimes \xi_{(2)}
$$

Braided Noncommutative Deformation

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist; e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra, deform product on \mathcal{A} into a star-product:

$$
a \star b=\cdot \mathcal{F}^{-1}(a \otimes b)=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

- Defines noncommutative algebra \mathcal{A}_{\star} carrying representation of twisted Hopf algebra $U_{\mathcal{F}} \Gamma(T M)$:

$$
\xi(a \star b)=\xi_{(1)}(a) \star \xi_{(2)}(b) \quad, \quad \Delta(\xi)=\xi_{(1)} \otimes \xi_{(2)}
$$

- If \mathcal{A} is commutative, then \mathcal{A}_{\star} is braided-commutative:

$$
a \star b=\overline{\mathrm{R}}^{\alpha}(b) \star \overline{\mathrm{R}}_{\alpha}(a)
$$

$\mathcal{R}=\mathcal{F}^{-2}=\mathrm{R}^{\alpha} \otimes \mathrm{R}_{\alpha}=$ triangular \mathcal{R}-matrix

Braided Noncommutative Deformation

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist; e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra, deform product on \mathcal{A} into a star-product:

$$
a \star b=\cdot \mathcal{F}^{-1}(a \otimes b)=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

- Defines noncommutative algebra \mathcal{A}_{\star} carrying representation of twisted Hopf algebra $U_{\mathcal{F}} \Gamma(T M)$:

$$
\xi(a \star b)=\xi_{(1)}(a) \star \xi_{(2)}(b) \quad, \quad \Delta(\xi)=\xi_{(1)} \otimes \xi_{(2)}
$$

- If \mathcal{A} is commutative, then \mathcal{A}_{\star} is braided-commutative:

$$
a \star b=\overline{\mathrm{R}}^{\alpha}(b) \star \overline{\mathrm{R}}_{\alpha}(a)
$$

$\mathcal{R}=\mathcal{F}^{-2}=\mathrm{R}^{\alpha} \otimes \mathrm{R}_{\alpha}=$ triangular \mathcal{R}-matrix

- More generally, if \mathcal{F} is a cochain twist, then $U_{\mathcal{F}} \Gamma(T M)$ is a quasi-Hopf algebra and \mathcal{A}_{\star} is a nonassociative algebra

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{s o}(3)): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\star}:=[-,-] \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetric: $\left[\lambda_{1}, \lambda_{2}\right]_{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}$, braided Jacobi

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{s o}(3)): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\star}:=[-,-] \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetric: $\left[\lambda_{1}, \lambda_{2}\right]_{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}$, braided Jacobi
- Braided spin connection, coframe $\omega \in \Omega_{\star}^{1}(M, \mathfrak{s o}(3))$, $e \in \Omega_{\star}^{1}\left(M, \mathbb{R}^{3}\right)$ transform in braided representations:

$$
\delta_{\lambda}^{\star} e=-\lambda \star e \quad, \quad \delta_{\lambda}^{\star} \omega=\mathrm{d} \lambda-[\lambda, \omega]_{\star}
$$

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{s o}(3)): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\star}:=[-,-] \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetric: $\left[\lambda_{1}, \lambda_{2}\right]_{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}$, braided Jacobi
- Braided spin connection, coframe $\omega \in \Omega_{\star}^{1}(M, \mathfrak{s o}(3))$, $e \in \Omega_{\star}^{1}\left(M, \mathbb{R}^{3}\right)$ transform in braided representations:

$$
\delta_{\lambda}^{\star} e=-\lambda \star e \quad, \quad \delta_{\lambda}^{\star} \omega=\mathrm{d} \lambda-[\lambda, \omega]_{\star}
$$

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(e \otimes \omega)=\delta_{\lambda}^{\star} e \otimes \omega+\overline{\mathrm{R}}^{\alpha} e \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} \omega
$$

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{s o}(3)): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\star}:=[-,-] \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetric: $\left[\lambda_{1}, \lambda_{2}\right]_{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}$, braided Jacobi
- Braided spin connection, coframe $\omega \in \Omega_{\star}^{1}(M, \mathfrak{s o}(3))$, $e \in \Omega_{\star}^{1}\left(M, \mathbb{R}^{3}\right)$ transform in braided representations:

$$
\delta_{\lambda}^{\star} e=-\lambda \star e \quad, \quad \delta_{\lambda}^{\star} \omega=\mathrm{d} \lambda-[\lambda, \omega]_{\star}
$$

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(e \otimes \omega)=\delta_{\lambda}^{\star} e \otimes \omega+\overline{\mathrm{R}}^{\alpha} e \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} \omega
$$

- Braided covariant derivative gives braided curvature and torsion:

$$
R:=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega]_{\star} \quad, \quad T:=\mathrm{d} e+\omega \wedge_{\star} e
$$

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{s o}(3)): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\star}:=[-,-] \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetric: $\left[\lambda_{1}, \lambda_{2}\right]_{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}$, braided Jacobi
- Braided spin connection, coframe $\omega \in \Omega_{\star}^{1}(M, \mathfrak{s o}(3))$, $e \in \Omega_{\star}^{1}\left(M, \mathbb{R}^{3}\right)$ transform in braided representations:

$$
\delta_{\lambda}^{\star} e=-\lambda \star e \quad, \quad \delta_{\lambda}^{\star} \omega=\mathrm{d} \lambda-[\lambda, \omega]_{\star}
$$

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(e \otimes \omega)=\delta_{\lambda}^{\star} e \otimes \omega+\overline{\mathrm{R}}^{\alpha} e \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} \omega
$$

- Braided covariant derivative gives braided curvature and torsion:

$$
R:=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega]_{\star} \quad, \quad T:=\mathrm{d} e+\omega \wedge_{\star} e
$$

- Braided diffeomorphisms $\Gamma_{\star}(T M): \mathcal{L}_{\xi}^{\star} e:=\mathcal{L}_{\overline{\mathrm{f}} \alpha}\left(\overline{\mathrm{f}}_{\alpha} e\right)$

Braided ECP Gravity

$$
S^{\star}=\int_{M} \operatorname{Tr}\left(e \wedge_{\star} R\right)=\int_{M} \varepsilon_{a b c}\left(e^{a} \wedge_{\star} R^{b c}\right)
$$

Braided ECP Gravity

$$
S^{\star}=\int_{M} \operatorname{Tr}\left(e \wedge_{\star} R\right)=\int_{M} \varepsilon_{a b c}\left(e^{a} \wedge_{\star} R^{b c}\right)
$$

- Invariant under braided semi-direct product: $\Gamma_{\star}(T M) \rtimes \Omega_{\star}^{0}(M, \mathfrak{s o}(3))$ No extra degrees of freedom introduced

Braided ECP Gravity

$$
S^{\star}=\int_{M} \operatorname{Tr}\left(e \wedge_{\star} R\right)=\int_{M} \varepsilon_{a b c}\left(e^{a} \wedge_{\star} R^{b c}\right)
$$

- Invariant under braided semi-direct product: $\Gamma_{\star}(T M) \rtimes \Omega_{\star}^{0}(M, \mathfrak{s o}(3))$ No extra degrees of freedom introduced
- Field equations: $R=0, T=\frac{1}{2} \omega \wedge_{\star} e-\frac{1}{2} \overline{\mathrm{R}}^{\alpha} \omega \wedge_{\star} \overline{\mathrm{R}}_{\alpha} e$ Braiding induces torsion

Braided ECP Gravity

$$
S^{\star}=\int_{M} \operatorname{Tr}\left(e \wedge_{\star} R\right)=\int_{M} \varepsilon_{a b c}\left(e^{a} \wedge_{\star} R^{b c}\right)
$$

- Invariant under braided semi-direct product: $\Gamma_{\star}(T M) \rtimes \Omega_{\star}^{0}(M, \mathfrak{s o}(3))$ No extra degrees of freedom introduced
- Field equations: $R=0, T=\frac{1}{2} \omega \wedge_{\star} e-\frac{1}{2} \overline{\mathrm{R}}^{\alpha} \omega \wedge_{\star} \overline{\mathrm{R}}_{\alpha} e$ Braiding induces torsion
- Bianchi identities modified: $\mathrm{d} R=R \wedge_{\star} \omega-\omega \wedge_{\star} R$

Braided ECP Gravity

$$
S^{\star}=\int_{M} \operatorname{Tr}\left(e \wedge_{\star} R\right)=\int_{M} \varepsilon_{a b c}\left(e^{a} \wedge_{\star} R^{b c}\right)
$$

- Invariant under braided semi-direct product: $\Gamma_{\star}(T M) \rtimes \Omega_{\star}^{0}(M, \mathfrak{s o}(3))$ No extra degrees of freedom introduced
- Field equations: $R=0, T=\frac{1}{2} \omega \wedge_{\star} e-\frac{1}{2} \overline{\mathrm{R}}^{\alpha} \omega \wedge_{\star} \overline{\mathrm{R}}_{\alpha} e$ Braiding induces torsion
- Bianchi identities modified: $\mathrm{d} R=R \wedge_{\star} \omega-\omega \wedge_{\star} R$
- Field equations are braided covariant, but braided gauge symmetries do not produce new solutions:

$$
\delta_{\lambda}^{\star} R[\omega] \neq R\left[\omega+\delta_{\lambda}^{\star} \omega\right]
$$

Braided ECP Gravity

$$
S^{\star}=\int_{M} \operatorname{Tr}\left(e \wedge_{\star} R\right)=\int_{M} \varepsilon_{a b c}\left(e^{a} \wedge_{\star} R^{b c}\right)
$$

- Invariant under braided semi-direct product: $\Gamma_{\star}(T M) \rtimes \Omega_{\star}^{0}(M, \mathfrak{s o}(3))$ No extra degrees of freedom introduced
- Field equations: $R=0, T=\frac{1}{2} \omega \wedge_{\star} e-\frac{1}{2} \overline{\mathrm{R}}^{\alpha} \omega \wedge_{\star} \overline{\mathrm{R}}_{\alpha} e$ Braiding induces torsion
- Bianchi identities modified: $\mathrm{d} R=R \wedge_{\star} \omega-\omega \wedge_{\star} R$
- Field equations are braided covariant, but braided gauge symmetries do not produce new solutions:

$$
\delta_{\lambda}^{\star} R[\omega] \neq R\left[\omega+\delta_{\lambda}^{\star} \omega\right]
$$

- Braided version of Noether's Second Theorem gives "braided" Noether identities off-shell, justifies interpretation of local braided symmetries as "gauge"

Braided L_{∞}-Algebras

- If $\left(V,\left\{\ell_{n}\right\}\right)$ is a classical L_{∞}-algebra in the category of $U \Gamma(T M)$-modules, then $\left(V,\left\{\ell_{n}^{\star}\right\}\right)$ is a braided L_{∞}-algebra in the category of $U_{\mathcal{F}} \Gamma(T M)$-modules, where

$$
\ell_{n}^{\star}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=\ell_{n}\left(v_{1} \wedge_{\star} \cdots \wedge_{\star} v_{n}\right)
$$

Braided L_{∞}-Algebras

- If $\left(V,\left\{\ell_{n}\right\}\right)$ is a classical L_{∞}-algebra in the category of $U \Gamma(T M)$-modules, then $\left(V,\left\{\ell_{n}^{\star}\right\}\right)$ is a braided L_{∞}-algebra in the category of $U_{\mathcal{F}} \Gamma(T M)$-modules, where

$$
\ell_{n}^{\star}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=\ell_{n}\left(v_{1} \wedge_{\star} \cdots \wedge_{\star} v_{n}\right)
$$

- Braided graded antisymmetry:

$$
\ell_{n}^{\star}\left(\ldots, v, v^{\prime}, \ldots\right)=-(-1)^{|v|\left|v^{\prime}\right|} \ell_{n}^{\star}\left(\ldots, \overline{\mathrm{R}}^{\alpha}\left(v^{\prime}\right), \overline{\mathrm{R}}_{\alpha}(v), \ldots\right)
$$

+ braided homotopy Jacobi identities (unchanged for $n=1,2$)

Braided L_{∞}-Algebras

- If $\left(V,\left\{\ell_{n}\right\}\right)$ is a classical L_{∞}-algebra in the category of $U \Gamma(T M)$-modules, then $\left(V,\left\{\ell_{n}^{\star}\right\}\right)$ is a braided L_{∞}-algebra in the category of $U_{\mathcal{F}} \Gamma(T M)$-modules, where

$$
\ell_{n}^{\star}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=\ell_{n}\left(v_{1} \wedge_{\star} \cdots \wedge_{\star} v_{n}\right)
$$

- Braided graded antisymmetry:

$$
\ell_{n}^{\star}\left(\ldots, v, v^{\prime}, \ldots\right)=-(-1)^{|v|\left|v^{\prime}\right|} \ell_{n}^{\star}\left(\ldots, \overline{\mathrm{R}}^{\alpha}\left(v^{\prime}\right), \overline{\mathrm{R}}_{\alpha}(v), \ldots\right)
$$

+ braided homotopy Jacobi identities (unchanged for $n=1,2$)
- Cyclic pairing: $\langle-,-\rangle_{\star}:=\langle-,-\rangle \circ \mathcal{F}^{-1}$

Braided L_{∞}-Algebra of Noncommutative Gravity

- For braided ECP gravity, underlying cochain complex $\left(V, \ell_{1}\right)$ is formally unchanged

Braided L_{∞}-Algebra of Noncommutative Gravity

- For braided ECP gravity, underlying cochain complex $\left(V, \ell_{1}\right)$ is formally unchanged
- Higher brackets:

$$
\begin{aligned}
\ell_{2}^{\star}\left(\left(\xi_{1}, \lambda_{1}\right),\left(\xi_{2}, \lambda_{2}\right)\right) & =\left(\left[\xi_{1}, \xi_{2}\right]_{\star},-\left[\lambda_{1}, \lambda_{2}\right]_{\star}+\mathcal{L}_{\xi_{1}}^{\star} \lambda_{2}-\mathcal{L}_{\overline{\mathrm{R}}^{\alpha} \xi_{2}} \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right) \\
\ell_{2}^{\star}((\xi, \lambda),(e, \omega)) & =\left(-\lambda \star e+\mathcal{L}_{\xi}^{\star} e,-[\lambda, \omega]_{\star}+\mathcal{L}_{\xi}^{\star} \omega\right) \\
\ell_{2}^{\star}\left(\left(e_{1}, \omega_{1}\right),\left(e_{2}, \omega_{2}\right)\right) & =-\left(2 \omega_{2} \wedge_{\star} \omega_{1}, \omega_{1} \wedge_{\star} e_{2}+\overline{\mathrm{R}}^{\alpha} \omega_{2} \wedge_{\star} \overline{\mathrm{R}}_{\alpha} e_{1}\right)
\end{aligned}
$$

+ more ℓ_{2}^{\star} related to field equations and Noether identities

Braided L_{∞}-Algebra of Noncommutative Gravity

- For braided ECP gravity, underlying cochain complex $\left(V, \ell_{1}\right)$ is formally unchanged
- Higher brackets:

$$
\begin{aligned}
\ell_{2}^{\star}\left(\left(\xi_{1}, \lambda_{1}\right),\left(\xi_{2}, \lambda_{2}\right)\right) & =\left(\left[\xi_{1}, \xi_{2}\right]_{\star},-\left[\lambda_{1}, \lambda_{2}\right]_{\star}+\mathcal{L}_{\xi_{1}}^{\star} \lambda_{2}-\mathcal{L}_{\overline{\mathrm{R}}^{\alpha} \xi_{2}}^{\star} \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right) \\
\ell_{2}^{\star}((\xi, \lambda),(e, \omega)) & =\left(-\lambda \star e+\mathcal{L}_{\xi}^{\star} e,-[\lambda, \omega]_{\star}+\mathcal{L}_{\xi}^{\star} \omega\right) \\
\ell_{2}^{\star}\left(\left(e_{1}, \omega_{1}\right),\left(e_{2}, \omega_{2}\right)\right) & =-\left(2 \omega_{2} \wedge_{\star} \omega_{1}, \omega_{1} \wedge_{\star} e_{2}+\overline{\mathrm{R}}^{\alpha} \omega_{2} \wedge_{\star} \overline{\mathrm{R}}_{\alpha} e_{1}\right)
\end{aligned}
$$

+ more ℓ_{2}^{\star} related to field equations and Noether identities
- Organises all dynamics of 3d noncommutative gravity:
- Gauge symmetry and field equations as classically $(A=(e, \omega))$:

$$
\delta_{(\xi, \lambda)}^{\star} A=\ell_{1}^{\star}(A)+\ell_{2}^{\star}((\xi, \lambda), A), \quad \mathcal{F}_{A}^{\star}=\ell_{1}^{\star}(A)-\frac{1}{2} \ell_{2}^{\star}(A, A)
$$

- Noether identities due to braided Leibniz rule:

$$
\mathcal{I}_{(\xi, \lambda)}^{\star}=\ell_{1}^{\star}\left(\mathcal{F}_{A}^{\star}\right)-\frac{1}{2}\left(\ell_{2}^{\star}\left(A, \mathcal{F}_{A}^{\star}\right)-\ell_{2}^{\star}\left(\mathcal{F}_{A}^{\star}, A\right)\right)+\frac{1}{4} \ell_{2}^{\star}\left(\overline{\mathrm{R}}^{\alpha} A, \ell_{2}^{\star}\left(\overline{\mathrm{R}}_{\alpha} A, A\right)\right)=(0,0)
$$

