Graded Geometry and Gravity

Interaction via deformation

Peter Schupp

based on: Eugenia Boffo, PS: Deformed graded Poisson structures, Generalized Geometry and Supergravity arXiv: 1903.09112 (JHEP), Boffo-Pinkwart-Walker, PS in preparration and earlier work with Brano-Murco, Fech-Scen-Khoot Jan Vysoky

Solvay Workshop on Hreher Spin Gatge theories, topological field theory and geformallon quantiration

Brusels, February 2020

Outline

- Interaction via deformation, monopoles, aspects of quantization
- Graded/generalized geometry and gravity
- Deformation, gauge theory and Moser's lemma, non-associativity, non-metricity, gravitipols
- Remarks on higher spin in a graded setting

Interaction via deformation

"Beyond gauge theory"

- gravity = free fall in curved spacetime \rightarrow extend this idea to all forces!
- free Hamiltonian, interaction via deformation: deformed symplectic structure (or operator algebra)
- gauge theory recovered via Moser's lemma:
deformation maps are not unique \Rightarrow gauge symmetry
- somewhat more general than gauge theory and just as powerful as the good old gauge principle

Interaction via deformation

Hamiltonian (first order) action " $S_{H}=\int \sum p d q-H(p, q) d t$ " :

$$
\begin{aligned}
& S_{H}=\int \alpha-H(X) d \tau+d \lambda \quad \text { vary with } \delta X=0 \text { at boundary } \\
& \mathcal{L}_{\delta X}(\alpha-H d \tau)=i_{\delta X} d \alpha+d\left(i_{\delta X} \alpha\right)-\left(i_{\delta X} d H\right) d \tau \\
& \rightarrow \omega(-, \dot{X})=d H \quad \text { where } \omega=d \alpha \\
& \leftrightarrow \quad \dot{X}=\theta(-, d H) \rightarrow \dot{f}=\{f, H\} \quad \text { where } \quad \theta=\omega^{-1}
\end{aligned}
$$

interaction, coupling to gauge field:

- either deform H ("minimal substitution"): $H^{\prime}=H(p-A, q)$
- or deform ω and hence $\{\}:, \alpha^{\prime}=\sum p d q+A \rightarrow \omega^{\prime}=\omega+d A$

Interaction via deformation

example: relativistic particle in einbein formalism

$$
\begin{aligned}
& S=\int d \tau\left(\frac{1}{2 e} g_{\mu \nu}(x) \dot{x}^{\mu} \dot{x}^{\nu}-\frac{1}{2} e m^{2}+A_{\mu}(x) \dot{x}^{\mu}\right) \rightsquigarrow p_{\mu}=\frac{1}{e} g_{\mu \nu} \dot{x}^{\nu}+A_{\mu} \\
& S_{H}=\int p_{\mu} d x^{\mu}-\frac{1}{2} e\left(\left(p_{\mu}-A_{\mu}\right)^{2}+m^{2}\right) d \tau \quad \leftarrow p_{\mu}: \text { canonical momentum } \\
& S_{H}=\int\left(p_{\mu}+A_{\mu}\right) d x^{\mu}-\frac{1}{2} e\left(p_{\mu}^{2}+m^{2}\right) d \tau
\end{aligned} \leftarrow p_{\mu}: \text { physical momentum }
$$

$$
\begin{aligned}
& \omega^{\prime}=d\left(p_{\mu}+A_{\mu}\right) \wedge d x^{\mu} \rightsquigarrow \\
& \left\{p_{\mu}, p_{\nu}\right\}^{\prime}=F_{\mu \nu},\left\{x^{\mu}, p_{\nu}\right\}^{\prime}=\delta_{\nu}^{\mu},\left\{x^{\mu}, x^{\nu}\right\}^{\prime}=0
\end{aligned}
$$

$$
\left\{p_{\lambda},\left\{p_{\mu}, p_{\nu}\right\}^{\prime}\right\}^{\prime}+\text { cycl. }=(d F)_{\lambda \mu \nu}=\left(* j_{m}\right)_{\lambda \mu \nu} \quad \leftarrow \text { magnetic 4-current }
$$

$$
\text { magnetic sources } \Leftrightarrow \text { non-associativity }
$$

Interaction via deformation

Quantization

- path integral \checkmark
- deformation quantization $\checkmark(\rightarrow$ details later $)$
- canonical? depends... (\checkmark) :

Deformed CCR:

$$
\left[p_{\mu}, p_{\nu}\right]=i \hbar F_{\mu \nu}, \quad\left[x^{\mu}, p_{\nu}\right]=i \hbar \delta_{\nu}^{\mu}, \quad\left[x^{\mu}, x^{\nu}\right]=0, \quad\left[\gamma^{\mu}, \gamma^{\nu}\right]_{+}=2 g^{\mu \nu}
$$

Let $\mathbf{p}=\gamma^{\mu} p_{\mu}$ and $H=\frac{1}{2} \mathbf{p}^{2} \rightsquigarrow$ correct coupling of fields to spin

$$
H=\frac{1}{8}\left(\left[\gamma^{\mu}, \gamma^{\nu}\right]_{+}\left[p_{\mu}, p_{\nu}\right]_{+}+\left[\gamma^{\mu}, \gamma^{\nu}\right]\left[p_{\mu}, p_{\nu}\right]\right)=\frac{1}{2} p^{2}-\frac{i \hbar}{2} S^{\mu \nu} F_{\mu \nu}
$$

Lorentz-Heisenberg equations of motion (ignoring spin)

$$
\dot{p}_{\mu}=\frac{i}{\hbar}\left[H, p_{\mu}\right]=\frac{1}{2}\left(F_{\mu \nu} \dot{x}^{\nu}+\dot{x}^{\nu} F_{\mu \nu}\right) \quad \text { with } \quad \dot{x}^{\nu}=\frac{i}{\hbar}\left[H, x^{\nu}\right]=p^{\nu}
$$

this formalism allows $d F \neq 0$: magnetic sources, non-associativity

Interaction via deformation: monopoles

local non-associativity: $\frac{1}{3}\left[p_{\lambda},\left[p_{\mu}, p_{\nu}\right]\right] d x^{\lambda} d x^{\mu} d x^{\nu}=\hbar^{2} d F=\hbar^{2} * j_{m}$ $j_{m} \neq 0 \Leftrightarrow$ no operator representation of the p_{μ} !
spacetime translations are still generated by p_{μ}, but magnetic flux Φ_{m} leads to path-dependence with phase $e^{i \phi}$; where $\phi=i q_{e} \Phi_{m} / \hbar$ globally:

$$
\begin{aligned}
& \Phi_{m}=\int_{S} F=\int_{\partial S} A \quad \leftrightarrow \text { non-commutativity } \\
& \Phi_{m}=\int_{\partial V} F=\int_{V} d F=\int_{V} * j_{m}=q_{m} \quad \leftrightarrow \text { non-associativity }
\end{aligned}
$$

global associativity requires $\phi \in 2 \pi \mathbb{Z} \Rightarrow \frac{q_{e} q_{m}}{2 \pi \hbar} \in \mathbb{Z}$ Dirac quantization

Aspects of quantization

The operator-state formulation of QM cannot handle non-associative structures...

Phase-space formulation of QM

- Observables and states are (real) functions on phase space.
- Algebraic structure introduced by a star product, traces by integration.
- State function (think: "density matrix"): $S_{\rho} \geq 0, \int S_{\rho}=1 .{ }^{1}$
- Expectation values $\langle\mathcal{O}\rangle=\int \mathcal{O} \star S_{\rho}$.
- Schrödinger equation $H \star S_{\rho}-S_{\rho} \star H=i \hbar \frac{\partial S_{\rho}}{\partial t}$
- "Stargenvalue" equation: $H \star S_{\rho}=S_{\rho} \star H=E S_{\rho}$.

[^0]
Aspects of quantization

Popular choices of star products

- Moyal-Weyl (symmetric ordering, Wigner quasi-probability function) Weyl quantization associates operators to polynomial functions via symmetric ordering: $x^{\mu} \rightsquigarrow \hat{x}^{\mu}, x^{\mu} x^{\nu} \rightsquigarrow \frac{1}{2}\left(\hat{x}^{\mu} \hat{x}^{\nu}+x^{\nu} \hat{x}^{\mu}\right)$, etc. extend to functions, define star product $\widehat{f_{1} \star f_{2}}:=\widehat{f}_{1} \widehat{f}_{2}$.
- Wick-Voros (normal ordering, coherent state quantization) QHO states in Wick-Voros formulation:

- xp-ordered star product: \star-exponential \equiv ordinary path integral

Aspects of quantization

Deformation quantization of the point-wise product in the direction of a Poisson bracket $\{f, g\}=\theta^{i j} \partial_{i} f \cdot \partial_{j} g$:

$$
f \star g=f g+\frac{i \hbar}{2}\{f, g\}+\hbar^{2} B_{2}(f, g)+\hbar^{3} B_{3}(f, g)+\ldots,
$$

with suitable bi-differential operators B_{n}.
There is a natural (local) gauge symmetry: "equivalent star products"

$$
\star \mapsto \star^{\prime}, \quad D f \star D g=D\left(f \star^{\prime} g\right),
$$

with $D f=f+\hbar D_{1} f+\hbar^{2} D_{2} f+\ldots$
Dynamical non-associative star product:

$$
f \star_{p} g=\cdot\left[e^{\frac{\mathrm{i} \hbar}{2} R^{j k} p_{k} \partial_{i} \otimes \partial_{j}} e^{\frac{\mathrm{i} \hbar}{2}\left(\partial_{i} \otimes \tilde{\partial}^{i}-\tilde{\partial}^{i} \otimes \partial_{i}\right)}(f \otimes g)\right]
$$

Aspects of quantization $\quad \theta(x) \rightsquigarrow \star$

Kontsevich formality and star product
U_{n} maps $n k_{i}$-multivector fields to a ($2-2 n+\sum k_{i}$)-differential operator

$$
U_{n}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)=\sum_{\Gamma \in G_{n}} w_{\Gamma} D_{\Gamma}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right) .
$$

The star product for a given bivector θ is:

$$
\begin{aligned}
f \star g= & \sum_{n=0}^{\infty} \frac{(\mathrm{i} \hbar)^{n}}{n!} U_{n}(\Theta, \ldots, \Theta)(f, g) \\
= & f \cdot g+\frac{i}{2} \sum \theta^{i j} \partial_{i} f \cdot \partial_{j} g-\frac{\hbar^{2}}{4} \sum \theta^{i j} \theta^{k l} \partial_{i} \partial_{k} f \cdot \partial_{j} \partial_{l} g \\
& -\frac{\hbar^{2}}{6}\left(\sum \theta^{i j} \partial_{j} \theta^{k l}\left(\partial_{i} \partial_{k} f \cdot \partial_{l} g-\partial_{k} f \cdot \partial_{i} \partial_{l} g\right)\right)+\ldots
\end{aligned}
$$

Aspects of quantization $\quad \theta(x) \rightsquigarrow \star$

Formality condition

The U_{n} define a quasi-isomorphisms of L_{∞}-DGL algebras and satisfy

$$
\begin{gathered}
\text { d. } U_{n}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)+\frac{1}{2} \sum_{\substack{\mathcal{I} \cup \mathcal{J}=(1, \ldots, n) \\
\mathcal{I}, \mathcal{J} \neq \emptyset}} \varepsilon_{\mathcal{X}}(\mathcal{I}, \mathcal{J})\left[U_{|\mathcal{I}|}\left(\mathcal{X}_{\mathcal{I}}\right), U_{|\mathcal{J}|}\left(\mathcal{X}_{\mathcal{J}}\right)\right]_{\mathrm{G}} \\
=\sum_{i<j}(-1)^{\alpha_{i j}} U_{n-1}\left(\left[\mathcal{X}_{i}, \mathcal{X}_{j}\right]_{\mathrm{s}}, \mathcal{X}_{1}, \ldots, \widehat{\mathcal{X}}_{i}, \ldots, \widehat{\mathcal{X}}_{j}, \ldots, \mathcal{X}_{n}\right)
\end{gathered}
$$

relating Schouten brackets to Gerstenhaber brackets.
This implies in particular $\Phi\left(\mathrm{d}_{\Theta} \Theta\right)=\frac{1}{\mathrm{i} \hbar} \mathrm{d}_{\star} \Phi(\Theta)$, i.e.

$$
\theta \text { (non-)Poisson } \quad \Leftrightarrow \quad \star \text { (non-)associative }
$$

Aspects of quantization $\quad \theta(x) \rightsquigarrow \star$

Poisson sigma model
2-dimensional topological field theory, $E=T^{*} M$

$$
S_{\mathrm{AKSZ}}^{(1)}=\int_{\Sigma_{2}}\left(\xi_{i} \wedge \mathrm{~d} X^{i}+\frac{1}{2} \Theta^{i j}(X) \xi_{i} \wedge \xi_{j}\right),
$$

with $\Theta=\frac{1}{2} \Theta^{i j}(x) \partial_{i} \wedge \partial_{j}, \xi=\left(\xi_{i}\right) \in \Omega^{1}\left(\Sigma_{2}, X^{*} T^{*} M\right)$
perturbative expansion \Rightarrow Kontsevich formality maps
valid on-shell $\left([\Theta, \Theta]_{s}=0\right)$ as well as off-shell, e.g. twisted Poisson
Kontsevich (1997)

Graded spacetime mechanics

Now try to do the same for gravity! Deformation maybe fine for curvature $R_{\mu \nu}$, however, the metric $g_{\mu \nu}$ is symmetric but $\{$,$\} is not.$

- use graded geometry, i.e. odd variables and/or odd brackets
- or consider derived brackets

$$
g^{\mu \nu} \sim\left\{\left\{x^{\mu}, H\right\}, x^{\nu}\right\}, \quad\{H, H\}=0
$$

- \rightsquigarrow algebraic approach to the geodesic equation, connections, curvature, etc. Properties like metricity follow from associativity. Local inertial coordinates are reinterpreted as Darboux charts
- the classical formulation requires graded variables (\sim differentials), quantization leads to γ-matrices and Clifford algebras

$$
\begin{aligned}
\text { classical } & \leftrightarrow \text { quantum } \\
\theta^{\mu} & \leftrightarrow \gamma^{\mu} \\
\theta^{\mu} \theta^{\nu}=-\theta^{\nu} \theta^{\mu} & \leftrightarrow \frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]_{-} \\
\frac{1}{2}\left\{\theta^{\mu}, \theta^{\nu}\right\}=g^{\mu \nu} & \leftrightarrow \frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]_{+}=g^{\mu \nu}
\end{aligned}
$$

Graded spacetime mechanics

Graded Poisson algebra

$$
\left\{\underset{a}{\{ }, \underset{a}{\mu}, \theta^{\nu}\right\}=\underset{0}{2 g^{\mu \nu}}(x) \quad\left\{\underset{c}{p_{\mu}, x_{0}^{\nu}}\right\}=\underset{0^{\mu}}{\nu} \quad\left\{p_{\mu}, f(x)\right\}=\partial_{\mu} f(x)
$$

Since $g^{\mu \nu}(x)$ has degree 0 , the Poisson bracket must have degree $b=-2 a$ for θ^{μ} of degree a, i.e. it is an even bracket.
Since $g^{\mu \nu}(x)$ is symmetric, we must have $-(-1)^{b+a^{2}} \stackrel{!}{=}+1$, i.e. a is odd. wlog: $\{$,$\} is of degree b=-2, \quad \theta^{\mu}$ are Grassmann variables of degree 1 , $\theta^{\mu} \theta^{\nu}=-\theta^{\nu} \theta^{\mu}$, and the momenta p_{μ} have degree $c=-b=2$
\Leftrightarrow a metric structur on $T M$ and natural symplectic structure on $T^{*} M$, shifted in degree and combined into a graded Poisson structure on

$$
T_{p_{\mu}}^{*}[2] \oplus \underset{\theta^{\mu}}{T}[1] \underset{x^{\mu}}{M}
$$

Graded spacetime mechanics

Graded Poisson algebra

$$
\left\{\underset{1}{\left\{\theta_{1}^{\mu}, \theta^{\nu}\right\}}\right\}=\underset{0}{2 g^{\mu \nu}}(x) \quad\left\{\underset{2}{\left\{p_{\mu}, x_{0}^{\nu}\right.}\right\}={\underset{0}{\mu}}_{\nu}^{\nu} \quad\left\{p_{\mu}, f(x)\right\}=\partial_{\mu} f(x)
$$

Jacobi identity (i.e. associativity) \Leftrightarrow metric connection

$$
\begin{aligned}
& \left\{p_{2}, \theta_{1}^{\alpha}\right\}=\Gamma_{\mu \beta}^{\alpha} \theta_{1}^{\beta}=: \nabla_{\mu} \theta^{\alpha} \\
& \left\{p_{\mu},\left\{\theta^{\alpha}, \theta^{\beta}\right\}\right\}=2 \partial_{\mu} g^{\alpha \beta}=\left\{\left\{p_{\mu}, \theta^{\alpha}\right\}, \theta^{\beta}\right\}+\left\{\theta^{\alpha},\left\{p_{\mu}, \theta^{\beta}\right\}\right\}
\end{aligned}
$$

and curvature

$$
\begin{aligned}
& \left\{\left\{p_{\mu}, p_{\nu}\right\}, \theta^{\alpha}\right\}=\left[\nabla_{\mu}, \nabla_{\nu}\right] \theta^{\alpha}=\theta^{\beta} R_{\beta}^{\alpha}{ }_{\mu \nu} \\
& \Rightarrow \quad\left\{\underset{2}{\left.p_{\mu}, p_{2}\right\}}\right\}=\frac{1}{4} \theta_{1}^{\beta} \theta_{1}^{\alpha} R_{\beta \alpha \mu \nu}
\end{aligned}
$$

Graded spacetime mechanics

symmetries $=$ canonical transformations

- generator of degree 2 (degree-preserving):

$$
v^{\alpha}(x) p_{\alpha}+\frac{1}{2} \Omega_{\alpha \beta}(x) \theta^{\alpha} \theta^{\beta} \quad \rightsquigarrow \quad \text { local Poincare algebra }
$$

- generators of degree 1:

$$
V=V_{\alpha}(x) \theta^{\alpha} \quad \rightsquigarrow \quad\{V, W\}=2 g(V, W) \quad \text { Clifford algebra }
$$

- generators of degree 3:

$$
\Theta=\theta^{\alpha} p_{\alpha} \quad\left(+\frac{1}{6} C_{\alpha \beta \gamma} \theta^{\alpha} \theta^{\beta} \theta^{\gamma}\right)
$$

- generators of degree 4:

$$
\begin{aligned}
& H=\frac{1}{2} g^{\mu \nu}(x) p_{\mu} p_{\nu}+\frac{1}{2} \Gamma_{\mu \nu}^{\beta}(x) \theta^{\mu} \theta^{\nu} p_{\beta}+\frac{1}{16} R_{\alpha \beta \mu \nu}(x) \theta^{\alpha} \theta^{\beta} \theta^{\mu} \theta^{\nu} \\
& \rightsquigarrow \quad \text { SUSY algebra } \frac{1}{4}\{\Theta, \Theta\}=H
\end{aligned}
$$

Graded spacetime mechanics

Graded Poisson algebra on $T^{*}[2] M \oplus T[1] M: \quad\left\{p_{\mu}, x^{\nu}\right\}=\delta_{\mu}^{\nu}$

$$
\left\{\theta^{\mu}, \theta^{\nu}\right\}=2 g^{\mu \nu}(x) \quad\left\{p_{\mu}, \theta^{\alpha}\right\}=\Gamma_{\mu \beta}^{\alpha} \theta^{\beta} \quad\left\{p_{\mu}, p_{\nu}\right\}=\frac{1}{2} \theta^{\beta} \theta^{\alpha} R_{\beta \alpha \mu \nu}
$$

Equations of motion with Hamiltonian (Dirac op.) $\Theta=\theta^{\mu} p_{\mu}$

$$
\frac{d A}{d \tau}=\frac{1}{2}\{\Theta,\{\Theta, A\}\}=\frac{1}{2}\{\{\Theta, \Theta\}, A\}-\frac{1}{2}\{\Theta,\{\Theta, A\}\}=:\{H, A\}
$$

and derived Hamiltonian

$$
H=\frac{1}{4}\{\Theta, \Theta\}=\frac{1}{2} g^{\mu \nu} p_{\mu} p_{\nu}+\frac{1}{2} \theta^{\mu} \theta^{\nu} \Gamma_{\mu \nu}^{\beta} p_{\beta}+\frac{1}{16} \theta^{\alpha} \theta^{\beta} \theta^{\mu} \theta^{\nu} R_{\alpha \beta \mu \nu}
$$

For a torsion-less connection, only the first term is non-zero.
Derived anchor map applied to $V=V_{\alpha}(x) \theta^{\alpha}$:

$$
h(V) f=\{\{V, \Theta\}, f\}=V_{\alpha}(x) g^{\alpha \beta} \partial_{\beta} f
$$

Graded spacetime mechanics

Equations of motion (cont'd)

$$
\begin{aligned}
& \frac{d x^{\mu}}{d \tau}=\frac{1}{2}\left\{\Theta,\left\{\Theta, x^{\mu}\right\}\right\}=\left\{\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}, x^{\mu}\right\}=g^{\mu \nu} p_{\nu} \\
& \frac{d p_{\nu}}{d \tau}=\left\{\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}, p_{\nu}\right\}=\frac{1}{2}\left(\partial_{\mu} g^{\alpha \beta}\right) p_{\alpha} p_{\beta}={ }^{g} \Gamma_{\mu}{ }^{\alpha \beta} p_{\alpha} p_{\beta}
\end{aligned}
$$

with any metric-compatible connection ${ }^{g} \Gamma$; pick a WB connection...
Geodesic equation:

$$
\frac{d^{2} x^{\mu}}{d \tau^{2}}=\left\{\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}, g^{\mu \nu} p_{\nu}\right\}=-\frac{d x^{\alpha}}{d \tau} L C^{\Gamma_{\alpha \beta}}{ }^{\mu} \frac{d x^{\beta}}{d \tau}
$$

Geometric ladder to generalized geometry

hierarchie of actions, brackets, extended objects and algebras

AKSZ construction: action functionals in BV formalism of sigma model QFT's in $n+1$ dimensions for symplectic Lie n-algebroids E

Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)

Graded geometry

Graded Poisson manifold $T^{*}[2] T[1] M$

- degree 0: x^{i} "coordinates"
- degree 1: $\xi^{\alpha}=\left(\theta^{i}, \chi_{i}\right)$
- degree 2: p_{i} "momenta"
symplectic 2 -form

$$
\omega=d p_{i} \wedge d x^{i}+\frac{1}{2} G_{\alpha \beta} d \xi^{\alpha} \wedge d \xi^{\beta}=d p_{i} \wedge d x^{i}+d \chi_{i} \wedge d \theta^{i}
$$

even (degree -2) Poisson bracket on functions $f(x, \xi, p)$

$$
\left\{x^{i}, x^{j}\right\}=0, \quad\left\{p_{i}, x^{j}\right\}=\delta_{i}^{j}, \quad\left\{\xi^{\alpha}, \xi^{\beta}\right\}=G^{\alpha \beta}
$$

metric $G^{\alpha \beta}$: natural pairing of $T M, T^{*} M$:

$$
\left\{\chi_{i}, \theta^{j}\right\}=\delta_{i}^{j}, \quad\left\{\chi_{i}, \chi_{j}\right\}=0, \quad\left\{\theta^{i}, \theta^{j}\right\}=0
$$

Graded geometry

degree-preserving canonical transformations

- infinitesimal, generators of degree 2 :

$$
v^{\alpha}(x) p_{\alpha}+\frac{1}{2} M^{\alpha \beta}(x) \xi_{\alpha} \xi_{\beta} \quad \rightsquigarrow \quad \text { diffeos and } o(d, d)
$$

- finite, idempotent ("coordinate flip"): $(\tilde{\chi}, \tilde{\theta})=\tau(\chi, \theta)$ with $\tau^{2}=$ id \rightsquigarrow generating function F of type 1 with $F(\theta, \tilde{\theta})=-F(\tilde{\theta}, \theta)$:

$$
\begin{aligned}
& F=\theta \cdot g \cdot \tilde{\theta}-\frac{1}{2} \theta \cdot B \cdot \theta+\frac{1}{2} \tilde{\theta} \cdot B \cdot \tilde{\theta} \\
& \chi=\frac{\partial F}{\partial \theta}=\tilde{\theta} \cdot g+\theta \cdot B, \quad \tilde{\chi}=-\frac{\partial F}{\partial \tilde{\theta}}=\theta \cdot g+\tilde{\theta} \cdot B \\
& \Rightarrow \quad \tau(\chi, \theta)=(\chi, \theta) \cdot\left(\begin{array}{cc}
g^{-1} B & g^{-1} \\
g-B g^{-1} B & -B g^{-1}
\end{array}\right)
\end{aligned}
$$

\rightsquigarrow generalized metric

Generalized geometry

Generalized geometry as a derived structure
Cartan's magic identy:

$$
\mathcal{L}_{X}=\left[i_{X}, d\right] \equiv i_{X} d+d i_{X}
$$

Lie bracket $[X, Y]_{\text {Lie }}$ of vector fields as a derived bracket:

$$
\left[\left[i_{X}, d\right], i_{Y}\right]=\left[\mathcal{L}_{X}, i_{Y}\right]=i_{[X, Y]} \quad \text { with }[d, d]=d^{2}=0
$$

Generalized geometry

Generalized geometry as a derived structure degree 3 "Hamiltonian": Dirac operator

$$
\Theta=\xi^{\alpha} h_{\alpha}^{i}(x) p_{i}+\underbrace{\frac{1}{6} C_{\alpha \beta \gamma} \xi^{\alpha} \xi^{\beta} \xi^{\gamma}}_{\text {twisting/flux terms }}
$$

For $e=e_{\alpha}(x) \xi^{\alpha} \in \Gamma\left(T M \oplus T^{*} M\right)$ (degree 1, odd):

- pairing: $\left\langle e, e^{\prime}\right\rangle=\left\{e, e^{\prime}\right\}$
- anchor: $h(e) f=\{\{e, \Theta\}, f\}$
- bracket: $\left[e, e^{\prime}\right]_{D}=\left\{\{e, \Theta\}, e^{\prime}\right\}$

Generalized geometry

Generalized geometry as a derived structure
Courant algebroid axioms from associativity and $\{\Theta, \Theta\}=0$:

$$
\begin{array}{rlr}
h\left(\xi_{1}\right)\left\langle\xi_{2}, \xi_{2}\right\rangle & =\left\{\left\{\Theta, \xi_{1}\right\},\left\{\xi_{2}, \xi_{2}\right\}\right\} \\
& =2\left\{\left\{\left\{\Theta, \xi_{1}\right\}, \xi_{2}\right\}, \xi_{2}\right\}=2\left\langle\left[\xi_{1}, \xi_{2}\right], \xi_{2}\right\rangle & \text { (axiom 1) } \\
& =2\left\{\xi_{1},\left\{\left\{\Theta, \xi_{2}\right\}, \xi_{2}\right\}\right\}=2\left\langle\xi_{1},\left[\xi_{2}, \xi_{2}\right]\right\rangle & \text { (axiom 2) } \\
{\left[\xi_{1},\left[\xi_{2}, \xi_{3}\right]\right]=} & \left\{\left\{\Theta, \xi_{1}\right\},\left\{\left\{\Theta, \xi_{2}\right\}, \xi_{3}\right\}\right\} \\
& =\left[\left[\xi_{1}, \xi_{2}\right], \xi_{3}\right]+\left[\xi_{2},\left[\xi_{1}, \xi_{3}\right]\right]+\frac{1}{2}\left\{\left\{\left\{\{\Theta, \Theta\}, \xi_{1}\right\}, \xi_{2}\right\}, \xi_{3}\right\} . \\
\{\Theta, \Theta\}=0 & \Leftrightarrow \quad[,] \text { Jacobi identity (in 1st slot) } & \text { (axiom 3) }
\end{array}
$$

Generalized Geometry

Courant algebroid

vector bundle $E \xrightarrow{\pi} M$, anchor $h: E \rightarrow T M$, bracket $[-,-]$, pairing $\langle-,-\rangle$, s.t. for $e, e^{\prime}, e^{\prime \prime} \in \Gamma E$:

$$
\begin{align*}
& 2\left\langle\left[e, e^{\prime}\right], e^{\prime}\right\rangle \stackrel{(1)}{=} h(e)\left\langle e^{\prime}, e^{\prime}\right\rangle \stackrel{(2)}{=} 2\left\langle\left[e^{\prime}, e^{\prime}\right], e\right\rangle \\
& {\left[e,\left[e^{\prime}, e^{\prime \prime}\right]\right]=\left[\left[e, e^{\prime}\right], e^{\prime \prime}\right]+\left[e^{\prime},\left[e, e^{\prime \prime}\right]\right]} \tag{3}
\end{align*}
$$

Consequences:

$$
\begin{aligned}
& {\left[e, f e^{\prime}\right]=h(e) \cdot f e^{\prime}+f\left[e, e^{\prime}\right]} \\
& h\left(\left[e, e^{\prime}\right]\right)=\left[h(e), h\left(e^{\prime}\right)\right]_{\text {Lie }}
\end{aligned}
$$

axioms 1, 2 can be polarized, axiom 3 and (L) define a Leibniz algebroid

Generalized Geometry

Courant sigma model
standard Courant algebroid $C=T M \oplus T^{*} M$
TFT with 3-dimensional membrane world volume Σ_{3}

$$
\begin{aligned}
S_{\mathrm{AKSZ}}^{(2)}=\int_{\Sigma_{3}}\left(\phi_{i} \wedge \mathrm{~d} X^{i}\right. & +\frac{1}{2} G_{I J} \alpha^{\prime} \wedge \mathrm{d} \alpha^{J}-h_{l}^{i}(X) \phi_{i} \wedge \alpha^{\prime} \\
& \left.+\frac{1}{6} C_{I J K}(X) \alpha^{\prime} \wedge \alpha^{J} \wedge \alpha^{K}\right)
\end{aligned}
$$

embedding maps $X: \Sigma_{3} \rightarrow M$, 1-form α, aux. 2-form ϕ, fiber metric G, anchor h, 3 -form C (e.g. H-flux, f-flux, Q-flux, R-flux).

Deformation

general (deformed) Poisson structure

$$
\begin{aligned}
\{v, f\} & =v . f \\
\{V, W\} & =G(V, W) \equiv\langle V, W\rangle \\
\{v, V\} & =\nabla_{v} V \quad \leftarrow \text { connection metric wrt. } G \\
\{v, w\} & =[v . w]_{\text {Lie }}+R(v, w) \quad \leftarrow \text { curvature of } \nabla
\end{aligned}
$$

with

- degree 0: $f(x)$
- degree 1: $V=V^{\alpha}(x) \xi_{\alpha} \quad$ "generalized vectors"
- degree 2: $v=v^{i}(x) p_{i} \quad$ "vector fields"
general Hamiltonian

$$
\Theta=\tilde{\xi}^{\alpha} h\left(\xi_{\alpha}\right)+\frac{1}{6} C_{\alpha \beta \gamma} \tilde{\xi}^{\alpha} \tilde{\xi}^{\beta} \tilde{\xi}^{\gamma} \quad \leftarrow \text { general flux }(\mathrm{H}, \mathrm{f}, \mathrm{Q}, \mathrm{R})
$$

Deformation

derived bracket

$$
\begin{aligned}
& \{\{\{V, \Theta\}, W\}, X\}=\left\langle\nabla_{V} W, X\right\rangle-\left\langle\nabla_{W} V, X\right\rangle+\left\langle\nabla_{X} V, W\right\rangle+C(V, W, X) \\
& \left\{\left\{\left\{\xi_{\alpha}, \Theta\right\}, \xi_{\beta}\right\}, \xi_{\gamma}\right\}=\underbrace{\Gamma_{\alpha \beta \gamma}-\Gamma_{\beta \alpha \gamma}}_{\text {torsion }}+\Gamma_{\gamma \alpha \beta}+C_{\alpha \beta \gamma}=: \Gamma_{\gamma \alpha \beta}^{\text {new }}
\end{aligned}
$$

"mother of all brackets"

$$
\begin{aligned}
{[V, W] } & =\nabla_{V} W-\nabla_{W} V+\langle\nabla V, W\rangle+C(V, W,-) \\
& =[[V, W]]+T(V, W)+\langle\nabla V, W\rangle+C(V, W,-)
\end{aligned}
$$

In order to obtain a regular Courant algebroid, impose

$$
\{\Theta, \Theta\}=0 \quad \Leftrightarrow \quad \nabla C+\frac{1}{2}\{C, C\}=0,\left.\quad G^{-1}\right|_{h}=0, \ldots
$$

Generalized differential geometry

generalized Lie-bracket (involves anchor $h: E \rightarrow T M$)

$$
[[V, W]]=-[[W, V]], \quad[[V, f W]]=(h(V) f) W+f[[V, W]]
$$

generalized connection "type I" and miraculous triple identity

$$
\begin{aligned}
& \Gamma(V ; f W, U)=(h(V) f)\langle W, U\rangle+f \Gamma(V ; W, U), \\
& \langle V,[W, Z]\rangle=\langle V,[[W, Z]]\rangle+\Gamma(V ; W, Z) \\
& \left\langle\nabla_{V} W, U\right\rangle:=\Gamma(V ; W, U)
\end{aligned}
$$

generalized curvature and torsion

$$
\begin{aligned}
& R(V, W)=\nabla_{V} \nabla_{w}-\nabla_{w} \nabla_{V}-\nabla_{[[V, W]]} \\
& T(V, W)=\nabla_{V} W-\nabla_{w} V-[[V, W]]
\end{aligned}
$$

Graded/generalized geometry and gravity

cookbook recipe

- deform graded Poisson structure
- pick Hamiltonian Θ (e.g. canonical), compute derived brackets
- choose generalized Lie bracket [[,]] (e.g. canonical)
- determine connection 「 from triple identity
- project (or rather embed) via non-isotropic splitting (e.g. canonical)

$$
\begin{aligned}
& s: \Gamma(T M) \rightarrow \Gamma(E) \quad \rho \circ s=\mathrm{id} \quad\langle X, Y\rangle_{T M}:=\langle s(X), s(Y)\rangle \\
& \left\langle\nabla_{Z} X, Y\right\rangle_{T M}:=\Gamma(s(Z) ; s(X), s(Y))
\end{aligned}
$$

- compute Riemann and Ricci tensors, take trace with $g+B$, write action in terms of resulting Ricci scalar

Graded/generalized geometry and gravity

deformation by generalized vielbein E

$$
\Omega=d x^{i} \wedge d p_{i}+d \theta^{i} \wedge d \chi_{i}
$$

deformation by change of coordinates in the odd (degree 1) sector two choices:

$$
\binom{\theta}{\chi} \mapsto\left(\begin{array}{cc}
1 & 0 \\
g+B & 1
\end{array}\right) \cdot\binom{\theta}{\chi} \quad \text { and } \quad\left(\begin{array}{cc}
1 & \Pi+G \\
-g+B & 1
\end{array}\right) \cdot\binom{\theta}{\chi}
$$

Boffo, PS 1903.09112 and in preparation
now crank the "machine" (deformed derived bracket, connection, project, Riemann, Ricci) \rightsquigarrow (effective) gravity actions...

Graded/generalized geometry and gravity

generalized Koszul formula for nonsymmetric $\mathcal{G}=g+B$

$$
\begin{aligned}
2 g\left(\nabla_{Z} X, Y\right)= & \left\langle Z,[X, Y]^{\prime}\right\rangle^{\prime} \\
= & X \mathcal{G}(Y, Z)-Y \mathcal{G}(X, Z)+Z \mathcal{G}(X, Y) \\
& -\mathcal{G}\left(Y,[X, Z]_{\text {Lie }}\right)-\mathcal{G}\left([X, Y]_{\text {Lie }}, Z\right)+\mathcal{G}\left(X,[Y, Z]_{\text {Lie }}\right) \\
= & 2 g\left(\nabla_{X}^{L C} Y, Z\right)+H(X, Y, Z)
\end{aligned}
$$

\Rightarrow non-symmetric Ricci tensor

$$
R_{j l}=R_{j l}^{L C}-\frac{1}{2} \nabla_{i}^{L C} H_{j l}{ }^{i}-\frac{1}{4} H_{l m}{ }^{i} H_{i j}{ }^{m} \quad R=\mathcal{G}_{i j} g^{i k} g^{j l} R_{k l}
$$

\Rightarrow gravity action (closed string effective action) after partial integration:

$$
S_{\mathcal{G}}=\frac{1}{16 \pi G_{N}} \int d^{d} x \sqrt{-g}\left(R^{L C}-\frac{1}{12} H_{i j k} H^{i j k}\right)
$$

Khoo, Vysoky, Jurco, Boffo, PS

Graded/generalized geometry and gravity

This formulation consistently combines all approaches of Einstein: Non-symmetric metric, Weitzenböck and Levi-Civita connections, without any of the usual drawbacks.

The dilaton $\phi(x)$ rescales the generalized tangent bundle. The deformation can be formulated in terms of vielbeins

$$
E=e^{-\frac{\phi}{3}}\left(\begin{array}{cc}
1 & 0 \\
g+B & 1
\end{array}\right) \quad E^{-1} \partial_{i} E=\left(\begin{array}{cc}
-\frac{1}{3} \partial_{i} \phi & 0 \\
\partial_{i}(g+B) & -\frac{1}{3} \partial_{i} \phi
\end{array}\right)
$$

Going through the same steps as before we find in $d=10$

$$
S=\frac{1}{2 \kappa} \int d^{10} x e^{-2 \phi} \sqrt{-g}\left(R^{\mathrm{LC}}-\frac{1}{12} H^{2}+4(\nabla \phi)^{2}\right)
$$

Graded Geometry and Gravity

Quantization

$x^{i}, p_{i}, \theta^{i}, \chi_{i} \rightsquigarrow$ differential ops on $\psi(x, \theta) \in \Lambda^{\bullet} T^{*} M$ (spinors):

$$
p \rightsquigarrow \partial_{x} \quad \chi \rightsquigarrow \partial_{\theta}=\mathbf{i}_{\chi} \quad x \rightsquigarrow x . \quad \theta \rightsquigarrow \theta \wedge
$$

θ, χ : finite dimensional representation by γ-matrices:

$$
V \rightsquigarrow \gamma_{V}=V^{\alpha}(x) \gamma_{\alpha}, \quad\left[\gamma_{V}, \gamma_{W}\right]_{+}=G(V, W) \text { etc. }
$$

Symmetry Lie algebra generators: $M^{\alpha}{ }_{\beta} \xi_{\alpha} \tilde{\xi}^{\beta}$
$M^{i}{ }_{j}$ picks up $\operatorname{tr} M$ "anomaly" after quantization

$$
\Lambda^{\bullet} T^{*} M \rightsquigarrow \Lambda^{\bullet} T^{*} M \otimes \operatorname{det}^{\frac{1}{2}} T M
$$

requiring the introduction of the dilaton field ϕ for covariance.

Interaction via deformation

Interaction via deformation as an alternative (slight generalization) of minimal coupling, covariant derivatives, gauge theory.

- classical: deformed Poisson structure
- quantum: deformed operator algebra (CCR)

$$
[\phi(x), \phi(z)]=0, \quad[\phi(x), \phi(y)] \neq 0
$$

(non-)commutativity \leftrightarrow causality
equal time CRs: $\left[\phi(x), \dot{\phi}\left(x^{\prime}\right)\right] \sim i \delta\left(x-x^{\prime}\right)$ single particle $Q M$ version: $\left[x_{i}, p_{j}\right] \sim i \delta_{i j}$
\rightarrow deform these CCRs to introduce interactions

- gauge fields: recovered via Moser's lemma
- U(1) case: closed expression for SW map, global NC line bundle
- here: adapt the approach to gravity

Link to gauge theory

deformation of symplectic form $\Omega^{\prime} \rightsquigarrow$ gauge field A :
Moser's lemma
Let $\Omega_{t}=\Omega+t F$, with Ω_{t} symplectic for $t \in[0,1]$.
$d \Omega_{t}=0 \Rightarrow d F=0 \Rightarrow$ locally $F=d A$
$\Omega^{\prime} \equiv \Omega_{1}$ and Ω are related by a change of phase space coordinates generated by the flow of a vector field V_{t} defined up to gauge transformations by the gauge field $i V_{t} \Omega_{s}=A$, i.e. $V_{t}=\theta_{s}(A,-)$.

Proof: $\mathcal{L}_{V_{t}} \Omega_{t}=i V_{t} d \Omega_{t}+d i{V_{t}} \Omega_{t}=0+d A=\frac{d}{d t} \Omega_{t}$.
Moser 1965
Quantum and Poisson versions of the lemma exist based on equivalence of star products and formality maps:

More deformation

our initial example:
deformation by a gauge field A

$$
\begin{aligned}
& \Omega^{\prime}=d x^{i} \wedge d p_{i}+\frac{1}{2} F_{i j}(x) d x^{i} \wedge d x^{j}, d F=0, \text { locally } F=d A \\
& \Omega_{t}=\Omega+t d A, \quad A=A_{i}(x) d x^{i} \\
& V_{t}=A_{i}(x) \frac{\partial}{\partial p_{i}}, \quad \mathcal{L}_{V_{t}} \rightsquigarrow \rho_{[A]}(p)=p+A \\
& \left\{p_{i}, x^{j}\right\}_{t}=\delta_{i}^{j} \\
& \left\{p_{i}, p_{j}\right\}_{t}=t F_{i j}(x)
\end{aligned}
$$

gauge transformation $\delta A=d \lambda \leftrightarrow \delta \rho_{[A]}$: canonical transformation non-abelian versions: $A_{i}^{\alpha}(x) \ell_{\alpha} d x^{i}$ and $A_{i a}^{b}(x) \theta^{a} \chi_{b} d x^{i}$

More deformation

deformation by a spin connection ω

$$
\begin{aligned}
& \Omega=d x^{i} \wedge d p_{i}+\frac{1}{2} \eta_{a b} d \theta^{a} \wedge d \theta^{b} \quad \theta^{a}=e_{i}^{a} \theta^{i}, \quad g_{i j}=e \\
& \Omega_{t}=\Omega+t d \omega, \quad \omega=\omega_{i}(x, \theta) d x^{i}=\frac{1}{2} \omega_{i a b}(x) \theta^{a} \theta^{b} d x^{i} \\
& V_{t}=\omega_{i} \partial_{p_{i}}, \quad \mathcal{L}_{V_{t}} \rightsquigarrow \rho_{[\omega]}(p)=p+\omega \\
& \left\{p_{i}, x^{j}\right\}_{t}=\delta_{i}^{j} \quad\left\{\theta^{a}, \theta^{b}\right\}_{t}=\eta^{a b} \\
& \left\{p_{i}, \theta^{a}\right\}=t \eta^{a b} \omega_{i b c}(x) \theta^{c} \quad \omega_{i b c}=-\omega_{i c b} \\
& \left\{p_{i}, p_{j}\right\}_{t}=t R_{i j} \quad R=d \omega+t \omega \wedge \omega
\end{aligned}
$$

gauge transformation $\delta \omega=d \lambda \leftrightarrow \delta \rho_{[\omega]}$: canonical transformation
\rightsquigarrow Einstein-Cartan gravity

More deformation

deformation by a general connection 「

$$
\begin{aligned}
& \Omega=d x^{i} \wedge d p_{i}+d \theta^{i} \wedge d \chi_{i} \\
& \Omega_{t}=\Omega+t d \Gamma, \quad \Gamma=\Gamma_{i} d x^{i}=\Gamma_{i j}{ }^{k}(x) \theta^{j} \chi_{k} d x^{i} \\
& V_{t}=\Gamma_{i} \partial_{p_{i}}, \quad \mathcal{L}_{V_{t}} \rightsquigarrow \rho_{[\Gamma]}(p)=p+\Gamma \\
& \left\{p_{i}, x^{j}\right\}_{t}=\delta_{i}^{j} \quad\left\{\chi_{i}, \theta^{j}\right\}_{t}=\delta_{i}^{j} \\
& \left\{p_{i}, \theta^{j}\right\}=t \Gamma_{i k}^{j} \theta^{k} \quad\left\{p_{i}, \chi_{j}\right\}=-t \Gamma_{i j}^{k} \chi_{k} \\
& \left\{p_{i}, p_{j}\right\}_{t}=t R_{k}{ }_{i j} \theta^{k} \chi_{l} \quad R_{k}^{\prime}{ }_{i j}=\partial_{i} \Gamma_{j k}^{\prime}-\partial_{j} \Gamma_{i k}^{\prime}+\Gamma_{i k}^{m} \Gamma_{j m}^{\prime}-\Gamma_{j k}^{m} \Gamma_{i m}^{\prime}
\end{aligned}
$$

gauge transformation $\delta \Gamma=d \Lambda \leftrightarrow \delta \rho_{[\Gamma]}$: canonical transformation

Non-associativity, non-metricity, gravitipoles

Non-associativity

The Jacobi identity playes a pivotal role; its violation has drastic effects:

- $\left\{p_{\mu}, \theta^{\alpha}, \theta^{\beta}\right\} \neq 0 \Rightarrow$ non-metricity of connection ∇
- $\left\{p_{\alpha}, p_{\beta}, p_{\gamma}\right\} \neq 0 \Rightarrow$ gravito-magnetic sources, mass quantization

Shifted orbit in the presence of a gravitipol:

mixed symmetry tensors, higher spin actions

Graded geometry is also a useful tool for mixed symmetry tensor theories: Consider e.g. a bi-partite tensor

$$
\omega_{p, q}=\frac{1}{p!q!} \omega_{i_{1} \ldots i_{p}}^{j_{1} \ldots j_{q}}(x) \theta^{i_{1}} \ldots \theta^{i_{\rho}} \chi_{j_{1}} \ldots \chi_{j_{q}}
$$

and the natural $\theta-\chi$ duality transformation

$$
\omega_{p, q} \mapsto \widetilde{\omega}_{q, p} \quad \text { via } \quad \theta^{i} \leftrightarrow \chi^{i} \equiv \eta^{i j} \chi_{j} .
$$

Introduce two differentials

$$
\mathrm{d}=\theta^{i} \partial_{i} \quad \text { and } \quad \widetilde{\mathrm{d}}=\chi^{i} \partial_{i}
$$

and a generalized Hodge dual

$$
(\star \omega)_{D-p, D-q}=\frac{1}{(D-p-q)!} \eta^{D-p-q} \widetilde{\omega}_{q, p} \quad \text { where } \quad \eta=\theta^{i} \chi_{i} .
$$

spin ≤ 2 kinetic terms

\rightsquigarrow natural and concise formalism for mixed symmetry tensor actions:

$$
\begin{aligned}
& \text { general kinetic term } \\
& \mathcal{L}_{\text {kin }}\left(\omega_{p, q}\right)=\int_{\theta, \chi} \mathrm{d} \omega \star \mathrm{~d} \omega \Rightarrow \\
& \mathcal{L}_{\text {scalar }}\left(\phi_{0,0}\right)=-\frac{1}{2(D-1)!} \int_{\theta, \chi} \eta^{D-1} \phi \mathrm{~d} \tilde{\mathrm{~d}} \phi=\frac{1}{2} \phi \square \phi \\
& \mathcal{L}_{\text {Maxwell }}\left(A_{1,0}\right)=\frac{1}{2(D-2)!} \int_{\theta, \chi} \eta^{D-2} A \mathrm{dd} \tilde{A}=-\frac{1}{4} F_{i j} F^{i j} \\
& \mathcal{L}_{\text {LEH }}\left(h_{[1,1]}\right)=-\frac{1}{4}\left(h^{i}{ }_{i} \square h_{j}^{j}-2 h^{k}{ }_{k} \partial_{i} \partial_{j} h^{i j}+2 h_{i j} \partial^{j} \partial_{k} h^{i k}-h_{i j} \square h^{i j}\right) \\
& \mathcal{L}_{\text {Currright }}\left(\omega_{[2,1]}\right)=\frac{1}{2}\left(\partial_{i} \omega_{j k| |} \partial^{i} \omega^{j k \mid I}-2 \partial_{i} \omega^{i j \mid k} \partial^{\prime} \omega_{l j \mid k}-\partial_{i} \omega^{j k \mid i} \partial^{\prime} \omega_{j k \mid I}-\right. \\
& \left.-4 \omega_{i}^{j \mid i} \partial^{k} \partial^{\prime} \omega_{k j \mid I}-2 \partial_{i} \omega_{j}{ }^{k} \mid j \partial^{i} \omega^{\prime}{ }_{k \mid I}+2 \partial_{i} \omega_{j}^{i}{ }^{i j} \partial^{k} \omega^{\prime}{ }_{k \mid I}\right)
\end{aligned}
$$

Chatzistavrakidis, Karagiannis, PS (CMP 2020)

spin ≤ 2 interaction and mass terms, higher spin

general interaction term with up to second order field equations:

$$
\mathcal{L}_{\mathrm{Gal}}\left(\omega_{p, q}\right)=\sum_{n=1}^{n_{\text {max }}} \frac{1}{\left(D-k_{n}\right)!} \int_{\theta, \chi} \eta^{D-k_{n}} \omega(\mathrm{~d} \tilde{\mathrm{~d}} \omega)^{n-1}(\mathrm{~d} \widetilde{\mathrm{~d}} \widetilde{\omega})^{n}
$$

higher gauge symmetry via higher Poincaré lemma: $\operatorname{dd}(\delta \omega)=0$ implies

$$
\delta \omega_{p, q}=\mathrm{d} \kappa_{p-1, q}+\widetilde{\mathrm{d}} \kappa_{p, q-1}+c_{i_{1} \ldots i_{p} k_{0} k_{1} \ldots k_{q}} \theta^{i_{1}} \ldots \theta^{i_{p}} x^{k_{0}} \chi^{k_{1}} \ldots \chi^{k_{q}}
$$

(locally, i.e. on a contractible patch)

$$
\text { mass term } \mathcal{L}_{\text {mass }}\left(\omega_{p, q}\right)=m^{2} \int_{\theta, \chi} \omega \star \omega \rightsquigarrow \text { Proca, Fierz-Pauli, etc. }
$$

application: standard and exotic dualizations " $[p, q] \leftrightarrow[D-p-2, q]$ " for higher spin ≥ 2 : simply add further copies of $\theta \chi$-pairs...

Conclusion

- deformation: combines best aspects of Lagrange and Hamilton
- graded/generalized geometry provides a perfect setting for the formulation of theories of gravity
- approach is based on deformed graded geometry is algebraic in nature: almost everything follows from associativity as unifying principle (which can be generalized)
- more traditional approaches are based on the generalized metric (with occasional covariance and uniqueness issues)
- non-associativity \Rightarrow non-metricity, gravitipoles, mass quantization
- graded geometry provides a powerful formalism for higher spins

Thanks for listening!

[^0]: ${ }^{1}$ Wick-Voros formulation yields non-negative state function; Moyal-Weyl leads instead to Wigner quasi-probability function that can be negative in small regions.

