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Motivation: group representations

Let G be a group. A G-representation is a functor

BG 2 Vect
single object * and End(x) = G vector spaces and linear maps

x > px)=V
End(x) =G > g +— plg) € End(V)

(Functoriality means p(e) = idy and p(gh) = p(g)p(h) for all g,h € G.)
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Topological quantum field theory
A 2-dimensional TQFT is a symmetric monoidal functor

Bords i> Vect

St o— Vv (space of states)
& — (,u: VeV — V) (associative operator product)
@ — (=, -): VeV —C) (nondegenerate correlator)

Theorem. {2d TQFTs} = {commutative Frobenius algebras}

Examples.

Dijkgraaf-Witten models: V' = CG for finite abelian group G

state sum models: V' = separable symmetric Frobenius C-algebra
B-twisted sigma models: V' = H (X, Qx) for Calabi-Yau manifold X
— Landau-Ginzburg models: V' = Clzy,...,z,]/(0p, W, ..., 0z, W)
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Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord$eH(D) — Vect

depending on defect data D consisting of:
— set Dy of bulk theories
— set Dy of line defects
— set Dy of junction fields

(0%
B a L
a € Dy B
X € Dy i i 9
objects:

Davydov/Kong/Runkel 2011
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Examples of 2d defect TQFTs
Trivial defect TQFT Ztiv:

D2 = {C}
D, = {finite—dimensional C-vector spaces}

Dy = {Iinear maps}

. Vi
Ztrlv (Q ) def Vi Vm

Ztriv( (Y ) def (evaluate O- und 1-strata as string diagrams in Vect)

17
/24

B-twisted sigma models:
Calabi-Yau manifolds and holomorphic vector bundles

Landau-Ginzburg models:
isolated singularities and homological algebra (more soon. .

)
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State sum models

Input: A-separable symmetric Frobenius C-algebra (A, u, A)

(1) Choose oriented triangulation ¢ for every bordism Y in Bord,
(2) Decorate Poincaré-dual graph W|th (C, A, pu, A

(3) Obtain X254 in Bord$e!( ]Dt]er and define Z5(2 Ztr“’ »hA)

Theorem. Construction yields TQFT Z%: Bords — Vect.

Proof sketch: Defining properties of (A, ui, A) encode invariance under
Pachner moves = independent of choice of triangulation:
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Input: A-separable symmetric Frobenius C-algebra (A, u, A)

(1) Choose oriented triangulation ¢ for every bordism > in Bords
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Input: A-separable symmetric Frobenius C-algebra (A, u, A)

(1) Choose oriented triangulation ¢ for every bordism X in Bords
(2) Decorate Poincaré-dual graph with (C, A, i, A):

TR

(3) Obtain ¥4 in Bord$®!(D") and define Z5(X) = 2V (xh4)

Theorem. Construction yields TQFT Z%: Bords — Vect.

No need to consider only algebras over C!
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Orbifolds

Definition. Let Z: Bord$®!(ID) — Vect be defect TQFT.
An orbifold datum for Z is A= (o, A, u, A

e AT Y

a € Do A€ Dy € Do A € Dy

such that Pachner moves become identities under Z:

AN =) Y)Y

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

Z . Bordo — Vect

Carqueville/Runkel 2012
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Algebraic characterisation

Theorem.
2d defect TQFT Z = pivotal 2-category Bz

Examples.

vector spaces: BVect

*, finite-dimensional C-vector spaces, linear maps

state sum models

A-separable symmetric Frobenius C-algebras, bimodules, intertwiners
B-twisted sigma models

Calabi-Yau varieties, Fourier-Mukai kernels, RHom

A-twisted sigma models

symplectic manifolds, Lagrangian correspondences, Floer homology
Landau-Ginzburg models

isolated singularities, matrix factorisations

differential graded categories

smooth and proper dg categories, dg bimodules, intertwiners
categorified quantum groups

weights, functors &;, F; ..., string diagrams. ..

Davydov/Kong/Runkel 2011, Carqueville 2016
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Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT Z = pivotal 2-category Bz

Lemma.

{orbifold data for Z} = { A-separable symmetric Frobenius algebras in Bz}
Examples.

— A-separable symmetric Frobenius algebras in BVect

= A-separable symmetric Frobenius C-algebras ©
= Z¥ = (Ztriv)A (“State sum models are orbifolds of the trivial TQFT.")

— A G-action in Bz is 2-functor p: BG — Bz.
Lemma. Ag := GagEG p(g) is A-separable Frobenius algebra in Bz.

Lemma. G-orbifolds are orbifolds: Z6 = Zag ©)

Orbifolds unify gauging of symmetry groups and state sum models.

Davydov/Kong/Runkel 2011, Fréhlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014
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Orbifold equivalence: main idea

Let X: o — [ be line defect such that X@ # 0 in correlators.
B

Then with A := Xt 0 X: o« — o we have:

Theorem. (orbifold equivalence o ~ 3)

(theory 3) = (A-orbifold of theory )

Carqueville/Runkel 2012
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Theorem. There is a pivotal 2-category LG with:
— objects = potentials W € Clz1,...,x,)]

- LG(W, V') = homotopy category of matrix factorisations D of V. — W
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0 0 =z y
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Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category LG with:
— objects = potentials W € Clz1,...,x,)]
— LG(W, V') = homotopy category of matrix factorisations D of V. — W

tr(TT. 9, D) (. 0. D) d
- D@ —Res[sr(nz D)1, 2-,P) dx for D: W —s V
/

O W ... 05, W

Theorem. (Orbifold equivalences in LG)

2+ 2y~ WP +? (Dig1 ~ Agg—1)
Byt~ w2 40? (E6 ~ AH)

234 zyd o~ uf® 40P (E7 ~ Ai7)
B+~ w304 ? (Es ~ Ago)

Py +yd o~ wdv 40P (E13 ~ Z11)
S+ + 22~ vwd 403+ dPw (Z13 ~ Qn)

Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017
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Aside: Non-semisimple fully extended TQFTs

Theorem.

For every potential W, the associated Landau-Ginzburg model
Bordy 1 — Vect can be lifted to a fully extended TQFT

Bord27170 — ﬁg
pty — W

St — Clzy, ..., x0)/ (00, W, ..., 05, W)

Remarks.

— Jacobi algebra C[z1,...,2,]/(0z,W, ..., 0z, W) is non-semisimple.

— Need SO(2)-homotopy fixed points for fully extended oriented TQFTs
For Q-graded LG models, get constraint on central charge

(W) =331 = |zi)).

Carqueville/Montiel Montoya 2018
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Summary so far

ZG — ZAG ZSs (ZtriV)A

2d orbifolds
— encode triangulation invariance in algebraic structure
— involve representation theory of algebras in 2-categories
— unify gauging of symmetry groups and state sum models

— uncover new dualities
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Z: Bord® (D) — Vect

in any dimensionn > 1.
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The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord® (D) — Vect

in any dimensionn > 1.

n-dimensional orbifolds
— triangulation invariance = algebraic structures

» n = 2: Frobenius algebras in 2-categories
» n = 3: spherical fusion categories in 3-categories

— unify gauging of symmetry groups and state sum models

» Turaev-Viro theory is an orbifold
» (-equivariantisation is an orbifold

— new surface defects and dualities in Chern-Simons theory

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-2018
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An n-dimensional defect TQFT is a symmetric monoidal functor

Z: Bord®*H(DD) — Vect

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-18, Kapustin/Rozansky/Saulina 2009 + wip
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n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord®*H(DD) — Vect

that depends on defect data DD, consisting of:

— sets D;, whose elements decorate j-strata of bordisms
— rules how strata are allowed to meet

(defined recursively via cones and cylinders)
Examples of 3d defect TQFTs.

— quantum Chern-Simons theory (C Reshetikhin-Turaev theory Z€)
» D3 = {gauge group} (more generally: modular fusion category C)
> Dy = {A—separable symmetric Frobenius algebras in C}
» Dy = {cyclic modules} > {Wilson line labels}
— Rozansky-Witten theory (conjecturally)
» Dj3 = {holomorphic symplectic manifolds}
» Dy = {generalised Landau-Ginzburg models}
» Dy = {fibred matrix factorisations }

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-18, Kapustin/Rozansky/Saulina 2009 + wip
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Triangulations
n+1

standard n-simplex A" := { tie;

=1 %

M' -)\_ A3 =

simplicial complex C' is collection of simplices such that
@ all faces of all o € C are also in C'

eo0,0eC = onNo =0 o oNo =face

3
¥
=

t; >0, tiZI}CRn+1
1

triangulation of manifold M is simplicial complex C with
homeomorphism ¢: |C| — M

(details for smooth, oriented, ...



Pachner moves

Let p: |C] =, M be triangulated n-manifold.

Pachner 1991



Pachner moves

Let p: |C] =, M be triangulated n-manifold.
Let £ Cc OA™! C C be n-dimensional subcomplex.

Pachner 1991



Pachner moves

Let p: |C] =, M be triangulated n-manifold.
Let £ Cc OA™! C C be n-dimensional subcomplex.

A Pachner move “glues the other side of 9A™ ! into M":

M s [9A™\F| Uy, (M @(IF))

Pachner 1991



Pachner moves

Let ¢: |C| —» M be triangulated n-manifold.
Let £ Cc OA™! C C be n-dimensional subcomplex

A Pachner move “glues the other side of 9A™ ! into M":

M (08" F| Uy, (M @(IF))

2-2 ij 1-3 ;|;
n=2: = —
n=3: — PiainiN

Pachner 1991




Pachner moves

Let ¢: |C| —» M be triangulated n-manifold.
Let £ Cc OA™! C C be n-dimensional subcomplex.

A Pachner move “glues the other side of 9A™ ! into M":

M (08" F| Uy, (M @(IF))

2-2 ij 1-3 ;|;
n=2: = —
n=3: — PiainiN

Theorem. If triangulated PL manifolds are PL isomorphic, then there

exists a finite sequence of Pachner moves between them.
Pachner 1991




Orbifolds in any dimension n

An orbifold datum A for Z: Bord®®!(ID) — Vect consists of
- AjeDjforall je{l,...,n},
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Orbifolds in any dimension n

An orbifold datum A for Z: Bord®®!(ID) — Vect consists of
- AjeDjforall je{l,...,n},
- Af, Ay € Dy,
— such that “Pachner moves become identities”
» compatibility:
Aj; is allowed decoration of (n — j)-simplices dual to j-strata
» triangulation invariance:
Let B, B’ be A-decorated n-balls dual to two sides of a Pachner move.
Then: Z(B)=Z(B’).

n = 2 is special case:

AN =) =)+ (Y)

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

Z 4 Bord, — Vect

Carqueville/Runkel /Schaumann 2017



Orbifold datum A for n = 3
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3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

Theorem.
Spherical fusion categories in Tz are orbifold data for Z.

Theorem. (“State sum models are orbifolds of the trivial TQFT.")
Turaev-Viro models are orbifolds of ZVect,
From spherical fusion category A get orbifold datum

—_ vzlg — %

-Ay=A (equivalently: C7# simples of A)

- A= AxA— A (equivalently: fusion rules of A)

- A(jf = associator®! (equivalently: F-matrices of A)
Theorem.

Orbifolds of Reshetikhin-Turaev theories are Reshetikhin-Turaev theories.

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-2018, C/Mulevitius/Runkel/Schaumann/Scherl
2020



