Topological quantum field theory and orbifolds

Nils Carqueville

Universität Wien

Motivation: quantum field theory

spacetime

algebra

Motivation: quantum field theory

spacetime $\supset \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect \subset algebra

Motivation: quantum field theory

spacetime $\supset \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \xrightarrow{\text { defect TQFT }}$ Vect \subset algebra

Motivation: group representations

Let G be a group. A G-representation is a functor

$$
\mathrm{B} G \xrightarrow{\rho} \mathrm{Vect}
$$

Motivation: group representations

Let G be a group. A G-representation is a functor
$\mathrm{B} G \xrightarrow{\rho}$ Vect
「
vector spaces and linear maps

Motivation: group representations

Let G be a group. A G-representation is a functor
single object $*$ and $\operatorname{End}(*)=G \quad \mathrm{~B} G \stackrel{\rho}{\longrightarrow} \mathrm{Vect}$

Motivation: group representations

Let G be a group. A G-representation is a functor

$$
* \quad \longmapsto \quad \rho(*)=: V
$$

Motivation: group representations

Let G be a group. A G-representation is a functor

single object $*$ and $\operatorname{End}(*)=G \quad$ vector spaces and linear maps

$$
\begin{aligned}
* & \longmapsto \rho(*)=: V \\
\operatorname{End}(*)=G \ni g & \longmapsto \rho(g) \in \operatorname{End}(V)
\end{aligned}
$$

Motivation: group representations

Let G be a group. A G-representation is a functor

$$
\begin{aligned}
* & \longmapsto \rho(*)=: V \\
\operatorname{End}(*)=G \ni g & \longmapsto \rho(g) \in \operatorname{End}(V)
\end{aligned}
$$

(Functoriality means $\rho(e)=\operatorname{id}_{V}$ and $\rho(g h)=\rho(g) \rho(h)$ for all $g, h \in G$.)

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\operatorname{Bord}_{2} \xrightarrow{\mathcal{Z}} \text { Vect }
$$

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\operatorname{Bord}_{2} \xrightarrow{\mathcal{Z}} \text { Vect }
$$

vector spaces and linear maps

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

orient. circles S^{1} and surfaces with bdry./diffeom. vector spaces and linear maps

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\begin{aligned}
& \text { Bord }_{2} \xrightarrow{\mathcal{Z}} \\
& \text { Vect } \\
& S^{1} \longmapsto \mathcal{Z}\left(S^{1}\right)=: V
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\text { Bord }_{2} & \xrightarrow[\mathcal{Z}]{\longrightarrow} \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\text { Bord }_{2} & \xrightarrow{\mathcal{Z}} \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V \\
\emptyset & \longmapsto \mathbb{C}
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\begin{aligned}
& \text { Bord }_{2} \xrightarrow[\mathcal{Z}]{\longmapsto} \text { Vect } \\
& S^{1} \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
& S^{1} \sqcup \cdots \sqcup S^{1} \longmapsto V \otimes \cdots \otimes V \\
& \emptyset \longmapsto \mathbb{C} \\
& \hdashline(V \otimes V \xrightarrow{\mu} V)
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\text { Bord }_{2} & \xrightarrow[\mathcal{Z}]{ } \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V \\
\emptyset & \longmapsto \mathbb{C} \\
& \longmapsto \\
& (V \otimes V \xrightarrow{\mu} V)
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

\[

\]

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \xrightarrow{\mathcal{Z}} \text { Vect }
$$

$$
S^{1} \longmapsto V \quad \text { (space of states) }
$$

气. $\longmapsto(\mu: V \otimes V \longrightarrow V)$ (associative operator product)
๑) $\longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{C}) \quad$ (nondegenerate correlator)

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \xrightarrow{\mathcal{Z}} \text { Vect }
$$

$$
S^{1} \longmapsto V \quad \text { (space of states) }
$$

$$
\text { Ø} \longmapsto(\mu: V \otimes V \longrightarrow V) \quad \text { (associative operator product) }
$$

$$
\text { ๑) } \longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{C}) \quad \text { (nondegenerate correlator) }
$$

Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \xrightarrow{\mathcal{Z}} \text { Vect }
$$

$$
S^{1} \longmapsto V
$$

Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$

Examples.

- Dijkgraaf-Witten models: $V=\mathbb{C} G$ for finite abelian group G

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor
Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect $S^{1} \longmapsto V$

气. $\longmapsto(\mu: V \otimes V \longrightarrow V)$ (associative operator product)

ค) $\longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{C})$ (nondegenerate correlator)

Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$

Examples.

- Dijkgraaf-Witten models: $V=\mathbb{C} G$ for finite abelian group G
- state sum models: $V=$ separable symmetric Frobenius \mathbb{C}-algebra

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor
Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect
$S^{1} \longmapsto V \quad$ (space of states)

气. $\longmapsto(\mu: V \otimes V \longrightarrow V)$
(associative operator product)
๑) $\longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{C})$ (nondegenerate correlator)

Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$

Examples.

- Dijkgraaf-Witten models: $V=\mathbb{C} G$ for finite abelian group G
- state sum models: $V=$ separable symmetric Frobenius \mathbb{C}-algebra
- B-twisted sigma models: $V=H\left(X, \Omega_{X}\right)$ for Calabi-Yau manifold X

Topological quantum field theory

A 2-dimensional TQFT is a symmetric monoidal functor
Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect
$S^{1} \longmapsto V \quad$ (space of states)
G. $\longmapsto(\mu: V \otimes V \longrightarrow V)$
(2) $\longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{C})$

Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$

Examples.

- Dijkgraaf-Witten models: $V=\mathbb{C} G$ for finite abelian group G
- state sum models: $V=$ separable symmetric Frobenius \mathbb{C}-algebra
- B-twisted sigma models: $V=H\left(X, \Omega_{X}\right)$ for Calabi-Yau manifold X
- Landau-Ginzburg models: $V=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)$

Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect

Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

depending on defect data \mathbb{D} consisting of:

- set D_{2} of bulk theories
- set D_{1} of line defects
- set D_{0} of junction fields

morphisms:

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}^{\text {triv }}$:
$D_{2}:=\{\mathbb{C}\}$
$D_{1}:=\{$ finite-dimensional \mathbb{C}-vector spaces $\}$
$D_{0}:=\{$ linear maps $\}$

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}^{\text {triv }}$:
$D_{2}:=\{\mathbb{C}\}$
$D_{1}:=\{$ finite-dimensional \mathbb{C}-vector spaces $\}$
$D_{0}:=\{$ linear maps $\}$
$\mathcal{Z}^{\text {triv }}\left(\int \begin{array}{c}V_{1} \\ \vdots \\ V_{m}\end{array}\right) \stackrel{\text { def }}{=} V_{1} \otimes \cdots \otimes V_{m}$

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}^{\text {triv }}$:
$D_{2}:=\{\mathbb{C}\}$
$D_{1}:=\{$ finite-dimensional \mathbb{C}-vector spaces $\}$
$D_{0}:=\{$ linear maps $\}$
$\mathcal{Z}^{\text {triv }}\left(\int_{V_{m}}^{V_{1}} \begin{array}{l}\vdots \\ V_{m}\end{array}\right) \stackrel{\text { def }}{=} V_{1} \otimes \cdots \otimes V_{m}$
$\mathcal{Z}^{\text {triv }}(00) \stackrel{\text { def }}{=}$ (evaluate 0- und 1-strata as string diagrams in Vect)

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}^{\text {triv }}$:

$$
\begin{aligned}
& D_{2}:=\{\mathbb{C}\} \\
& D_{1}:=\{\text { finite-dimensional } \mathbb{C} \text {-vector spaces }\} \\
& D_{0}:=\{\text { linear maps }\} \\
& \mathcal{Z}^{\text {triv }}\left(\sim_{V_{m}}^{V_{1}} \begin{array}{l}
\vdots \\
V_{m}
\end{array}\right) \stackrel{\text { def }}{=} V_{1} \otimes \cdots \otimes V_{m} \\
& \mathcal{Z}^{\text {triv }}\left({ }^{0}\right) \stackrel{\text { def }}{=} \text { (evaluate } 0 \text { - und 1-strata as string diagrams in Vect) }
\end{aligned}
$$

B-twisted sigma models:
Calabi-Yau manifolds and holomorphic vector bundles

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}^{\text {triv }}$:

$$
\begin{aligned}
& D_{2}:=\{\mathbb{C}\} \\
& D_{1}:=\{\text { finite-dimensional } \mathbb{C} \text {-vector spaces }\} \\
& D_{0}:=\{\text { linear maps }\} \\
& \mathcal{Z}^{\text {triv }}\left(\sim_{V_{m}}^{V_{1}} \begin{array}{l}
\vdots \\
V_{m}
\end{array}\right) \stackrel{\text { def }}{=} V_{1} \otimes \cdots \otimes V_{m} \\
& \left.\mathcal{Z}^{\text {triv }}()^{0}\right) \stackrel{\text { def }}{=} \text { (evaluate } 0 \text { - und 1-strata as string diagrams in Vect) }
\end{aligned}
$$

B-twisted sigma models:
Calabi-Yau manifolds and holomorphic vector bundles
Landau-Ginzburg models:
isolated singularities and homological algebra

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\mathrm{ss}}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.
Proof sketch: Defining properties of (A, μ, Δ) encode invariance under Pachner moves \Longrightarrow independent of choice of triangulation:

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord_{2}
(2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.
Proof sketch: Defining properties of (A, μ, Δ) encode invariance under Pachner moves \Longrightarrow independent of choice of triangulation:

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.

No need to consider only algebras over \mathbb{C} !

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect be defect TQFT.

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect be defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(\alpha, A, \mu, \Delta)$:

$\alpha \in D_{2}$

$A \in D_{1}$

$\mu \in D_{0}$

$\Delta \in D_{0}$
such that Pachner moves become identities under \mathcal{Z} :

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect be defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(\alpha, A, \mu, \Delta)$:

$\alpha \in D_{2}$

$A \in D_{1}$

$\mu \in D_{0}$

$\Delta \in D_{0}$
such that Pachner moves become identities under \mathcal{Z} :

Definition \& Theorem.

Triangulation $+\mathcal{A}$-decoration + evaluation with \mathcal{Z}

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect be defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(\alpha, A, \mu, \Delta)$:

$\alpha \in D_{2}$

$A \in D_{1}$

$\mu \in D_{0}$

$\Delta \in D_{0}$
such that Pachner moves become identities under \mathcal{Z} :

Definition \& Theorem.

Triangulation $+\mathcal{A}$-decoration + evaluation with $\mathcal{Z}=\mathcal{A}$-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \text { Bord }_{2} \longrightarrow \text { Vect }
$$

Algebraic characterisation

Theorem.

2 d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Proof sketch:

- objects $=$ elements of $D_{2}=$ 'theories'

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Proof sketch:

- objects $=$ elements of $D_{2}=$ 'theories'
- 1-morphisms $X: \alpha \rightarrow \beta=$ (lists of) elements of $D_{1}=$ 'defect lines':

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Proof sketch:

- objects $=$ elements of $D_{2}=$ 'theories'
- 1-morphisms $X: \alpha \rightarrow \beta=$ (lists of) elements of $D_{1}=$ 'defect lines':

- 2-morphisms $=$ 'junction fields':

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Proof sketch:

- objects $=$ elements of $D_{2}=$ 'theories'
- 1-morphisms $X: \alpha \rightarrow \beta=$ (lists of) elements of $D_{1}=$ 'defect lines':

- 2-morphisms $=$ 'junction fields':

Algebraic characterisation

Theorem.

2 d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
objects $=$ bulk theories, \quad 1-morphisms $=$ defect lines, \quad 2-morphisms $=$ junction fields

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Examples.

- vector spaces: BVect
*, finite-dimensional \mathbb{C}-vector spaces, linear maps

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Examples.

- vector spaces: BVect
*, finite-dimensional \mathbb{C}-vector spaces, linear maps
- state sum models
Δ-separable symmetric Frobenius \mathbb{C}-algebras, bimodules, intertwiners

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Examples.

- vector spaces: BVect
*, finite-dimensional \mathbb{C}-vector spaces, linear maps
- state sum models
Δ-separable symmetric Frobenius \mathbb{C}-algebras, bimodules, intertwiners
- B-twisted sigma models

Calabi-Yau varieties, Fourier-Mukai kernels, RHom

- A-twisted sigma models
symplectic manifolds, Lagrangian correspondences, Floer homology
- Landau-Ginzburg models
isolated singularities, matrix factorisations
- differential graded categories
smooth and proper dg categories, dg bimodules, intertwiners
- categorified quantum groups
weights, functors $\mathcal{E}_{i}, \mathcal{F}_{j} \ldots$, string diagrams...
Davydov/Kong/Runkel 2011, Carqueville 2016

Algebraic characterisation of orbifolds

Theorem.

2 d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Algebraic characterisation of orbifolds

Theorem.
2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Algebraic characterisation of orbifolds

Theorem.
2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect $=\Delta$-separable symmetric Frobenius \mathbb{C}-algebras

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect
$=\Delta$-separable symmetric Frobenius \mathbb{C}-algebras
$\Longrightarrow \quad \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect
$=\Delta$-separable symmetric Frobenius \mathbb{C}-algebras
$\Longrightarrow \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")
- A G-action in $\mathcal{B}_{\mathcal{Z}}$ is 2-functor $\rho: \mathrm{B} \underline{G} \longrightarrow \mathcal{B}_{\mathcal{Z}}$.

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect
$=\Delta$-separable symmetric Frobenius \mathbb{C}-algebras
$\Longrightarrow \quad \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")
- A G-action in $\mathcal{B}_{\mathcal{Z}}$ is 2 -functor $\rho: \mathrm{B} \underline{G} \longrightarrow \mathcal{B}_{\mathcal{Z}}$.

Lemma. $\quad A_{G}:=\bigoplus_{g \in G} \rho(g)$ is Δ-separable Frobenius algebra in $\mathcal{B}_{\mathcal{Z}}$.

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect
$=\Delta$-separable symmetric Frobenius \mathbb{C}-algebras
$\Longrightarrow \quad \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")
- A G-action in $\mathcal{B}_{\mathcal{Z}}$ is 2 -functor $\rho: \mathrm{B} \underline{G} \longrightarrow \mathcal{B}_{\mathcal{Z}}$.

Lemma. $\quad A_{G}:=\bigoplus_{g \in G} \rho(g)$ is Δ-separable Frobenius algebra in $\mathcal{B}_{\mathcal{Z}}$.
Lemma. G-orbifolds are orbifolds:

$$
\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}
$$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect $=\Delta$-separable symmetric Frobenius \mathbb{C}-algebras
$\Longrightarrow \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")
- A G-action in $\mathcal{B}_{\mathcal{Z}}$ is 2 -functor $\rho: \mathrm{B} \underline{G} \longrightarrow \mathcal{B}_{\mathcal{Z}}$.

Lemma. $\quad A_{G}:=\bigoplus_{g \in G} \rho(g)$ is Δ-separable Frobenius algebra in $\mathcal{B}_{\mathcal{Z}}$.
Lemma. G-orbifolds are orbifolds:

$$
\begin{equation*}
\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}} \tag{e}
\end{equation*}
$$

Orbifolds unify gauging of symmetry groups and state sum models.

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

$\neq 0$ in correlators.

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

$\neq 0$ in correlators.

Then with $A:=X^{\dagger} \circ X: \alpha \longrightarrow \alpha$ we have:

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

$\neq 0$ in correlators.

Then with $A:=X^{\dagger} \circ X: \alpha \longrightarrow \alpha$ we have:

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

$\neq 0$ in correlators.

Then with $A:=X^{\dagger} \circ X: \alpha \longrightarrow \alpha$ we have:

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

$\neq 0$ in correlators.

Then with $A:=X^{\dagger} \circ X: \alpha \longrightarrow \alpha$ we have:

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

$\neq 0$ in correlators.

Then with $A:=X^{\dagger} \circ X: \alpha \longrightarrow \alpha$ we have:

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

Then with $A:=X^{\dagger} \circ X: \alpha \longrightarrow \alpha$ we have:

Theorem. (orbifold equivalence $\alpha \sim \beta$)
$($ theory $\beta) \cong(A$-orbifold of theory $\alpha)$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

Examples. $\quad W_{\mathrm{A}_{n-1}}=x_{1}^{n}+x_{2}^{2}, \quad W_{\mathrm{D}_{n+1}}=x_{1}^{n}+x_{1} x_{2}^{2}, \quad W_{\mathrm{E}_{7}}=x_{1}^{3}+x_{1} x_{2}^{3}$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
$-\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
Examples. $\mathcal{D}=\left(\begin{array}{cc}0 & u^{n-i} \\ u^{i} & 0\end{array}\right)$ for $u^{n}, \quad \mathcal{D}=\left(\begin{array}{cccc}0 & 0 & x & y \\ 0 & 0 & y^{2} & -x \\ x^{2} & x y & 0 & 0 \\ x y^{2} & -x^{2} & 0 & 0\end{array}\right)$ for $x^{3}+x y^{3}$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$-{ }_{\mathcal{D}}{ }^{W}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$-\underbrace{}_{\mathcal{D}}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$
Theorem. (Orbifold equivalences in $\mathcal{L G}$)

$$
\begin{array}{rlr}
x^{k}+x y^{2} & \sim u^{2 k}+v^{2} & \left(\mathrm{D}_{k+1} \sim \mathrm{~A}_{2 k-1}\right) \\
x^{3}+y^{4} & \sim u^{12}+v^{2} & \left(\mathrm{E}_{6} \sim \mathrm{~A}_{11}\right) \\
x^{3}+x y^{3} & \sim u^{18}+v^{2} & \left(\mathrm{E}_{7} \sim \mathrm{~A}_{17}\right) \\
x^{3}+y^{5} & \sim u^{30}+v^{2} & \left(\mathrm{E}_{8} \sim \mathrm{~A}_{29}\right)
\end{array}
$$

Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ potentials $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$-{ }_{\mathcal{D}}^{W}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$
Theorem. (Orbifold equivalences in $\mathcal{L G}$)

$$
\begin{array}{rlr}
x^{k}+x y^{2} & \sim u^{2 k}+v^{2} & \left(\mathrm{D}_{k+1} \sim \mathrm{~A}_{2 k-1}\right) \\
x^{3}+y^{4} & \sim u^{12}+v^{2} & \left(\mathrm{E}_{6} \sim \mathrm{~A}_{11}\right) \\
x^{3}+x y^{3} & \sim u^{18}+v^{2} & \left(\mathrm{E}_{7} \sim \mathrm{~A}_{17}\right) \\
x^{3}+y^{5} & \sim u^{30}+v^{2} & \left(\mathrm{E}_{8} \sim \mathrm{~A}_{29}\right) \\
x^{5} y+y^{3} & \sim u^{3} v+v^{5} & \left(\mathrm{E}_{13} \sim \mathrm{Z}_{11}\right) \\
x^{6}+x y^{3}+z^{2} & \sim v w^{3}+v^{3}+u^{2} w & \left(\mathrm{Z}_{13} \sim \mathrm{Q}_{11}\right)
\end{array}
$$

Orbifold equivalence: application

(simple) (complicated)
Theorem. $\mathrm{A}_{11} \sim \mathrm{E}_{6}$ etc.

Orbifold equivalence: application

Theorem. $\stackrel{\text { (simple) }}{\mathrm{A}_{11}} \sim \stackrel{\text { (complicated) }}{\mathrm{E}_{6}}$ etc.

Orbifold equivalence: application

Theorem. $\stackrel{\text { (simple) }}{\mathrm{A}_{11}} \sim \stackrel{\text { (complicated) }}{\mathrm{E}_{6}}$ etc.

Orbifold equivalence: application

Theorem. $\stackrel{\text { (simple) }}{\mathrm{A}_{11}} \sim \stackrel{\text { (complicated) }}{\mathrm{E}_{6}}$ etc.

Aside: Non-semisimple fully extended TQFTs

Aside: Non-semisimple fully extended TQFTs

Theorem.

For every potential W, the associated Landau-Ginzburg model Bord $_{2,1} \longrightarrow$ Vect can be lifted to a fully extended TQFT

$$
\begin{aligned}
\operatorname{Bord}_{2,1,0} & \longrightarrow \mathcal{L G} \\
\mathrm{pt}_{+} & \longmapsto W \\
S^{1} & \longmapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)
\end{aligned}
$$

Aside: Non-semisimple fully extended TQFTs

Theorem.

For every potential W, the associated Landau-Ginzburg model Bord $_{2,1} \longrightarrow$ Vect can be lifted to a fully extended TQFT

$$
\begin{aligned}
\operatorname{Bord}_{2,1,0} & \longrightarrow \mathcal{L G} \\
\mathrm{pt}_{+} & \longmapsto W \\
S^{1} & \longmapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)
\end{aligned}
$$

Remarks.

- Jacobi algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)$ is non-semisimple.

Aside: Non-semisimple fully extended TQFTs

Theorem.

For every potential W, the associated Landau-Ginzburg model Bord $_{2,1} \longrightarrow$ Vect can be lifted to a fully extended TQFT

$$
\begin{aligned}
\operatorname{Bord}_{2,1,0} & \longrightarrow \mathcal{L G} \\
\mathrm{pt}_{+} & \longmapsto W \\
S^{1} & \longmapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)
\end{aligned}
$$

Remarks.

- Jacobi algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)$ is non-semisimple.
- Need SO(2)-homotopy fixed points for fully extended oriented TQFTs.

Aside: Non-semisimple fully extended TQFTs

Theorem.

For every potential W, the associated Landau-Ginzburg model Bord $_{2,1} \longrightarrow$ Vect can be lifted to a fully extended TQFT

$$
\begin{aligned}
\operatorname{Bord}_{2,1,0} & \longrightarrow \mathcal{L G} \\
\mathrm{pt}_{+} & \longmapsto W \\
S^{1} & \longmapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)
\end{aligned}
$$

Remarks.

- Jacobi algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)$ is non-semisimple.
- Need $\mathrm{SO}(2)$-homotopy fixed points for fully extended oriented TQFTs. For \mathbb{Q}-graded LG models, get constraint on central charge

$$
c(W)=3 \sum_{i}\left(1-\left|x_{i}\right|\right) .
$$

Summary so far

Summary so far

Summary so far

$$
\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}
$$

$$
\mathcal{Z}_{A}^{\mathrm{ss}}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}
$$

Summary so far

$$
\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}} \quad \quad \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}
$$

2d orbifolds

- encode triangulation invariance in algebraic structure
- involve representation theory of algebras in 2-categories
- unify gauging of symmetry groups and state sum models
- uncover new dualities

The orbifold construction can be generalised to n-dimensional defect TQFTs

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

in any dimension $n \geqslant 1$.

The orbifold construction can be generalised to n-dimensional defect TQFTs

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

in any dimension $n \geqslant 1$.

n-dimensional orbifolds

- triangulation invariance \Longrightarrow algebraic structures

The orbifold construction can be generalised to

 n-dimensional defect TQFTs$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \text { Vect }
$$

in any dimension $n \geqslant 1$.

n-dimensional orbifolds

- triangulation invariance \Longrightarrow algebraic structures
- $n=2$: Frobenius algebras in 2-categories
- $n=3$: spherical fusion categories in 3-categories

The orbifold construction can be generalised to

 n-dimensional defect TQFTs$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

in any dimension $n \geqslant 1$.

n-dimensional orbifolds

- triangulation invariance \Longrightarrow algebraic structures
- $n=2$: Frobenius algebras in 2-categories
- $n=3$: spherical fusion categories in 3-categories
- unify gauging of symmetry groups and state sum models
- Turaev-Viro theory is an orbifold
- G-equivariantisation is an orbifold

The orbifold construction can be generalised to

 n-dimensional defect TQFTs$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

in any dimension $n \geqslant 1$.

n-dimensional orbifolds

- triangulation invariance \Longrightarrow algebraic structures
- $n=2$: Frobenius algebras in 2-categories
- $n=3$: spherical fusion categories in 3-categories
- unify gauging of symmetry groups and state sum models
- Turaev-Viro theory is an orbifold
- G-equivariantisation is an orbifold
- new surface defects and dualities in Chern-Simons theory

n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

that depends on defect data \mathbb{D}, consisting of:

- sets D_{j}, whose elements decorate j-strata of bordisms
- rules how strata are allowed to meet
(defined recursively via cones and cylinders)

n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

that depends on defect data \mathbb{D}, consisting of:

- sets D_{j}, whose elements decorate j-strata of bordisms
- rules how strata are allowed to meet
(defined recursively via cones and cylinders)

Examples of 3d defect TQFTs.

- quantum Chern-Simons theory $\left(\subset\right.$ Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{C}}$)
- $D_{3}=$ \{gauge group $\}$
(more generally: modular fusion category \mathcal{C})
- $D_{2}=\{\Delta$-separable symmetric Frobenius algebras in $\mathcal{C}\}$
- $D_{1}=\{$ cyclic modules $\} \supset\{$ Wilson line labels $\}$

n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

that depends on defect data \mathbb{D}, consisting of:

- sets D_{j}, whose elements decorate j-strata of bordisms
- rules how strata are allowed to meet
(defined recursively via cones and cylinders)

Examples of 3d defect TQFTs.

- quantum Chern-Simons theory (\subset Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{C}}$)
- $D_{3}=$ \{gauge group $\}$
- $D_{2}=\{\Delta$-separable symmetric Frobenius algebras in $\mathcal{C}\}$
- $D_{1}=\{$ cyclic modules $\} \supset\{$ Wilson line labels $\}$
- Rozansky-Witten theory (conjecturaly)
- $D_{3}=$ \{holomorphic symplectic manifolds $\}$
- $D_{2}=\{$ generalised Landau-Ginzburg models $\}$
- $D_{1}=\{$ fibred matrix factorisations $\}$

Triangulations

standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

Triangulations

standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \quad \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

simplicial complex C is collection of simplices such that

- all faces of all $\sigma \in C$ are also in C
- $\sigma, \sigma^{\prime} \in C \quad \Longrightarrow \quad \sigma \cap \sigma^{\prime}=\emptyset \quad$ or $\quad \sigma \cap \sigma^{\prime}=$ face

Triangulations

standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \quad \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

simplicial complex C is collection of simplices such that

- all faces of all $\sigma \in C$ are also in C
- $\sigma, \sigma^{\prime} \in C \quad \Longrightarrow \quad \sigma \cap \sigma^{\prime}=\emptyset \quad$ or $\quad \sigma \cap \sigma^{\prime}=$ face
triangulation of manifold M is simplicial complex C with homeomorphism $\varphi:|C| \xrightarrow{\cong} M$

Pachner moves

Let $\varphi:|C| \xrightarrow{\cong} M$ be triangulated n-manifold.

Pachner moves

Let $\varphi:|C| \xrightarrow{\cong} M$ be triangulated n-manifold.
Let $F \subset \partial \Delta^{n+1} \subset C$ be n-dimensional subcomplex.

Pachner moves

Let $\varphi:|C| \xrightarrow{\cong} M$ be triangulated n-manifold.
Let $F \subset \partial \Delta^{n+1} \subset C$ be n-dimensional subcomplex.
A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M ":

$$
M \longmapsto\left|\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right| \cup_{\left.\varphi\right|_{|\partial F|}}(M \backslash \varphi(|F|))
$$

Pachner moves

Let $\varphi:|C| \xrightarrow{\cong} M$ be triangulated n-manifold.
Let $F \subset \partial \Delta^{n+1} \subset C$ be n-dimensional subcomplex.
A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M ":

$$
M \longmapsto\left|\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right| \cup_{\left.\varphi\right|_{|\partial F|}}(M \backslash \varphi(|F|))
$$

$$
\stackrel{2-2}{\longleftrightarrow}
$$

$n=3:$

Pachner moves

Let $\varphi:|C| \xrightarrow{\cong} M$ be triangulated n-manifold.
Let $F \subset \partial \Delta^{n+1} \subset C$ be n-dimensional subcomplex.
A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M ":

$$
M \longmapsto\left|\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right| \cup_{\left.\varphi\right|_{|\partial F|}}(M \backslash \varphi(|F|))
$$

Theorem. If triangulated PL manifolds are PL isomorphic, then there exists a finite sequence of Pachner moves between them.

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect consists of
$-\mathcal{A}_{j} \in D_{j}$ for all $j \in\{1, \ldots, n\}$,

- $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect consists of
$-\mathcal{A}_{j} \in D_{j}$ for all $j \in\{1, \ldots, n\}$,

- $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$,
- such that "Pachner moves become identities"
- compatibility:
\mathcal{A}_{j} is allowed decoration of $(n-j)$-simplices dual to j-strata
- triangulation invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls dual to two sides of a Pachner move.
Then: $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect consists of
$-\mathcal{A}_{j} \in D_{j}$ for all $j \in\{1, \ldots, n\}$,

- $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$,
- such that "Pachner moves become identities"
- compatibility:
\mathcal{A}_{j} is allowed decoration of $(n-j)$-simplices dual to j-strata
- triangulation invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls dual to two sides of a Pachner move.
Then: $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.
$n=2$ is special case:

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect consists of
$-\mathcal{A}_{j} \in D_{j}$ for all $j \in\{1, \ldots, n\}$,

- $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$,
- such that "Pachner moves become identities"
- compatibility:
\mathcal{A}_{j} is allowed decoration of $(n-j)$-simplices dual to j-strata
- triangulation invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls dual to two sides of a Pachner move.
Then: $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.
$n=2$ is special case:

Definition \& Theorem.

Triangulation $+\mathcal{A}$-decoration + evaluation with $\mathcal{Z}=\mathcal{A}$-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \text { Vect }
$$

Orbifold datum \mathcal{A} for $n=3$

dual to

3d orbifolds

Theorem.
3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$
Theorem.
Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$
Theorem.
Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.
Theorem. ("State sum models are orbifolds of the trivial TQFT.") Turaev-Viro models are orbifolds of $\mathcal{Z}^{\text {vect }}$.

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$

Theorem.

Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.
Theorem. ("State sum models are orbifolds of the trivial TQFT.")
Turaev-Viro models are orbifolds of $\mathcal{Z}^{\text {vect }}$.
From spherical fusion category \mathcal{A} get orbifold datum

$$
\begin{aligned}
& -\mathcal{A}_{3}=* \\
& -\mathcal{A}_{2}=\mathcal{A} \\
& -\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\
& -\mathcal{A}_{0}^{ \pm}=\text {associator }^{ \pm 1}
\end{aligned}
$$

$$
\text { (equivalently: } \mathbb{C}^{\# \text { simples of } \mathcal{A}} \text {) }
$$

$$
\text { (equivalently: fusion rules of } \mathcal{A} \text {) }
$$

$$
\text { (equivalently: F-matrices of } \mathcal{A} \text {) }
$$

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$

Theorem.

Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.
Theorem. ("State sum models are orbifolds of the trivial TQFT.")
Turaev-Viro models are orbifolds of $\mathcal{Z}^{\text {vect }}$.
From spherical fusion category \mathcal{A} get orbifold datum

$$
\begin{aligned}
& -\mathcal{A}_{3}=* \\
& -\mathcal{A}_{2}=\mathcal{A} \\
& -\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\
& -\mathcal{A}_{0}^{ \pm}=\text {associator }^{ \pm 1}
\end{aligned}
$$

Theorem.

Orbifolds of Reshetikhin-Turaev theories are Reshetikhin-Turaev theories.

