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how to formulate quantum theory of spacetime & gravity?

guidelines:
@ simple, constructive
@ gauge theory (Minkowski signature!)

@ finite dof per volume (Planck scale)
— underlying d.o.f. non-geometric

@ space-time & gravity should emerge from fundamental d.o.f.

@ good UV properties (cf. string theory)
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Matrix Models (of Yang-Mills type)

S=Tr([Y", Y"][Y,, Y] +...) provide such models!

@ simple
@ describe dynamical (noncomm.) spaces, gauge theory

Ya - U-tyau
@ well suited for quantization: [ dY e~

IKKT model: protected from UV/IR mixing (maximal SUSY)

cf. critical string

@ how to understand gravity?
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summary & outline:

@ the IKKT matrix model & “matrix (fuzzy) geometry”
@ 4D covariant quantum spaces: fuzzy H*

truncated tower of higher-spin modes M. Sperling, HS 1806.05907
@ projection — cosmological space-time M3

M. Sperling, HS 1901.03522

@ (hs-) volume-preserving diffeos

from higher-dim. symplectomorphisms
@ no ghosts HS 1910.00839
@ linearized Schwarzschild HS 1905.07255
@ nonlinear regime: torsion as a source for Einstein tensor

(dark matter ? ) HS 2002.02742
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Matrix models

The IKKT model

IKKT or |IB model

SIY, Wl = =T (Y2, YUY, Y Inaarmonr -+ mPY?Ya + el Y2, W])

vya=val ¢ Mat(N,C), a=0,..,9, N - oo
gauge invariance Y2 — UY2aU~', SO(9,1), SUSY

v

Ishibashi, Kawai, Kitazawa, Tsuchiya hep-th/9612115

@ quantized Schild action for IIB superstring
@ reduction of 10D SYM to point, N large
@ equations of motion:
oYa4+mPYa=0, 0= na[ Y3 [Y?, ]
@ quantization: Z = [ dYdw eSIV:V], (SUSY )
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Matrix models

how to get physics from matrix models?

@ no a priori space-time, geometry

@ solutions X* — space(time)
cf. branes, generically non-commutative

@ fluctuations X* 4+ A" — gauge theory
dynamical geometry — gravity ?! (not holographic !)

@ [ dX = path integral, including geometry

numerical studies possible & underway

evidence for emergent 3+1D expanding space-time

Nishimura, Tsuchiya 1904.05919, Kim, Nishimura, Tsuchiya arXiv:1108.1540 ff

H. Steinacker Higher-spin gauge theory, matrix models , & the quantum structure of space-time



Matrix models

examples of “matrix geometries*:

1) Moyal-Weyl quantum plane R3" :

[XH* XY =i0" 1
admits translations X* — X* + c¢#1, rotation invariance broken

fluctuations X* 4+ A* in IKKT — NC N =4 SYM

2) fuzzy 2-sphere S

X2+ X2+ X2 = R2, [Xi, Xi] = fejie X«
fully covariant under SO(3) (Hoppe, Madore)

NC (“fuzzy”) space = quantized symplectic manifold c R”"
map Q: C*(M) — End(H), dimH ~ Vol(M)
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covariant fuzzy spaces

4D covariant quantum spaces

@ in 4D: Poisson tensor {x*, x”} = 6" breaks Lorentz-invar.
@ avoided on covariant quantum spaces
example: fuzzy Sy,

Grosse-Klimcik-Presnajder; Castelino-Lee-Taylor; Medina-o’Connor;
Ramgoolam; Kimura; Abe; Karabail-Nair; Zhang-Hu 2001 (QHE); HS

@ noncompact H* Hasebe 1207.1968 , M. Sperling, HS 1806.05907

@ projection of H* — cosmological space-time M3
HS, 1710.11495, 1709.10480, M. Sperling, HS 1901.03522, f.

covariance — higher-spin gravity from matrix model(s) J

introductory review: HS arXiv:1911.03162
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covariant fuzzy spaces

Euclidean fuzzy hyperboloid H? (=EAdS?)

M3 . hermitian generators of so(4, 2),
[Mab, Mcq] = i(acMbpa — NadMpc — beMad + MbaMac) -

n = diag(—1,1,1,1,1, 1)
choose “short” discrete unitary irreps H,, (“minireps”, doubletons)

special properties:

@ irreps under so(4, 1), multiplicities one, minimal oscillator rep.
@ positive discrete spectrum
n

spec(M®) = {Ey, Eg + 1, ...}, Eo=1+ 5

lowest eigenspace is n -+ 1-dim.
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covariant fuzzy spaces

fuzzy hyperboloid H*

5 hermitian generators
X2 = rmM®, a=0,..,4
satisfy

napXX? = X'X' — X°X° = —R*1

3

hyperboloid H* c R'#, covariant under SO(4, 1)

noncommutative [X?, X?] = irP M3 =: j©%
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covariant fuzzy spaces

H} = quantized CP"? = S? -bundle {#"" selfdual} over H*

\:z\ ’
¢

can be seen from oscillator construction:
4 bosonic oscillators  [¢ba, %] = 65

‘Hn = suitable irrep in Fock space
M = pyaby g = diag(1,1, -1, 1)
X2  =rpy%)p  cf. Hopf map

End(H,) = functions on H* = harmonics on S? ® functions on H*

local stabilizer acts on S> = harmonics = higher spin modes
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covariant fuzzy spaces

relation with fs:

constraints due to doubleton reps #:
Neer ©3OPC 4 (a+> b) =r? (2R2nab + (XaXb + XbXa))
EabcdeMab/\/lCd = 4nr—‘Xe
Gabcdr;'-/\/labxC = nrMge
(cf. Joseph-relations for so(4, 1))
here: part of simple matrix algebra End(H,) for so(4,2) (!) with
[Maba Xc] = i(7lach - Ukaa)

X2 = rmM® .. defines space H*
M3 = Lorv ) | local so(4, 1) generators, define fiber over H*

3 UVscaler ~ 1Ron S, (from NC)
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covariant fuzzy spaces

fuzzy "functions* on H3:

End(H,) ~  HS(H,) = / f(m) Im) (m| = @ c°

Ccpi2

CY = scalar functions on H*: B(X)

C' = selfdual 2-forms on H*:  ¢ap(X)6% = H

End(H,) = fields on H* taking values in hs = @ H}E’ > Qb Gashs

cf. Vasiliev

higher spin modes = would-be KK modes on S? |

matrix model defines higher spin gauge theory, truncated at n
M. Sperling, HS 1806.05907
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0 3,1
FRW space-time M,

H? is starting point for cosmological quantum space-times M3

@ exactly homogeneous & isotropic, Big Bounce
@ on-shell higher-spin fluctuations classified
@ spin 2 metric fluctuations — gravitons

@ nonlinear regime: torsion
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0 3,1
FRW space-time M,

open FRW universe from H?

HS 1710.11495
M3 = H4 projected to R'-3 via

Yt~ oyt CPY2 o HEC R L RS

induced metric has Minkowski signature!

algebraically: M?ﬂ generated by

Yt = X*, for p=0,1,2,3  (drop X*)
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0 3,1
FRW space-time M,

geometric properties:

yl
@ manifest SO(3,1) = foliation into space-like 3-hyperboloids H2
@ double-covered FRW space-time (k = —1)

ds? = dr? — a(r)?dx?,

a(t) <t ...asympt. coasting
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0 3,1
FRW space-time M,

functions on M31:

generators:

XM = rMHS ~ x* ... base space

TH = LMH ~ ti .. fiber / momenta
commutation relations / Poisson brackets

{t",x"} = sinh(n)n*”
{X;L7 XU} — guu

{t",t"} = — gt
constraints:
x,x" =—R2cosh®(n),  x*= Rsinh(n)
t,t = r—2 cosh?(n)
txt =0,

O = (XMt — XV) + bervoP x, by

t* ... generates space-like S? fiber
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0 3,1
FRW space-time M,

functions as higher-spin modes:
¢ € End(Hy) = 60 @ 60 & ... @ o™, o® e ¢

(selected by spin Casimir S2)
2 points of view:

@ functions on H:  full SO(4, 1) covariance
represent ¢(9) as

Oaae XX x99} Y
B = {xa, . {x®= g Y.}

@ functions on M3':  reduced SO(3, 1) covariance

¢(S) — ¢,1’1'““5(X)t#1 R
t,x* =0 = "space-like gauge” XM s =0

(— no ghosts!)

H. Steinacker Higher-spin gauge theory, matrix models , & the quantum structure of space-time



0 3,1
FRW space-time M,

SO(4,2) - invariant integral = trace, inner product

(6.) = TH(6" ') = / W g = / dV[6d']o
H4

cP12

[¢]o ... average over S? fiber
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0 3,1
FRW space-time M,

M3 solution in IKKT model:

background solution:

1
TH — — né
HM
satisfies e.o.m.

DT“:%T“, 0= [T [T ]

@ [0,8%] =0, &? ... spin Casimir, selects spin sectors C°

@ 0O ~ Og encodes eff. FRW metric dsZ = —dit? + a(t)>dx?
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Higher spin gauge theory

fluctuations & higher spin gauge theory

S[Y] = Tr([Y*, Y"][Y,“Y]+ 6 5 YY) =S[UYU
background: Y" = Tn ... space-time M3
add fluctuations yr =YY" 4 4#
A, ... hs-valued 1-form on M3 |

expand action to second oder in A,

_ 2 3 v
S[Y]:S[Y]+?TrA,,,((D S+ 2V YL - VLY )AL

R

2 g.f.
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Higher spin gauge theory

generic eigenmodes: M. Sperling, HS: 1901.03522, HS 1910.00839

can show (using so(4, 2)):

@ 4 generic eigenmodes for each ¢ = ¢() with ¢ = \¢:

DzAL’)[d)] = )‘Aﬂ)[ﬁb]a iG {+7 Rl n7 g}

Ag{;[gb] = (¥, D¢}

AD[4] = Ao = {y/L7D+¢}—

a [(b] -A,Sl.n)[(b] = D+{y;u¢}f
A9g] = {t, ¢} (pure gauge)

@ 4 towers of on-shell modes for each s > 0
D?PAD[g] =0  for 0¢p=0, ie{+,—,ng}

universal propagation 0O ~ Og

@ 2 spin 0 modes
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Higher spin gauge theory

inner product matrix
g0 = (A0, ADl),  Pje{+ - ng}
signature (+ + +-)

gauge-fixing {t*, A4,} =0

physical Hilbert space

Hpnys = {D?A =0, A gauge fixed}/ pure gauge}

results: HS 1910.00839
@ generically 2 physical modes for each 0¢(®) =0, s > 1
would-be massive, m*> = 0
@ no ghosts, no tachyons

@ same propagation for all modes
(even though Lorentz invar only partially manifest)
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nonlinear regime

nonlinear regime: frame and metric

any background Y¢ of the M.M. defines a bs - valued frame

| Eald]:={Ya, 0},

in coordinates: ¢ = ¢ (X))t

&=0,..3

Eslo] ~ E 00, Ei" :={Ya x"}

(in asymptotic regime: wavelength <« cosm.)
eff. metric from action:

~THYE 0V o] ~ [ ENGIEul) = [ VIGIG"0,00,0  (ns-valued)
where .
G,ul/ _ PizﬁdﬁEd#Eﬁ'V
can show: _
D¢ = _{Y()z’ {Ya7 ¢}} ~ DG¢

H. Steinacker

Higher-spin gauge theory, matrix models , & the quantum structure of space-time



nonlinear regime

gauge transformations and hs-valued diffeos

scalar fields:
6/\¢ = {A7 (b} - 5#8“(]5 = L€¢7 "= {/\7)(#}
{A,.} ... Hamiltonian VF on CP'2

push-forward by bundle projection

N,: TCP'? - TM®bs

defines hs-valued volume-preserving diffeo {A,.} on M

vector fields (framel):

onYe =A{N Ya}
(0nEs)d = {NA{Ya, 0t} —{Ya, {A 0}} = (LeEa)od

hence

|ONE" = LE.",  0AG" = LG
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nonlinear regime

hs-valued Weitzenbdck connection & torsion

natural connection:
VE; =0 (Weitzenbdck) = VG* =0
flat (no curvature) but hs - valued torsion:

T.s = T[Ea, Ejl = VaE; — V3Es — [Ea, Ej
can show:

ng# = {éd@'ayu}v éaB = —{Yd’ Yﬂ}

transforms covariantly under hs-valued diffeos,
no_ y7
oA T{_l 5= Le Td 5

torsion encodes the field strength of the NC gauge theory

)

cf. Langmann Szabo hep-th/0105094
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nonlinear regime

dynamical torsion and Ricci tensor

start with matrix eom in the form
{(Y5,8,5) = mY,

can recast as

VT, + 1,70, T, =mPp2G,,

HS arXiv:2002.02742
trace gives

v 1 o
pDGp + GM 8upau/) - 2m2 - éTV 14 T ap fyllp

Bianci identity:
{Z,, éag} + (cycl) =0
implies
0=VoT,," + T,e"T,\" + (eyel)
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nonlinear regime

Ricci tensor: can show:
1
g/w - R/U/ - EGHUR = 87TTHU

in vacuum, where (using eom for torsion)

87T = —3(T,% T,s" + 1,5 T,5") = K", K., +2p720,p0,p
+Gu (= 5TOCT,,, + §T0P T, — p~20p-0p— 3R72p72)
=0O(TT)
... effective e-m tensor due to torsion HS arXiv:2002.02742
note:

@ Riemanntensor R, ,; ~ 0T + TT,but R, ~ TT

hence in "weak gravity regime* in vacuum (on-shell)

@ expect significant contribution from torsion only for very large,
massive objects (galaxies?)
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nonlinear regime

cosmic background torsion

_H_1

T -
po a(t)2 (
where 7 ... time-like VF on FLRW

"
b, — JgT(,)

back-of-the-envelope estimate for e-m tensor due to torsion:

1

T~ ——
w o)

leads to ~ const. rotation velocities, as long as torsion above cosm.
background

... hot too bad as "dark matter” ?1?
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nonlinear regime

taking into account matter:

not yet understood, but conjecture:

g#y ~ 871_Tmattcr + {'7 '}

N2

(higher deriv. of matter)

remarks:
@ action S~ f@zy/a@a[a rather than Sgy = [T\ "T /" + ...
= different from teleparallel gravity, GR !
seems reasonably close in intermediate scales

quite different on cosmic scales

@ hints that Gy ~ ﬁ ™
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nonlinear regime

linearized metric fluctuation modes

hu Al oc { AL, Yo} + (1 < v)
off-shell: most general metric fluct.
@ A[¢P)] .5, ~ massive spin 2
o AMpO], AM[De®)] ... 2 scalars
eV, A, +V,A, ..3(!) pure gauge

physical (vacuum):

A~ [6(20)] ...2 graviton modes (massless !)

A~ [p21)] ...2 "vector“ modes, ~ pure gauge

A~ [6(3?)] ...”scalar* mode > (lin. Schwarzschild !)
Rﬁ;)[h[A(‘>]] ~0 on-shell (up to cosm. scales)
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nonlinear regime

linearized Schwarzschild solution

HS 1905.07255
Ricci-flat "scalar“ metric perturbation from A=) [D* D" ¢]

ds? = (G, — hy)dytdy” =—dt? + a(t)>dx? + ¢'(dt? + a(t)>dx?)

.
¢~ sieh(x) ainz =

~ lin. Schwarzschild (Vittie) solution on FRW, eff. mass  m(t) ~ %

v

linearized approx. valid only in quasi-static case 7 = —2,
otherwise large pure gauge contribution (cf. massive graviton)
(similar for vector modes)
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nonlinear regime

aspects of resulting gravity:

@ standard gravitons recovered, lin. Schwarzschild
@ expect =~ GR at intermediate scales (to be elaborated)

@ torsion:

@ is a physical, dynamical tensor field
@ governed by nonlin. PDE

e encodes NC field strength

e source for gravity (Einstein tensor)
e similar to dark matter ?

@ lin. metric modes contain extra (scalar & vector) modes,
not Ricci-flat (due to torsion?)
@ significant differences at cosmic scales,

reasonable (coasting) cosmology without any fine-tuning
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nonlinear regime

summary

@ matrix models:
natural framework for quantum theory of space-time & matter

@ 3+1D covariant quantum cosmological FRW space-time solution
— higher spin gauge theory,
similarities with Vasiliev theory
reg. BB, finite density of microstates
@ fluctuations fully consistent (no ghosts or tachyons)
all ingredients for gravity
@ Yang-Mills-like theory, good UV behavior (SUSY)

@ — emergent gravity rather than GR
new physics (torsion), possibly dark matter/energy...

... looks intriguing, needs to be elaborated
introductory review: HS arXiv:1911.03162
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nonlinear regime

relation with string theory:

@ solutions = branes (here: novel types of branes ...)

@ quantum effects — ,‘—8 interactions ~ IIB sugra in target space
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nonlinear regime

coupling to matter & eom:

for physical transverse traceless spin 2 modes h,,,[¢29)]:
Sol A o — / W00 — R72)(0n — 2r%) u [¢1*0)]

leads to eom

(0 —2R2)h,, ~ —(On —2r*) T,
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nonlinear regime

breaking SO(4,1) — SO(3,1) and sub-structure

consider
D¢ = —i[X*, 4], respects SO(3, 1)

acts on spin s modes as follows

D=div®¢ + t'vQ¢: c*—ctlec!
N——

D—¢ D+¢
decomposition into SO(3, 1) irreps on H® ¢ H*
c® =0 ool oy g lss)
D~ resp. Dt act as

D= : Csk) L cls=tk=1 Dt . clsk)  clstktt)
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