

Dynamical strategies for resource sharing in bacteria

Jordi Garcia Ojalvo

Departament de Ciències Experimentals i de la Salut

Universitat Pompeu Fabra, Barcelona

E-mail: jordi.g.ojalvo@upf.edu URL: http://dsb.upf.edu Twitter: @jgojalvo

Solvay Workshop "Dynamics of biological systems"

Dynamical strategies for resource sharing in bacteria

Rosa Martínez-Corral, Marçal Gabaldà, Marta Dies (UPF)

Jin Park, Michael Elowitz (Caltech)

James Locke (Cambridge)

Jintao Liu, Arthur Prindle, Gürol Süel (UC San Diego) Munehiro Asally (Warwick)

Solvay Workshop "Dynamics of biological systems"

Sidney Brenner UPF Honorary Doctorate, April 2014

"Mathematics is the art of the perfect, physics is the art of the optimal, and biology is the art of the satisfactory."

Optimal resource allocation in cellular sensing systems

Christopher C. Govern and Pieter Rein ten Wolde¹

PNAS

FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

Edited by Yuhai Tu, IBM T. J. Watson Research Center, Yorktown Heights, NY, and accepted by the Editorial Board October 22, 2014 (received for review June 23, 2014)

Living cells deploy many resources to sense their environments, including receptors, downstream signaling molecules, time, and fuel. However, it is not known which resources fundamentally limit the precision of sensing, like weak links in a chain, and which can compensate each other, leading to trade-offs between them. We present a theory for the optimal design of the large class of sensing systems in which a receptor drives a push-pull network. The theory identifies three classes of resources that are required for sensing: receptors and their integration time, readout molecules, and energy (fuel turnover). Each resource class sets a fundamental sensing limit, which means that the sensing precision is bounded by the limiting resource class and cannot be enhanced by increasing another class—the different classes cannot compensate each other. This result yields a previously unidentified design principle, namely that of optimal resource allocation in cellular sensing. It states that, in an optimally designed sensing system, each class of resources is equally limiting so that no resource is wasted. We apply our theory to what is arguably the best-characterized sensing system in biology, the chemotaxis network of Escherichia coli. Our analysis reveals that this system obeys the principle of optimal resource allocation, indicating a selective pressure for the efficient design of cellular sensing systems.

cell signaling | thermodynamics | design principles | chemotaxis | information transmission

Evolution, Barton et al, CSHL Press, 2007

Optimal resource allocation in cellular sensing systems

Christopher C. Govern and Pieter Rein ten Wolde¹

SANG

FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

Edited by Yuhai Tu, IBM T. J. Watson Research Center, Yorktown Heights, NY, and accepted by the Editorial Board October 22, 2014 (received for review June 23, 2014)

Living cells deploy many resources to sense their environments, including receptors, downstream signaling molecules, time, and fuel. However, it is not known which resources fundamentally

in an optimally designed sensing system, each class of resources is equally limiting so that no resource is wasted

mental sensing limit, which means that the sensing precision is pounded by the limiting resource class and cannot be enhanced by increasing another class—the different classes cannot compensate each other. This result yields a previously unidentified design principle, namely that of optimal resource allocation in cellular sensing. It states that, in an optimally designed sensing system, each class of resources is equally limiting so that no resource is wasted. We apply our theory to what is arguably the best-characterized sensing system in biology, the chemotaxis network of *Escherichia coli*. Our analysis reveals that this system obeys the principle of optimal resource allocation, indicating a selective pressure for the efficient design of cellular sensing systems.

cell signaling | thermodynamics | design principles | chemotaxis | information transmission

Evolution, Barton et al, CSHL Press, 2007

Limiting resources must be shared

mRNAs share ribosomes

proteins share proteasomes

ligands share receptors receptors share ligands

How do cells share limited resources?

Sharing in concentration

Sharing RNAP by alternative sigma factors in bacteria

σ^{B} activity pulses in response to energy stress

60 µg/ml mycophenolic acid

[Locke et al, Science, 2011]

Other alternative sigma factors pulse

Other alternative sigma factors pulse

40 µg/ml mycophenolic acid in minimal medium

Sigma factors compete for available RNA polymerase

Mathematical model of multiple sigma factors sharing RNAp

Only one sigma factor is active most of the time

concentration-share

time-share

Pairwise cross-correlation of sigma factor activities

Long-term sigma-factor dynamics

Anticorrelated dynamics of sigma factor pairs

Anticorrelated dynamics of sigma factor pairs

Concentration sharing

 state of an individual cell

Bacterial biofilm (Bacillus subtilis)

MUNEHIRO ASALLY

A microfluidics chip for 2D biofilm monitoring

Gürol Süel

Nutrient Access

A metabolic negative feedback

Growth-rate oscillations

Stress oscillations

Mathematical metabolic model

Marçal Gabaldà

ammonium
$$\begin{aligned} \frac{dA}{dt} &= \alpha G_i H_i - \delta_A A(r_i + r_p) \\ \\ \text{glutamate} \end{aligned} \begin{vmatrix} \frac{dG_i}{dt} &= D(G_p - G_i) - \alpha G_i H_i - \delta_G G_i r_i \\ \frac{dG_p}{dt} &= D(G_i - G_p) + D_E(G_E - G_p) - \delta_G G_p r_p \\ \\ \\ \text{GDH} \end{aligned} \begin{vmatrix} \frac{dH_i}{dt} &= \beta_H \frac{G_i^n}{K_H^n + G_i^n} - \gamma_H H_i \\ \\ \\ \text{biomass} \end{vmatrix} \begin{vmatrix} \frac{dr_i}{dt} &= \beta_r A G_i - \gamma_r r_i \\ \frac{dr_p}{dt} &= \beta_r A G_p - \gamma_r r_p \end{aligned}$$

Liu et al, Nature 523, 550-554 (2015)

Mathematical metabolic model

Liu et al, Nature 523, 550-554 (2015)

A delay-differential model

Rosa M.Corral

Oscillation and Chaos in Physiological Control Systems

Abstract. First-order nonlinear differential-delay equations describing physiological control systems are studied. The equations display a broad diversity of dynamical behavior including limit cycle oscillations, with a variety of wave forms, and apparently aperiodic or "chaotic" solutions. These results are discussed in relation to dynamical respiratory and hematopoietic diseases.

MICHAEL C. MACKEY LEON GLASS Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6

$$\frac{dP}{dt} = \frac{\beta_0 \theta^n P_{\tau}}{\theta^n + P_{\tau}^n} - \gamma P$$

A delay-differential model

$$\frac{dx}{dt} = f(x(t-\tau)) - \delta x \qquad \begin{array}{l} \text{stress} \\ \text{dynamics} \end{array}$$

$$f(x) = C - \frac{\alpha x}{1 - (x/\beta)^2 + (x/\gamma)^4}$$

stress production

The fixed point becomes unstable for strong feedback

fixed point:

$$C - \frac{\alpha x_s}{1 - x_s^2 + x_s^4} - \delta x_s = 0$$

characteristic equation:

$$J_{\tau} \exp(-\lambda \tau) + J_0 - \lambda = 0$$
$$\lambda \equiv \mu + i\nu$$

instability condition:

$$\begin{split} \mu &= 0 \\ \nu &= \sqrt{J_\tau^2 - J_0^2} \approx \sqrt{\alpha^2 - \delta^2} \\ & \Longrightarrow \alpha > \delta \\ & \text{feedback} \\ & \text{strength} \end{split}$$

Subcritical Hopf bifurcation in dynamical systems described by a scalar nonlinear delay differential equation

Laurent Larger^{*} and Jean-Pierre Goedgebuer^{*} Laboratoire d'Optique P. M. Duffieux, CNRS UMR No. 6603, Université de Franche-Comté, Route de Gray, 25030 Besançon Cedex, France

Thomas Erneux

Groupe d'Optique Non Linéaire Théorique, Université Libre de Bruxelles, Campus Plaine, Case Postale 231, 1050 Bruxelles, Belgium

The system exhibits a Hopf bifurcation

$$\frac{1}{\delta} \frac{dx}{dt} = \tilde{f}(x(t-\tau)) - x(t) \stackrel{\text{large }\delta}{\Longrightarrow} x_{n+1} = \tilde{f}(x_n)$$

$$\widetilde{f}(x) = \widetilde{C} - \frac{\widetilde{\alpha}x}{1 - x^2 + x^4}, \quad \text{with } \widetilde{C} = \frac{C}{\delta}, \ \widetilde{\alpha} = \frac{\alpha}{\delta}$$

Hopf bifurcation condition:

 \widetilde{f}_x

$$\widetilde{f}_x\left(\widetilde{\alpha}_c, \widetilde{x}_s(\widetilde{\alpha}_c)\right) = -1$$

In our case:

$$(\widetilde{\alpha}_c,\widetilde{x}_s)=-\widetilde{\alpha}_c=-1$$
 Hopf bifurcation

supercritical Hopf bifurcation

$$\frac{1}{\delta} \frac{dx}{dt} = \tilde{f}(x(t-\tau)) - x(t) \stackrel{\text{large } \delta}{\Longrightarrow} x_{n+1} = \tilde{f}(x_n)$$
Limit cycle:

$$x_n = \tilde{f}(\tilde{f}(x_n)) \implies x_n = \tilde{x}_s + \sqrt{-a\Lambda/b}$$
with $a = -\tilde{f}_{xx}\tilde{f}_{\alpha} - 2\tilde{f}_{x\alpha}$
 $b = -\frac{1}{2}\tilde{f}_{xx}^2 - \frac{1}{3}\tilde{f}_{xxx}$
 $\Lambda = \tilde{\alpha} - \tilde{\alpha}_c$

The Hopf bifurcation is subcritical

- Oscillations start when the biofilm reaches a critical size
- Oscillations can be triggered before the critical size by perturbing the system

feedback delay (τ)

1. Oscillations start when the biofilm reaches a critical size

- Oscillations start when the biofilm reaches a critical size
- Oscillations can be triggered before the critical size by perturbing the system

feedback delay (τ)

2. Oscillations can be triggered before the critical size

As the biofilm size increases, it's easier to trigger oscillations

Experimental validation

Experimental validation

Stress oscillations

ThT is positively charged and cells are negatively polarized

signal is **high** when cell is hyperpolarized)

cytoplasm

Comparison with a standard voltage-sensing dye

ThT oscillations reflect membrane potential oscillations

Membrane potential modulates nutrient uptake

glutamate uptake is increased if the cell hyperpolarizes

Potassium is involved in the membrane potential oscillations

Potassium is concentrated inside the cell

Potassium is released via a stress-gated ion channel

Potassium is released via a stress-gated ion channel

Potassium is released via a stress-gated ion channel

Potassium release hyperpolarizes the cell

Hyperpolarization allows glutamate uptake again

K-channel model of bacterial electrophysiology

Hodgkin-Huxley model of

neuronal electrophysiology

Comparison with experiments

Prindle et al, Nature 527, 59 (2015)

A bucket brigade of potassium

Active propagation of potassium

Prindle et al, Nature 527, 59 (2015)

Propagating dynamics of the extracellular potassium

A combined metabolic-electrochemical model

Can electrical signaling couple entire populations?

Two biofilms coexisting within the same chamber

Synchronization via electrical coupling

WT, 1x glutamate

But biofilms are also coupled through nutrient sharing

Oscillator frequency and glutamate consumption

Communication and competition between coupled biofilms

Validation: competition promotes anti-phase dynamics

Summary of perturbations

Experimental validation

Two different sharing strategies

Effect of timeshare on average growth: experiments

Phase difference accounts for all growth results

- Bacterial biofilms undergo growth and stress
 oscillations driven by delayed negative feedback
- The transition to oscillations is discontinuous
- Stress is communicated via electrical signaling
- Electrical signals extend outside the population
- Synchronization between biofilms mediates time-sharing of limited resources

Marta Dies (UPF, Lehigh) Sahand Hormoz (Harvard) Jin Park, Michael Elowitz (Caltech) James Locke (Sainsbury Lab Cambridge)

Rosa Martínez-Corral, Marçal Gabaldà (UPF) Jintao Liu, Arthur Prindle, Gürol Süel (UCSD) Munehiro Asally (WISB)

INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS

MUNEHIRO ASALLY