
Solvay Workshop
05/05/2018

Calcium spiking as a mediator 
between metabolism and cell fate 

– A life and death approach –

Alexander Skupin
Integrative Cell Signalling Group





What is Life?
Ø Complex self-organization
Ø “order from disorder”
Ø Robust information conservation and replication
Ø … the coolest thing on the planet

Heat Q and T=5000K
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Slong = ΔScow + Sshort ΔScow < 0

Introduction entropic enzymes Conclusion More ...

Why exponential equilibrium distributions?
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⇥ there is glucosyl transfer! (q = 1)

chemical reaction minimize Gibb’s energy: G = H � TS
for �H = 0 ⇥ maximal entropy: S = �kB
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Relies on non-equilibrium:



What is Life?
Ø Complex self-organization
Ø “order from disorder”
Ø Robust information conservation and replication
Ø … the coolest thing on the planet

Heat Q and T=5000K

Q and T=300K

ΔS = δQ
5000K

−
δQ
300K

< 0

Order needs
entropy export: 

Slong < Sshort
Slong = ΔScow + Sshort ΔScow < 0

Introduction entropic enzymes Conclusion More ...

Why exponential equilibrium distributions?

 0

 10

 20

 30

 40

 1  2  3  4  5  6  7  8  9  10 11 12

m
ol

ar
 fr

ac
tio

n 
(%

)

degree of polymerization  

t ! "
0G3

 0

 50

 100

 2  4  6  8

 

 

t = 0

 0

 10

 20

 30

 40

 1  2  3  4  5  6  7  8  9  10 11 12

 

degree of polymerization  

t ! "
0G4

 0

 50

 100

 2  4  6  8

 

 

t = 0

 0

 10

 20

 30

 40

 1  2  3  4  5  6  7  8  9  10 11 12

 

degree of polymerization  

t ! "
0G5

 0

 50

 100

 2  4  6  8

 
 

t = 0

⇥ there is glucosyl transfer! (q = 1)

chemical reaction minimize Gibb’s energy: G = H � TS
for �H = 0 ⇥ maximal entropy: S = �kB

�
xk ln xk

with DPE constraints:
⇥

k

xk = 1 &
⇥

k

k · xk = DPini � 1

using Lagrangian: L(xk ; �, ⇥) = �
P

k xk ln xk � �
`P

k xk � 1
´
� ⇥

`P
k k · xk � DPini + 1

´

leads to

xk =
e��k

Z
Z =

⇥

k

e��k

Relies on non-equilibrium:Only abstract framework? What’s about real (molecular) life?

à Disproportionating enzyms (DPE) use entropy for glycogen metabolism!

Stochastic simulations and time-resolved
experiments reveal different time scales of DPE1

According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor

utilized as a glucosyl donor. These findings established the
idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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 S = 4 ln(4) – 3 ln(3) = 2.25
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Generation of polydisperse mixtures by CAZymes: a-1,4-glucans, linear polysaccharides consisting of glucose residues that are linked by a-1,4-glucosidic bonds,
are important intermediates in carbohydrate metabolism. Any such glucan can be characterized by its number of residues or degree of polymerization (DP).
Glucanotransferases, such as DPE1, transfer glucosyl residues between a-1,4-glucans of any DP. Panel A illustrates the action of DPE1 for the pure initial substrate
maltotetraose (DPini¼4). All possible products of the first reaction step and a representative second step with a single pair of substrates are shown, indicating the
strong diversification of the glucan pool generated by the huge number of possible reactions. Every transfer reaction conserves the number of molecules present in
the reaction mixture as well as the total number of glucose residues distributed in the polydisperse pool. As a consequence, the average DP maintains the constant
value DPini, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships

X1

DP¼1

xDP ¼ 1 and
X1

DP¼1

DP " xDP¼ DPini ð1Þ

hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S ¼ %R
X1

DP¼1

xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1

! "
ð4Þ

demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1

Seq

R
¼ DPini lnðDPiniÞ % ðDPini % 1Þ lnðDPini % 1Þ: ð5Þ

The characteristic exponent is a generalization of the equilibrium constant: The equilibrium constant Keq for the single reactions can be calculated from the
equilibrium concentrations (3), resulting in Keq¼(xn%qxm þ q)/(xnxm)¼1 for every individual reaction. The functional form of b, given by Equation (4), provides
additional information by revealing the dependence on the initial conditions. The exponent b is predicted to decrease when the average DPini increases. Apparently,
b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.

Box 1 Enzymatic reactions on polydisperse substrates

CAZymes exemplify entropic principles in metabolism
Ö Kartal et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 3
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S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1

! "
ð4Þ

demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1

Seq

R
¼ DPini lnðDPiniÞ % ðDPini % 1Þ lnðDPini % 1Þ: ð5Þ

The characteristic exponent is a generalization of the equilibrium constant: The equilibrium constant Keq for the single reactions can be calculated from the
equilibrium concentrations (3), resulting in Keq¼(xn%qxm þ q)/(xnxm)¼1 for every individual reaction. The functional form of b, given by Equation (4), provides
additional information by revealing the dependence on the initial conditions. The exponent b is predicted to decrease when the average DPini increases. Apparently,
b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.
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bond enthalpy since it replaces a glucosidic by an ester bond.
The resulting equilibrium distribution for different initial
conditions, predicted by minimizing the Gibbs free energy, is
described by an implicit equation, f ðb;DPini;T;DgÞ ¼ 0, which
additionally depends on the difference in the enthalpies
of bond formation, Dg (see Supplementary Equation S68 in
Supplementary information). The predictions are experimen-
tally confirmed by in vitro experiments (Figure 3).

Exothermic reactions shift equilibrium
distributions

As a prototype of a multi-enzyme system, we consider the
action of DPE1 in the presence of hexokinase (HK, EC 2.7.1.1),
which phosphorylates glucose at the expense of ATP to

produce glucose-6-phosphate and ADP. In this direction, the
reaction is exothermic and its equilibrium is experimentally
controlled by the ATP level. Since the HK reaction diminishes
the glucose pool accessible to DPE1 but keeps the number of
interglucose bonds constant, the equilibrium pattern of the
glucans is shifted toward larger DPs (Figure 4; Supplementary
Figure S5). This result concurs with earlier findings (Walker
and Whelan, 1959; Kakefuda and Duke, 1989) showing the
capability of DPE1 to synthesize amylose, which now
experience a quantitative theoretical explanation. The pre-
dicted exponential distribution of the equilibrium pattern is
again accurately described by the parameter b. Here,

gf ¼ u $ Dg and

S ¼ % R u lnðuÞ þ a2 lnða2Þ þ a3 lnða3Þ þ
X1

DP¼1

xDPln xDPð Þ
 !

;

where u is the molar fraction of glucose-6-phosphate,
a2 and a3 are the molar fractions of ADP and ATP, respec-
tively, and Dg is the molar Gibbs energy of the HK reaction.
Minimizing the Gibbs energy results in an implicit equation
for b ¼ bðDPini; ATP; T; DgÞ, which now additionally depends
on the applied ATP level and the equilibrium constant of
HK (see Figure 4B and Supplementary Equation S84 in
Supplementary information).

Physiological significance of entropy and
polydisperse systems

The proposed description of CAZymes provides a novel way
to characterize enzymes acting on polydisperse substrates,
resolving some of the discrepancies in previous studies on
DPEs. Because mixing entropy has a pivotal role in these
systems we call the associated enzymes entropic. This is not
to be confused with the supposed entropic effect on enzymatic
rates associated with reducing the molecular degrees of freedom
upon substrate binding (Jencks, 1997; Warshel et al, 2006). In
the following, we discuss how randomization of the metabolite
pool and the associated entropy increase are used constructively
for establishing important physiological functions.

The thermodynamic analysis sheds new light on several
aspects of glycan metabolism in plants (Critchley et al, 2001;
Stitt et al, 2010; Zeeman et al, 2010). When the plastidial HK or
the glucose exporter is active, glucose molecules are removed
from the polydisperse pool of a-1,4-glucans and are therefore
no longer available as acceptor substrates for the DPE1-
mediated transfer reactions. Our results (Figure 4) suggest that
under these conditions DPE1 mediates an energy-independent
elongation of glucans and thereby provides substrates for the
plastidic a-glucan phosphorylase or even supports starch
synthesis directly. The latter conjecture is consistent with the
phenotype of a C. reinhardtii mutant lacking a functional DPE1
which displays aberrant starch synthesis (Colleoni et al, 1999).

Entropy-induced robustness

Stochastic simulations allow us to investigate the role of
enzymes generating mixing entropy in non-equilibrium open
systems. Here, we want to exemplify this for carbon meta-
bolism in plants.
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Figure 2 Low binding affinity for maltose induces a quasi equilibrium
distribution. (A) The experimental time course (dots) shows the generation of
the different glucans for DPE1 incubated with maltotriose, demonstrating that
maltose is produced on a slower time scale compared with the other glucans.
Stochastic simulations (solid lines) assuming an 800-fold reduced probability for
the transfer of single glucosyl residues compared with maltosyl and maltotriosyl
residues accurately reproduce the data. (B) The increase in entropy exhibits two
time scales. In the first phase, the entropy rapidly increases toward a quasi
equilibrium state without detectable maltose. The dotted line at Sqeq indicates
the predicted equilibrium entropy for a constrained system not capable of
producing maltose (see Supplementary information). The second phase is
characterized by a much slower relaxation towards the real equilibrium Seq

(dashed line). The corresponding temporal DP distributions are shown in
Supplementary Movie. (All error bars describe standard deviation of three
independent experiments.). Source data is available for this figure in the
Supplementary information.
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Stochastic simulations and time-resolved
experiments reveal different time scales of DPE1

According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor

utilized as a glucosyl donor. These findings established the
idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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Generation of polydisperse mixtures by CAZymes: a-1,4-glucans, linear polysaccharides consisting of glucose residues that are linked by a-1,4-glucosidic bonds,
are important intermediates in carbohydrate metabolism. Any such glucan can be characterized by its number of residues or degree of polymerization (DP).
Glucanotransferases, such as DPE1, transfer glucosyl residues between a-1,4-glucans of any DP. Panel A illustrates the action of DPE1 for the pure initial substrate
maltotetraose (DPini¼4). All possible products of the first reaction step and a representative second step with a single pair of substrates are shown, indicating the
strong diversification of the glucan pool generated by the huge number of possible reactions. Every transfer reaction conserves the number of molecules present in
the reaction mixture as well as the total number of glucose residues distributed in the polydisperse pool. As a consequence, the average DP maintains the constant
value DPini, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships

X1

DP¼1

xDP ¼ 1 and
X1

DP¼1

DP " xDP¼ DPini ð1Þ

hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S ¼ %R
X1

DP¼1

xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1

! "
ð4Þ

demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1
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The characteristic exponent is a generalization of the equilibrium constant: The equilibrium constant Keq for the single reactions can be calculated from the
equilibrium concentrations (3), resulting in Keq¼(xn%qxm þ q)/(xnxm)¼1 for every individual reaction. The functional form of b, given by Equation (4), provides
additional information by revealing the dependence on the initial conditions. The exponent b is predicted to decrease when the average DPini increases. Apparently,
b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.
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(Rao, J Chem Phys 2015)
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Relies on non-equilibrium:Only abstract framework? What’s about real (molecular) life?

à Disproportionating enzyms (DPE) use entropy for glycogen metabolism!

Stochastic simulations and time-resolved
experiments reveal different time scales of DPE1

According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor

utilized as a glucosyl donor. These findings established the
idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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Generation of polydisperse mixtures by CAZymes: a-1,4-glucans, linear polysaccharides consisting of glucose residues that are linked by a-1,4-glucosidic bonds,
are important intermediates in carbohydrate metabolism. Any such glucan can be characterized by its number of residues or degree of polymerization (DP).
Glucanotransferases, such as DPE1, transfer glucosyl residues between a-1,4-glucans of any DP. Panel A illustrates the action of DPE1 for the pure initial substrate
maltotetraose (DPini¼4). All possible products of the first reaction step and a representative second step with a single pair of substrates are shown, indicating the
strong diversification of the glucan pool generated by the huge number of possible reactions. Every transfer reaction conserves the number of molecules present in
the reaction mixture as well as the total number of glucose residues distributed in the polydisperse pool. As a consequence, the average DP maintains the constant
value DPini, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships

X1

DP¼1

xDP ¼ 1 and
X1

DP¼1

DP " xDP¼ DPini ð1Þ

hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S ¼ %R
X1

DP¼1

xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1

! "
ð4Þ

demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1
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The characteristic exponent is a generalization of the equilibrium constant: The equilibrium constant Keq for the single reactions can be calculated from the
equilibrium concentrations (3), resulting in Keq¼(xn%qxm þ q)/(xnxm)¼1 for every individual reaction. The functional form of b, given by Equation (4), provides
additional information by revealing the dependence on the initial conditions. The exponent b is predicted to decrease when the average DPini increases. Apparently,
b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.
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Stochastic simulations and time-resolved
experiments reveal different time scales of DPE1

According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor

utilized as a glucosyl donor. These findings established the
idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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Generation of polydisperse mixtures by CAZymes: a-1,4-glucans, linear polysaccharides consisting of glucose residues that are linked by a-1,4-glucosidic bonds,
are important intermediates in carbohydrate metabolism. Any such glucan can be characterized by its number of residues or degree of polymerization (DP).
Glucanotransferases, such as DPE1, transfer glucosyl residues between a-1,4-glucans of any DP. Panel A illustrates the action of DPE1 for the pure initial substrate
maltotetraose (DPini¼4). All possible products of the first reaction step and a representative second step with a single pair of substrates are shown, indicating the
strong diversification of the glucan pool generated by the huge number of possible reactions. Every transfer reaction conserves the number of molecules present in
the reaction mixture as well as the total number of glucose residues distributed in the polydisperse pool. As a consequence, the average DP maintains the constant
value DPini, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships

X1

DP¼1

xDP ¼ 1 and
X1

DP¼1

DP " xDP¼ DPini ð1Þ

hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S ¼ %R
X1

DP¼1

xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1

! "
ð4Þ

demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1
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The characteristic exponent is a generalization of the equilibrium constant: The equilibrium constant Keq for the single reactions can be calculated from the
equilibrium concentrations (3), resulting in Keq¼(xn%qxm þ q)/(xnxm)¼1 for every individual reaction. The functional form of b, given by Equation (4), provides
additional information by revealing the dependence on the initial conditions. The exponent b is predicted to decrease when the average DPini increases. Apparently,
b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.
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Sini < Send
(Kartal, MSB 2011)

Stochastic simulations and time-resolved
experiments reveal different time scales of DPE1

According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor

utilized as a glucosyl donor. These findings established the
idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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Generation of polydisperse mixtures by CAZymes: a-1,4-glucans, linear polysaccharides consisting of glucose residues that are linked by a-1,4-glucosidic bonds,
are important intermediates in carbohydrate metabolism. Any such glucan can be characterized by its number of residues or degree of polymerization (DP).
Glucanotransferases, such as DPE1, transfer glucosyl residues between a-1,4-glucans of any DP. Panel A illustrates the action of DPE1 for the pure initial substrate
maltotetraose (DPini¼4). All possible products of the first reaction step and a representative second step with a single pair of substrates are shown, indicating the
strong diversification of the glucan pool generated by the huge number of possible reactions. Every transfer reaction conserves the number of molecules present in
the reaction mixture as well as the total number of glucose residues distributed in the polydisperse pool. As a consequence, the average DP maintains the constant
value DPini, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships

X1

DP¼1

xDP ¼ 1 and
X1

DP¼1

DP " xDP¼ DPini ð1Þ

hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S ¼ %R
X1

DP¼1

xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form
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DPini

DPini % 1
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demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1
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additional information by revealing the dependence on the initial conditions. The exponent b is predicted to decrease when the average DPini increases. Apparently,
b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.
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Ö Kartal et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 3

Stochastic simulations and time-resolved
experiments reveal different time scales of DPE1

According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor

utilized as a glucosyl donor. These findings established the
idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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time the relationships
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hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as
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xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1
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demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1
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According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor
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idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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the reaction mixture as well as the total number of glucose residues distributed in the polydisperse pool. As a consequence, the average DP maintains the constant
value DPini, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships
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hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S ¼ %R
X1

DP¼1

xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1
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demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1
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b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
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with

bond enthalpy since it replaces a glucosidic by an ester bond.
The resulting equilibrium distribution for different initial
conditions, predicted by minimizing the Gibbs free energy, is
described by an implicit equation, f ðb;DPini;T;DgÞ ¼ 0, which
additionally depends on the difference in the enthalpies
of bond formation, Dg (see Supplementary Equation S68 in
Supplementary information). The predictions are experimen-
tally confirmed by in vitro experiments (Figure 3).

Exothermic reactions shift equilibrium
distributions

As a prototype of a multi-enzyme system, we consider the
action of DPE1 in the presence of hexokinase (HK, EC 2.7.1.1),
which phosphorylates glucose at the expense of ATP to

produce glucose-6-phosphate and ADP. In this direction, the
reaction is exothermic and its equilibrium is experimentally
controlled by the ATP level. Since the HK reaction diminishes
the glucose pool accessible to DPE1 but keeps the number of
interglucose bonds constant, the equilibrium pattern of the
glucans is shifted toward larger DPs (Figure 4; Supplementary
Figure S5). This result concurs with earlier findings (Walker
and Whelan, 1959; Kakefuda and Duke, 1989) showing the
capability of DPE1 to synthesize amylose, which now
experience a quantitative theoretical explanation. The pre-
dicted exponential distribution of the equilibrium pattern is
again accurately described by the parameter b. Here,

gf ¼ u $ Dg and

S ¼ % R u lnðuÞ þ a2 lnða2Þ þ a3 lnða3Þ þ
X1

DP¼1

xDPln xDPð Þ
 !

;

where u is the molar fraction of glucose-6-phosphate,
a2 and a3 are the molar fractions of ADP and ATP, respec-
tively, and Dg is the molar Gibbs energy of the HK reaction.
Minimizing the Gibbs energy results in an implicit equation
for b ¼ bðDPini; ATP; T; DgÞ, which now additionally depends
on the applied ATP level and the equilibrium constant of
HK (see Figure 4B and Supplementary Equation S84 in
Supplementary information).

Physiological significance of entropy and
polydisperse systems

The proposed description of CAZymes provides a novel way
to characterize enzymes acting on polydisperse substrates,
resolving some of the discrepancies in previous studies on
DPEs. Because mixing entropy has a pivotal role in these
systems we call the associated enzymes entropic. This is not
to be confused with the supposed entropic effect on enzymatic
rates associated with reducing the molecular degrees of freedom
upon substrate binding (Jencks, 1997; Warshel et al, 2006). In
the following, we discuss how randomization of the metabolite
pool and the associated entropy increase are used constructively
for establishing important physiological functions.

The thermodynamic analysis sheds new light on several
aspects of glycan metabolism in plants (Critchley et al, 2001;
Stitt et al, 2010; Zeeman et al, 2010). When the plastidial HK or
the glucose exporter is active, glucose molecules are removed
from the polydisperse pool of a-1,4-glucans and are therefore
no longer available as acceptor substrates for the DPE1-
mediated transfer reactions. Our results (Figure 4) suggest that
under these conditions DPE1 mediates an energy-independent
elongation of glucans and thereby provides substrates for the
plastidic a-glucan phosphorylase or even supports starch
synthesis directly. The latter conjecture is consistent with the
phenotype of a C. reinhardtii mutant lacking a functional DPE1
which displays aberrant starch synthesis (Colleoni et al, 1999).

Entropy-induced robustness

Stochastic simulations allow us to investigate the role of
enzymes generating mixing entropy in non-equilibrium open
systems. Here, we want to exemplify this for carbon meta-
bolism in plants.
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Figure 2 Low binding affinity for maltose induces a quasi equilibrium
distribution. (A) The experimental time course (dots) shows the generation of
the different glucans for DPE1 incubated with maltotriose, demonstrating that
maltose is produced on a slower time scale compared with the other glucans.
Stochastic simulations (solid lines) assuming an 800-fold reduced probability for
the transfer of single glucosyl residues compared with maltosyl and maltotriosyl
residues accurately reproduce the data. (B) The increase in entropy exhibits two
time scales. In the first phase, the entropy rapidly increases toward a quasi
equilibrium state without detectable maltose. The dotted line at Sqeq indicates
the predicted equilibrium entropy for a constrained system not capable of
producing maltose (see Supplementary information). The second phase is
characterized by a much slower relaxation towards the real equilibrium Seq

(dashed line). The corresponding temporal DP distributions are shown in
Supplementary Movie. (All error bars describe standard deviation of three
independent experiments.). Source data is available for this figure in the
Supplementary information.
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Stochastic simulations and time-resolved
experiments reveal different time scales of DPE1

According to previous reports on DPE1 from white potato
(Jones and Whelan, 1969), maltose is neither formed nor

utilized as a glucosyl donor. These findings established the
idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other
species, such as Arabidopsis thaliana (Lin and Preiss, 1988)
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value DPini, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships

X1

DP¼1

xDP ¼ 1 and
X1

DP¼1

DP " xDP¼ DPini ð1Þ

hold, where xDP describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G¼H%TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xDP can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xDP} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S ¼ %R
X1

DP¼1

xDP ln xDPð Þ; ð2Þ

where R is the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, DH¼0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At t¼0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x4¼1 and xDP¼0 for DPa4, resulting in
S¼0. For t-N, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xDP, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

xDP ¼ ðeb % 1Þ " e%b"DP ð3Þ

with the characteristic exponent b. For DPE1, the exponent assumes the particularly simple form

b ¼ ln
DPini

DPini % 1

! "
ð4Þ

demonstrating how b fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for b differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for b in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1
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The characteristic exponent is a generalization of the equilibrium constant: The equilibrium constant Keq for the single reactions can be calculated from the
equilibrium concentrations (3), resulting in Keq¼(xn%qxm þ q)/(xnxm)¼1 for every individual reaction. The functional form of b, given by Equation (4), provides
additional information by revealing the dependence on the initial conditions. The exponent b is predicted to decrease when the average DPini increases. Apparently,
b serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.
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(Rao, J Chem Phys 2015)

Life: smart way to use energy 
for information processing  
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How Does (Multicellular) Life Work?

"Nothing in Biology Makes Sense  
Except in the Light of Evolution" 

(Theodosius Dobzhansky 1973)

"Nothing in Biology Makes Sense 
Except in the Light of Cellular   
Heterogeneity Dynamics " 

Evolution := mutation × selection
à heterogeneity × dynamics 

noise

regulation

Integrative ce
ll 

signaling

Life    := noise × regulation
à energy × information processing

genoty
pe ß

à
phenoty

pe



Challenge of Life: 
balance energy and information processing

à using energy for gene-environment adaptation away from equilibrium



The bright and dark side of Ca2+

Life and death signal Complexity
involved in:

- Fertilization
- Transcription
- Differentiation
- Cell Cycle
- Motility
- Mitochondrial

activity
- …
- Apoptosis

(Weber 2012)

- What is triggering
what?

- Who comes first?
- How to dissect

complex signaling 
mechanisms?



Complex development of Parkinson’s Disease
Genotype

Parkin, PINK, DJ-1,
a-syn., LRRK2, …

Clinical 
Phenotype

tremor, rigidity, … 

Environment/Lifestyle
Toxins accumulation, drug 
consume, food, exercise, … 

Physiological 
Phenotype

à death of dopaminergic
in substancia nigra

à link to mitochondrial
dysfunction 

neuron dynamics Ca2+ oscillations metabolic evolution Conclusion

Main Brain Parts

Hindbrain
vegetative nervous
system
signals from PNS

Telencephalon
Cortex Cerebri
– state memory –
(sensomoto. Cortex (SC), V1,

Association Cortex, ...)

projection loops
like Basal Ganglia (BG)

Diencephalon
Thalamus
connects SC via BG with PNS

Hypothalamus
controls distribution of hormones

synchronous
neuronal activity

thalamus



Complex development of Parkinson’s Disease
Genotype

Parkin, PINK, DJ-1,
a-syn., LRRK2, …

Clinical 
Phenotype

tremor, rigidity, … 

Environment/Lifestyle
Toxins accumulation, drug 
consume, food, exercise, … 

COMPLEX DISEASE
Energy Deficit & 

Cell Death

Physiological 
Phenotype

à death of dopaminergic
in substancia nigra

à link to mitochondrial
dysfunction 

- Ca2+ as a mediator
- Surmeier hypothesis 

on selective vulnerability

- Brain energy metabolism as 
mechanism in neurodegeneration



Ca2+ in physiology Experiment Modeling Summary Appendix

Modeling strategy: Variety of Multiscale techniques
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cellular dynamics

linearized passive bulk dynamics solved by
multicomponent Green’s function

C(r, t) =
∑Ncluster

i R(r, ri )
∫ t

0 Ji (τ) dτ

cluster source terms

quasi steady state approximation for flux

Ji(t) = f (Nopen) ×
(

Ē − Ca2+
)

individual IP3R dynamics

subunit as Markov chain by DK model

⇒ parallel GCA couples cellular and channel
dynamics by Gillespie algorithm

Hierarchical implications of Ca2+ signals

(Skupin 2010; Falcke 2018)

[C
a2

+ ]
cy

t

Time
(Berridge 1973)

parameters !J0=1 !M /s, J1=7.3 !M /s, "=0.3, k=10 s−1,
kf =1 s−1, VM2

=65 !M /s, VM3
=500 !M /s, K2=1 !M,

KR=2 !M, KA=0.9 !M, n=m=2, and p=4". On the one
hand, Eq. !1" exhibits a good agreement with experiments on
a global scale and demonstrates the principles of cell signal-
ing: cooperativeness and feedback regulation. But on the
other hand, it requires store depletion during each oscillatory
period, which could not be justified by more detailed experi-
ments.

The introduced noise allows for Ca2+ spikes also in the
nonoscillatory regime. A systematic analysis is shown in Fig.
10!b", where the CV is determined in dependence on the
noise strength D and kf. In the oscillatory regime
!kf # #1.1", CV increases monotonically with D and exhib-
its smaller values than those we observed in experiments. In
the excitable regime, CV exhibits a nonlinear dependence on
D. For small noise, the fluctuations are so small that the
system is rarely forced on the unstable limit cycle and exhib-
its a Poisson-like behavior, the behavior of rare events. This
corresponds to large CV. For increasing D, CV exhibits a
minimum before it increases again for large noise. This mini-
mum indicates coherent resonance, where the noise is opti-
mal for a regular spiking.

The noise induces varying spiking for standard param-
eters in the oscillatory regime. A typical time course of the
cytosolic Ca2+ concentration is shown in Fig. 10!c" for a
rather high noise intensity D=0.1.

The dependence of the standard deviation on the average
period Tav for different D=0.1, . . . ,0.001 is shown in panel
!d". The dependence in the used oscillatory regime exhibits
an opposite trend than those found in experiments: $ de-
creases with Tav.

Hence, the ODE model does only exhibit a large varia-
tion in spiking in the excitable regime and noisy limit cycle
oscillations demonstrate different dynamical properties than

those observed in experiments, leading to the conclusion that
Ca2+ oscillations are not noisy limit cycle oscillation.

This can be confirmed by the analysis of the $-Tav rela-
tion of more generic models. Deterministic Ca2+-models ex-
hibit Hopf bifurcations and saddle node bifurcations on a
limit cycle !sniper" leading to an oscillatory regime.12 Since
Hopf bifurcations occur with finite period and snipers with
infinite period we can expect different $-Tav relations for
their noisy realizations.

2. Hopf bifurcation
A standard model for the Hopf bifurcation neuron model

is the FitzHugh–Nagumo !FHN" model.58,59 The governing
equations for the spiking variable x!t" and the recovery vari-
able y!t" read

%ẋ = x − x3 − y , !30a"

ẏ = x + a+ $2Dϱ!t" , !30b"

where % is the time separation parameter and D is the
strength of white Gaussian noise. The Langevin dynamics
for the recovery variable y!t" is a common and mathemati-
cally rigorous way to add stochastic input to the FHN
model.60

The system exhibits a Hopf bifurcation for the excitable
parameter a=−1, at which the fixed point becomes unstable
and a stable limit cycle occurs for a& −1. For small values of
'a and a=−!1+'a", the system can be driven by noise from
the stable fixed point on the limit cycle. The influence of the
noise for the two different regimes is shown in the $-Tav plot
in Fig. 11!a". In the oscillatory regime, the noise does only
lead to small variation and CV is less than 0.2, rather inde-
pendent of %. Values for the CV observed in the experiments
can only be found in the excitable regime, where the system
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FIG. 10. !a" Ca2+ oscillation simulated
by the deterministic Goldbeter model
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latory regime does only increase up to
0.15 for large D. In the excitable re-
gime, the CV exhibits values compa-
rable to the experiments. The mini-
mum in the CV in dependence on D
indicates a coherent resonance. !c" The
cytosolic Ca2+ oscillations become
more irregular due to noise as shown
for D=0.1. !d" The $-Tav relation for
standard parameters in the oscillatory
regime induced by different noise
strengths D exhibits a dependence dif-
ferent from those found in
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report the behaviour of InsP3Rs roaming freely within the nuclear
envelope. The effect of cluster size on Po indicates that pairing of
InsP3Rs is sufficient to cause the maximal decrease in Po. Additional
InsP3Rs can join a cluster, and their activity is attenuated, but InsP3Rs
within larger clusters are no more inhibited than pairs of InsP3Rs
(Fig. 2g, h and Supplementary Table 2). InsP3Rs associate with actin4

and microtubules17, but neither is required for clustering-evoked
changes in Po (Supplementary Fig. 4).

To examine the effects of clustering on InsP3R gating, we com-
pared the mean open time (to, Supplementary Information) of lone
InsP3Rs with to for single channel openings from patches with several
(N) InsP3Rs (blue line in Fig. 3f). These to should be similar if lone

and grouped InsP3Rs behave identically. For multi-InsP3R patches,
we also measured the duration of events in which all InsP3Rs were
simultaneously open (to,N, red line in Fig. 3f), and from that we
calculated to for individual, independently gated InsP3Rs (Nto,N).
Both analyses gave the same result: to for InsP3Rs within a cluster
was reduced to 47% of that for lone InsP3Rs (Fig. 3f). A similar
analysis of closed states confirmed that neither was affected by clus-
tering (Supplementary Fig. 5 and Supplementary Table 3). InsP3-
evoked clustering almost doubles the rate of channel closure (1/to)
and this alone is sufficient (Supplementary Fig. 6 and Supplementary
Table 4) to account for the decreased Po of clustered InsP3Rs (Fig. 2g).
Clustered InsP3Rs open for half as long as lone InsP3Rs (5.4 versus
11.9 ms), and pairing of InsP3Rs is enough to cause the full effect
(Fig. 2g). Other regulators of InsP3Rs usually influence tc and so rates
of channel opening4. The difference is important because to will affect
the time course of the initial Ca21 release within elementary events7

and thereby Ca21-mediated interactions between clustered InsP3Rs.
This is confirmed by simulations of intracellular Ca21 spikes, in
which the ,50% decrease in to of clustered InsP3Rs causes the
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Figure 1 | InsP3Rs are randomly distributed. a, InsP3-evoked Ca21 release
from permeabilized DT40-InsP3R3 (filled circles; EC50 5 281 6 46 nM,
mean 6 s.e.m.) and DT40-KO cells (open circles) (n $ 3). Inset shows an
immunoblot with InsP3R3-specific antiserum (10mg membrane protein per
lane, a 220-kDa marker is shown). b, Currents recorded from excised patches
with 10-mM InsP3 in pipette solution. No currents were detected without
InsP3 (n 5 20), with InsP3 and heparin (100mg ml21) (n 5 15), or with InsP3

in DT40-KO cells (n . 30). C denotes the closed state. c, The single-channel
current–voltage (i–V) relationship for InsP3-evoked current (K1

conductance (cK) 5 121 6 2.8 pS, n 5 7). d, Dwell-time distribution of a
single InsP3R3 stimulated with 10 mM InsP3. Open time distribution of this
typical recording is fitted with a single exponential function with
to 5 10.4 ms (mean 5 11.9 6 1.6 ms, n 5 6). The probability density
function for the tc distribution has two components (tc1 5 1.07 ms, 88%,
and tc2 5 109 ms, 12%). Dwell-time distributions are consistent with the
gating scheme (Supplementary Methods and Supplementary Figs 5 and 6).
e, Typical all-points current amplitude histogram of an excised patch
containing three InsP3Rs stimulated with 10 mM InsP3. C denotes the closed
state. O1, O2 and O3 denote states with 1, 2 and 3 open channels. f, Observed
(filled bars) and predicted (open bars) numbers of InsP3Rs per patch from
109 patches (mean 5 1.34) stimulated with 10–100mM InsP3.
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Figure 2 | Lone InsP3Rs are more active than clustered InsP3Rs at resting
cytosolic [Ca21]. a, Typical records from patches (two InsP3Rs per patch)
stimulated with InsP3. b, c, The effect of InsP3 on Po of patches containing a
single InsP3R (b) or on NPo of patches with three InsP3Rs (c) (n $ 4). d, The
numbers of InsP3Rs detected in each patch for each InsP3 concentration
(n 5 9–25). e, Predicted NPo (NPlone, open bars) and observed NPo (filled
bars) for patches containing 1–5 InsP3Rs (n $ 3; n 5 2 for the patch with 5
InsP3Rs). f, For patches with three InsP3Rs, the ratios of the observed to the
predicted values are shown for the indicated numbers of simultaneous
openings (Supplementary equation (4)). g, Po as a function of the number of
InsP3Rs within a patch after stimulation with 10 mM InsP3 (Supplementary
equation (5)). h, The effect of InsP3 on Po for lone InsP3Rs and for InsP3Rs
within multi-InsP3R patches (n $ 4). All error bars are s.e.m.
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report the behaviour of InsP3Rs roaming freely within the nuclear
envelope. The effect of cluster size on Po indicates that pairing of
InsP3Rs is sufficient to cause the maximal decrease in Po. Additional
InsP3Rs can join a cluster, and their activity is attenuated, but InsP3Rs
within larger clusters are no more inhibited than pairs of InsP3Rs
(Fig. 2g, h and Supplementary Table 2). InsP3Rs associate with actin4

and microtubules17, but neither is required for clustering-evoked
changes in Po (Supplementary Fig. 4).

To examine the effects of clustering on InsP3R gating, we com-
pared the mean open time (to, Supplementary Information) of lone
InsP3Rs with to for single channel openings from patches with several
(N) InsP3Rs (blue line in Fig. 3f). These to should be similar if lone

and grouped InsP3Rs behave identically. For multi-InsP3R patches,
we also measured the duration of events in which all InsP3Rs were
simultaneously open (to,N, red line in Fig. 3f), and from that we
calculated to for individual, independently gated InsP3Rs (Nto,N).
Both analyses gave the same result: to for InsP3Rs within a cluster
was reduced to 47% of that for lone InsP3Rs (Fig. 3f). A similar
analysis of closed states confirmed that neither was affected by clus-
tering (Supplementary Fig. 5 and Supplementary Table 3). InsP3-
evoked clustering almost doubles the rate of channel closure (1/to)
and this alone is sufficient (Supplementary Fig. 6 and Supplementary
Table 4) to account for the decreased Po of clustered InsP3Rs (Fig. 2g).
Clustered InsP3Rs open for half as long as lone InsP3Rs (5.4 versus
11.9 ms), and pairing of InsP3Rs is enough to cause the full effect
(Fig. 2g). Other regulators of InsP3Rs usually influence tc and so rates
of channel opening4. The difference is important because to will affect
the time course of the initial Ca21 release within elementary events7

and thereby Ca21-mediated interactions between clustered InsP3Rs.
This is confirmed by simulations of intracellular Ca21 spikes, in
which the ,50% decrease in to of clustered InsP3Rs causes the
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Figure 1 | InsP3Rs are randomly distributed. a, InsP3-evoked Ca21 release
from permeabilized DT40-InsP3R3 (filled circles; EC50 5 281 6 46 nM,
mean 6 s.e.m.) and DT40-KO cells (open circles) (n $ 3). Inset shows an
immunoblot with InsP3R3-specific antiserum (10mg membrane protein per
lane, a 220-kDa marker is shown). b, Currents recorded from excised patches
with 10-mM InsP3 in pipette solution. No currents were detected without
InsP3 (n 5 20), with InsP3 and heparin (100mg ml21) (n 5 15), or with InsP3

in DT40-KO cells (n . 30). C denotes the closed state. c, The single-channel
current–voltage (i–V) relationship for InsP3-evoked current (K1

conductance (cK) 5 121 6 2.8 pS, n 5 7). d, Dwell-time distribution of a
single InsP3R3 stimulated with 10 mM InsP3. Open time distribution of this
typical recording is fitted with a single exponential function with
to 5 10.4 ms (mean 5 11.9 6 1.6 ms, n 5 6). The probability density
function for the tc distribution has two components (tc1 5 1.07 ms, 88%,
and tc2 5 109 ms, 12%). Dwell-time distributions are consistent with the
gating scheme (Supplementary Methods and Supplementary Figs 5 and 6).
e, Typical all-points current amplitude histogram of an excised patch
containing three InsP3Rs stimulated with 10 mM InsP3. C denotes the closed
state. O1, O2 and O3 denote states with 1, 2 and 3 open channels. f, Observed
(filled bars) and predicted (open bars) numbers of InsP3Rs per patch from
109 patches (mean 5 1.34) stimulated with 10–100mM InsP3.
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Figure 2 | Lone InsP3Rs are more active than clustered InsP3Rs at resting
cytosolic [Ca21]. a, Typical records from patches (two InsP3Rs per patch)
stimulated with InsP3. b, c, The effect of InsP3 on Po of patches containing a
single InsP3R (b) or on NPo of patches with three InsP3Rs (c) (n $ 4). d, The
numbers of InsP3Rs detected in each patch for each InsP3 concentration
(n 5 9–25). e, Predicted NPo (NPlone, open bars) and observed NPo (filled
bars) for patches containing 1–5 InsP3Rs (n $ 3; n 5 2 for the patch with 5
InsP3Rs). f, For patches with three InsP3Rs, the ratios of the observed to the
predicted values are shown for the indicated numbers of simultaneous
openings (Supplementary equation (4)). g, Po as a function of the number of
InsP3Rs within a patch after stimulation with 10 mM InsP3 (Supplementary
equation (5)). h, The effect of InsP3 on Po for lone InsP3Rs and for InsP3Rs
within multi-InsP3R patches (n $ 4). All error bars are s.e.m.
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report the behaviour of InsP3Rs roaming freely within the nuclear
envelope. The effect of cluster size on Po indicates that pairing of
InsP3Rs is sufficient to cause the maximal decrease in Po. Additional
InsP3Rs can join a cluster, and their activity is attenuated, but InsP3Rs
within larger clusters are no more inhibited than pairs of InsP3Rs
(Fig. 2g, h and Supplementary Table 2). InsP3Rs associate with actin4

and microtubules17, but neither is required for clustering-evoked
changes in Po (Supplementary Fig. 4).

To examine the effects of clustering on InsP3R gating, we com-
pared the mean open time (to, Supplementary Information) of lone
InsP3Rs with to for single channel openings from patches with several
(N) InsP3Rs (blue line in Fig. 3f). These to should be similar if lone

and grouped InsP3Rs behave identically. For multi-InsP3R patches,
we also measured the duration of events in which all InsP3Rs were
simultaneously open (to,N, red line in Fig. 3f), and from that we
calculated to for individual, independently gated InsP3Rs (Nto,N).
Both analyses gave the same result: to for InsP3Rs within a cluster
was reduced to 47% of that for lone InsP3Rs (Fig. 3f). A similar
analysis of closed states confirmed that neither was affected by clus-
tering (Supplementary Fig. 5 and Supplementary Table 3). InsP3-
evoked clustering almost doubles the rate of channel closure (1/to)
and this alone is sufficient (Supplementary Fig. 6 and Supplementary
Table 4) to account for the decreased Po of clustered InsP3Rs (Fig. 2g).
Clustered InsP3Rs open for half as long as lone InsP3Rs (5.4 versus
11.9 ms), and pairing of InsP3Rs is enough to cause the full effect
(Fig. 2g). Other regulators of InsP3Rs usually influence tc and so rates
of channel opening4. The difference is important because to will affect
the time course of the initial Ca21 release within elementary events7

and thereby Ca21-mediated interactions between clustered InsP3Rs.
This is confirmed by simulations of intracellular Ca21 spikes, in
which the ,50% decrease in to of clustered InsP3Rs causes the
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Figure 1 | InsP3Rs are randomly distributed. a, InsP3-evoked Ca21 release
from permeabilized DT40-InsP3R3 (filled circles; EC50 5 281 6 46 nM,
mean 6 s.e.m.) and DT40-KO cells (open circles) (n $ 3). Inset shows an
immunoblot with InsP3R3-specific antiserum (10mg membrane protein per
lane, a 220-kDa marker is shown). b, Currents recorded from excised patches
with 10-mM InsP3 in pipette solution. No currents were detected without
InsP3 (n 5 20), with InsP3 and heparin (100mg ml21) (n 5 15), or with InsP3

in DT40-KO cells (n . 30). C denotes the closed state. c, The single-channel
current–voltage (i–V) relationship for InsP3-evoked current (K1

conductance (cK) 5 121 6 2.8 pS, n 5 7). d, Dwell-time distribution of a
single InsP3R3 stimulated with 10 mM InsP3. Open time distribution of this
typical recording is fitted with a single exponential function with
to 5 10.4 ms (mean 5 11.9 6 1.6 ms, n 5 6). The probability density
function for the tc distribution has two components (tc1 5 1.07 ms, 88%,
and tc2 5 109 ms, 12%). Dwell-time distributions are consistent with the
gating scheme (Supplementary Methods and Supplementary Figs 5 and 6).
e, Typical all-points current amplitude histogram of an excised patch
containing three InsP3Rs stimulated with 10 mM InsP3. C denotes the closed
state. O1, O2 and O3 denote states with 1, 2 and 3 open channels. f, Observed
(filled bars) and predicted (open bars) numbers of InsP3Rs per patch from
109 patches (mean 5 1.34) stimulated with 10–100mM InsP3.

a b

c

[InsP3] (µM)

0.3

0.1

3

1

100

10

5 pA

 200 ms

C

d

g

f

e

h

–10 –8 –6 –4
0

0.25

0.50

Log {[InsP3], M}

Log {[InsP3], M}

Log {[InsP3], M}

P
o

–10 –8 –6 –4

0

0.4

0.8

N
P

o
N

P
o

P
o

0.1 0.3 1 3 10 100
0

1

2

1 2 3 4 5
0

1

2

C O1 O2 O3
0

0.5

1.0

O
bs

er
ve

d/
pr

ed
ic

te
d

–10 –8 –6 –4

0

0.3

0.6

1 2 3 4 5 6 7 8
0

0.25

0.50

Number of InsP3Rs

P
o

InsP3

K+

C
ha

nn
el

s 
pe

r 
pa

tc
h

[InsP3] (µM)

1 InsP3R
2 InsP3Rs 
3 InsP3Rs 

(11) (14)
(11) (17)

(25)

(9)

Number of InsP3Rs

Figure 2 | Lone InsP3Rs are more active than clustered InsP3Rs at resting
cytosolic [Ca21]. a, Typical records from patches (two InsP3Rs per patch)
stimulated with InsP3. b, c, The effect of InsP3 on Po of patches containing a
single InsP3R (b) or on NPo of patches with three InsP3Rs (c) (n $ 4). d, The
numbers of InsP3Rs detected in each patch for each InsP3 concentration
(n 5 9–25). e, Predicted NPo (NPlone, open bars) and observed NPo (filled
bars) for patches containing 1–5 InsP3Rs (n $ 3; n 5 2 for the patch with 5
InsP3Rs). f, For patches with three InsP3Rs, the ratios of the observed to the
predicted values are shown for the indicated numbers of simultaneous
openings (Supplementary equation (4)). g, Po as a function of the number of
InsP3Rs within a patch after stimulation with 10 mM InsP3 (Supplementary
equation (5)). h, The effect of InsP3 on Po for lone InsP3Rs and for InsP3Rs
within multi-InsP3R patches (n $ 4). All error bars are s.e.m.
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(Rahman 2009)

Ca2+ in physiology Experiment Modeling Summary Appendix

How does Ca2+ oscillate?

Single cell measurements with fluorescent dyes
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Experimental σ-Tav relation
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How to understand Ca2+ spiking

Tstoch described by:
time-dependent Poisson process
with rate Λ(t) = λ

(

1 − e−ξt)

λ ⇒ nucleation rate
ξ ⇒ regeneration rate

probability of a spike at time t: Tdet Tstoch

ISI consists of 2 parts ...

ISI

Pξ(t) = λ
(

1 − e−ξt) exp
[

−
∫ t

0 λ
(

1 − e−ξt′
)

dt ′
]

minimal ISI

linear dependence of standard
deviation σ on mean Tav

Nucleation hypothesis:
dependence on spatial coupling by λ
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Cell type difference and buffer linearization
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regeneration rates than for stimulated oscillations, since stimulation forces spiking even in

the case that the cell has not yet achieved its resting level. For rather regular oscillations as

those invoked by stimulation, we expect t to be smaller than Tdet leading to AECR.

Indeed, we can find the predicted behavior by analyzing the dependence of the standard

deviation σ on the mean period Tav of the oscillation. Fig. 4 illustrates this dependence

for spontaneous spiking in astrocytes (black dots) and stimulated oscillations in HEK cells

(red squares) where each symbol characterizes one cell. Firstly, the populations of the two

different cell types exhibit a linear dependence. Secondly, the offset in direction of Tav

indicates a minimal deterministic time Tdet of the ISI.

The spread of data points in Fig. 4 represents properties of individual cells. They differ

firstly, in Tdet generating spread in the direction of Tav, and secondly, in the properties

of the stochastic process, shifting them in the σ-Tav plane along curves parameterized by

characteristics of the stochastic process, namely λ and ξ of the density (4).

The analysis of experimental data has shown that Tav, σ and Tdet vary between individual

cells of the same cell type. A deeper analysis demonstrates that cell types exhibit different ξ

values and cells of one type vary predominantly in λ. Hence, the different slopes for two cell

population in Fig. 3 are caused by different regeneration rates ξ of the different cell types.

From the experimental data in Fig. 4 and theoretical predicted σ-Tav relation (see the inset

of Fig. 2) we could fitted the cell type specific rates [5].
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FIG. 4: (Color) Ca2+ spikes occur randomly. The standard deviation σ of the Ca2+ oscillation are

in the same range as Tav shown for astrocytes (black dots) and stimulated HEK cells (red squares).

The linear dependence is in accordance with the wave nucleation assumption.

9

neuron dynamics Ca2+ oscillations metabolic evolution Conclusion

Dependence on spatial coupling – stable σ-Tav relation
Time (s)

 0.2

 0.6

 1

∆
F

 50

 200

 350

 0  3000  6000

IS
I (

s)

Time (s)

HEK
BAPTA-AM

45 min 45 min

10 + 5

30 µM 30 µM

min

 

 

 

 ⇒ strong evidence for wave nucleation

 0

 200

 400

 0  200  400

σ
 (s

)

Tav (s)

astrocytes

individuals cells: different λ
different cell types: different ξ

[Skupin, Falcke (Gen.Info. 2007)]

x

l

spontaneous astrocytes

stimulated HEK cells

300 600

600

300



Ca2+ in physiology Experiment Modeling Summary Appendix

Information content of Ca2+ oscillations

Information divergence by Kullback entropy:

K(p1, p2) = k
∫

∞

0
p1(t) log

p1(t)
p2(t)

dt

for p1 pure and p2 time dependent Poisson process
(spontaneous↔ stimulated spiking)

Kξ = k
[

H (λ/ξ) +
1

(1+ λ/ξ)
− 1

]

= f (λ/ξ)

σ-Tav slope m = g(λ/ξ)

⇒ m estimator of information
([Skupin, Falcke Gen.Info. 2007])

0.6 0.7 0.8 0.9

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

 

m

InfoK

glia

PLA

HEK

Information content of the environment

Ca2+ in physiology Experiment Modeling Summary Appendix

Information content of Ca2+ oscillations

Information divergence by Kullback entropy:

K(p1, p2) = k
∫

∞

0
p1(t) log

p1(t)
p2(t)

dt

for p1 pure and p2 time dependent Poisson process
(spontaneous↔ stimulated spiking)

Kξ = k
[

H (λ/ξ) +
1

(1+ λ/ξ)
− 1

]

= f (λ/ξ)

σ-Tav slope m = g(λ/ξ)

⇒ m estimator of information
([Skupin, Falcke Gen.Info. 2007])

0.6 0.7 0.8 0.9

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

 

m

InfoK

glia

PLA

HEK

Ca2+ in physiology Experiment Modeling Summary Appendix

Information content of Ca2+ oscillations

Information divergence by Kullback entropy:

K(p1, p2) = k
∫

∞

0
p1(t) log

p1(t)
p2(t)

dt

for p1 pure and p2 time dependent Poisson process
(spontaneous↔ stimulated spiking)

Kξ = k
[

H (λ/ξ) +
1

(1+ λ/ξ)
− 1

]

= f (λ/ξ)

σ-Tav slope m = g(λ/ξ)

⇒ m estimator of information
([Skupin, Falcke Gen.Info. 2007])

0.6 0.7 0.8 0.9

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

 

m

InfoK

glia

PLA

HEK

 0

 0.01

 0.02

 0  200  400  600

ξ(
t) 

(s
-1

)

t (s)

 0

 400

 800

 1200

 0  500  1000  1500

σ
 (s

)

Tstoch (s)

λ=0.003

λ=0.0014

λ=0.001
ξ=1

ξ=0.005

ξ=0.0005

ξ=0.0015
 

P
FIG. 2: The probability density (4) for different parameters. For large regeneration rates ξ the

density reduces to a pure exponential function. For small ξ the distribution exhibits pronounced

peaks and smaller tails. This leads to smaller slopes in the σ-Tstoch relation (4) resulting from

equations 5 and 6. The σ -Tav relation occurs by shifting the lines to the right by Tdet.

having the shape shown in Fig. 2. For ξ ≫ λ, Pξ(t) converges to a pure Poisson process

as shown for ξ = 1 and λ = 0.02 (dotted line) and λ = 0.007 (dash dotted line). With

decreasing ξ, the maximum of the distribution shifts to higher values of t. For fixed ξ = 0.01

the width increases with decreasing λ, e.g. λ = 0.06 (solid line) and λ = 0.01 (dashed line).

From expression (4) we can calculate the first two moments [5] as

Tstoch =
e
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ξ
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,−λ
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]

, (6)

where Γ(x) denotes the Euler’s Γ-function, Γ(x, y) the incomplete Gamma function and

2F2(x) is the generalized hypergeometric function [47]. With the relation for the standard

deviation

σ =
√

⟨T2⟩ − Tav
2 (7)

we obtain the Tav-σ relations shown in the inset of Fig. 2 for Tdet = 0. Lines ξ = constant

arise by varying λ. They start at (0,0) with λ = ∞ and converge to Tav=σ with increasing

ξ. The lines λ = constant start on Tav=σ= λ−1 with ξ ≫ λ very large. Note that the σ-Tav
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since Px leads to first 2 moments:

regeneration rates than for stimulated oscillations, since stimulation forces spiking even in

the case that the cell has not yet achieved its resting level. For rather regular oscillations as

those invoked by stimulation, we expect t to be smaller than Tdet leading to AECR.

Indeed, we can find the predicted behavior by analyzing the dependence of the standard

deviation σ on the mean period Tav of the oscillation. Fig. 4 illustrates this dependence

for spontaneous spiking in astrocytes (black dots) and stimulated oscillations in HEK cells

(red squares) where each symbol characterizes one cell. Firstly, the populations of the two

different cell types exhibit a linear dependence. Secondly, the offset in direction of Tav

indicates a minimal deterministic time Tdet of the ISI.

The spread of data points in Fig. 4 represents properties of individual cells. They differ

firstly, in Tdet generating spread in the direction of Tav, and secondly, in the properties

of the stochastic process, shifting them in the σ-Tav plane along curves parameterized by

characteristics of the stochastic process, namely λ and ξ of the density (4).

The analysis of experimental data has shown that Tav, σ and Tdet vary between individual

cells of the same cell type. A deeper analysis demonstrates that cell types exhibit different ξ

values and cells of one type vary predominantly in λ. Hence, the different slopes for two cell

population in Fig. 3 are caused by different regeneration rates ξ of the different cell types.

From the experimental data in Fig. 4 and theoretical predicted σ-Tav relation (see the inset

of Fig. 2) we could fitted the cell type specific rates [5].
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in the same range as Tav shown for astrocytes (black dots) and stimulated HEK cells (red squares).

The linear dependence is in accordance with the wave nucleation assumption.
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dTav

d CCh⎡⎣ ⎤⎦
= −γ ⋅Tav ,       

γ =
∂β

∂Δ CCh⎡⎣ ⎤⎦
Δ CCh⎡⎣ ⎤⎦=0

Encoding of information within cells [Thurley 2014]

Tav 1 (s)

Ta
v2

(s
)

à Tav 2 (s)à Tav 1 (s)

dTav

d CCh⎡⎣ ⎤⎦
= −γ ⋅Tav ,       

γ =
∂β

∂Δ CCh⎡⎣ ⎤⎦
Δ CCh⎡⎣ ⎤⎦=0

Indicating fold change behavior:

β =
Tav1 −Tav2

Tav1

⇒   ΔTav = β ⋅Tav1 

with Weber fraction b independent
of reference concentration c0

We assessed whether stimulation steps were more reliably encoded by
fold changes (b) in the average stochastic period of the ISI (Tav – Tmin) or
by absolute responses (Tav) by quantifying the variability of each (Fig. 3F),
using the data shown in Fig. 3 (C and D). To illustrate the methods used,
we describe this analysis for HEK293 cells stimulated first with 30 mM
and then with 150 mM CCh as an example (Fig. 3G). We plotted Tav1 and
Tav2 for each single cell. If absolute responses more reliably encoded the
stimulation steps, all values of Tav2 should be similar to the population
average (that is, Tav2 = Tpop2, dashed line in Fig. 3G). If fold changes more
reliably encoded the stimulation steps, the data should obey Eq. 2, which
we rewrite for the purpose of this analysis as Tav2 = (1 − b)Tav1 + bTmin
(Fig. 3G, solid line). To determine whether stimulation steps were more
reliably encoded by absolute responses or fold changes, we compared the
root mean square distances of the data points from these lines. We divided
the distance by Tpop2 to obtain the coefficient of variation (CV), which can
then be compared across the different experiments (a to g) in Fig. 3F (see
Materials and Methods, Eqs. 9 and 10). On the basis of this analysis, we
found that the relative deviation of Tav2 from its population average Tpop2
[CV(Tpop2), Eq. 9] was consistently larger than its relative deviation from
the encoding relation [CV(b), Eq. 10] (Fig. 3F). Thus, we concluded that b
represents individual cell behavior better than does the population average
(Tpop), and b encodes stimulation more reliably than does the average ISI.

Because spike amplitudes and durations were unaffected by stimulus
intensity, the integral ratio (IR), that is, the ratio of the area beneath the
Ca2+ spikes occurring during the stationary phases of responses to the first
stimulus relative to that for the second stimulus, is given by Eq. 11 (see
Materials and Methods). To determine whether absolute values or fold
changes in the integrated Ca2+ signals more reliably encoded differences
in stimulation intensity, we compared the CV(Tpop2) with the CVof the in-
tegral ratio CV(IR) for HEK293 cells and hepatocytes stimulated with
paired steps in CCh or phenylephrine concentration (Fig. 3F). This compar-
ison showed that fold changes of the integrated Ca2+ signal are less variable
than is Tav2. Thus, this analysis indicated that fold changes in the average
stochastic period of the ISI and fold changes in the integrated Ca2+ signal
more reliably encode stimulus changes than does the average ISI (Tav).

Fold changes reliably encode stimulus intensity
through an exponential relationship between the
stimulus concentration and response
For HEK293 cells exposed to paired steps in CCh concentration, we
observed that b depended only on the step size (D[CCh]) and not the
initial CCh concentration. This is illustrated in Fig. 3H, where the relation-
ship between D[CCh] and b was the same whether the first challenge was
with 30 mM (red symbols) or 50 mMCCh (blue). We showed in eq. S7 (see
text S2:Mathematical derivation of the concentration-response relation) that
this observation and Eq. 2 result in the differential equation:

dðTav − TminÞ
d½CCh$ ¼ −gðTav − TminÞ; g ¼ ∂b

∂D½CCh$

!!!!!
D½CCh$¼ 0

ð4Þ

The solution to Eq. 4 is the concentration-response relation, which pre-
dicts an exponential dependence of Tav on CCh concentration:

Tav ¼ e−gð½CCh$−½CCh$ref ÞðTav;ref − TminÞ þ Tmin ð5Þ

Tav,ref is the value of the average ISI measured at a reference CCh
concentration ([CCh]ref), and g describes the sensitivity of the stochastic pe-
riod of Tav to CCh. Cell-to-cell variability appears in Eq. 5 in the variability
ofTav,ref, which captures differences between individual cells in the response

of the average stochastic period to CCh. Because Eq. 5 applies to average
ISIs, it does not conflict with the randomness of individual ISIs. Inserting
Eq. 5 into Eq. 2 shows that these results entail an exponential dependence of
b on stimulation step D[CCh] = [CCh] − [CCh]ref:

b ¼ 1−e−gD½CCh$ ð6Þ

Equation 6 describes the measured data well: The relationship between
D[CCh] and the experimentally determined fold changes (b) fitted to the
exponential function using the fit parameter g confirmed the reliability with
which b describes cell behavior (Fig. 3H).

Analysis of the effects of different CCh concentrations on the population
average (Tpop) of Tav provided additional support for our suggestion that Eq.
5 appropriately describes the concentration-response relationship. If Eq. 5
correctly describes single-cell behavior, all cells contributing to the population
averageTpopmust obey the sameexponential dependence.Consequently,Tpop is
not the sum of exponentials; rather, it obeys a single exponential function:

Tpop ¼ e−gð½CCh$−½CCh$ref ÞðTpop;ref − TminÞ þ Tmin ð7Þ

Therefore, we analyzed the dependence of Tpop derived from analysis of
the Ca2+ spikes evoked by different concentrations of CCh inHEK293 cells
(Fig. 4A) and found that the relationship was well described by the single
exponential function (Eq. 7) with values for g and Tmin obtained from Fig.
3H and Fig. 3C, respectively. This fit of the experimental data to Eq. 7 is
inconsistent with b and g varying substantially between individual cells.

Equation 7 follows from the encoding relation (Eq. 3) and the indepen-
dence of b from the initial stimulus intensity (Fig. 3H, and see text S2:

A B

C D

Fig. 4. Fold changes determine a universal concentration-response relation
for Ca2+ spikes evoked by stimulation of GPCRs. (A) Population average
(Tpop) of Tav for HEK293 cells at each CCh concentration (means ± SEM).
Line drawn using the parameter value g = 7.84 mM−1 (from the fit to Eq. 6
in Fig. 3H) and Tmin = 57 s (the average value of Tmins from the six paired-
stimulation experiments shown in Fig. 3C), but with no additional curve fitting.
(BandC)RelationshipbetweenTpopand ligandconcentration for hepatocytes
is exponential. Hepatocytes (31) were stimulated with phenylephrine (B) or
vasopressin (C). (D) Relationship between Tpop and ligand concentration
for insect salivary gland stimulated with 5-HT (32) is exponential. Lines
in (B) to (D) are best fits in parameters Tmin and g to Eq. 7: for hepatocytes,
g=1.059 µM−1, Tmin = 61 s (phenylephrine), and g=0.279 µM−1, Tmin = 44 s
(vasopressin); and for salivary gland, g = 0.319 nM−1, Tmin = 16 s.
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In sensory perception, Weber’s law proposes that the ability to detect a
small change in stimulus is a constant fraction of the initial stimulus (29).
Therefore, we evaluated whether fold changes in the stochastic period of
the ISI might encode stimulus intensities in a way that was insensitive to
the variability between cells. Such fold changes in ISI would more reliably
encode stimulus intensities than absolute values only if the fold changes
were less variable than the absolute values. As a starting point, we define
the fold change (b) as the change of the stochastic period relative to its
initial value:

ðTav1 − TminÞ − ðTav2 − TminÞ
Tav1 − Tmin

¼ b ð2Þ

where Tav1 and Tav2 are average ISIs with
different stimulus intensities, and Tmin is the
same as in Eq. 1. (see Fig. 1C and table S1).
Equation 2 implies a linear relationship be-
tween DTav = Tav1 − Tav2 and Tav1 − Tmin.
The linear relationship is also predicted by
an independently derived stochastic model,
which is illustrated in Fig. 3A, and includes
only basic properties of IP3R clusters (21)
(seeMaterials andMethods).We refer to this
relationship between the change of the
stochastic period (DTav) relative to its initial
value as the “encoding relation,” because as
we show later, b reliably encodes changes in
stimulus intensity:

DTav ¼ bðTav1 − TminÞ ð3Þ
We tested whether this relation (Eq. 3)

applies to Ca2+ spiking using a paired stim-
ulation protocol in which we stimulated
HEK293 cells with one concentration of
CCh and then switched the medium to one
with a higher concentration (Fig. 3B). The
amplitude of the Ca2+ spikes remained simi-
lar when the concentration of CCh was in-
creased: for the largest step (30 to 200 mM
CCh), the peak amplitudewas 154 ± 21 nM
(n = 23 cells, 292 spikes) for the first stim-
ulation, and 155 ± 18 nM (632 spikes) for
the second. Changes in stimulus intensity are
not, therefore, encoded by spike amplitudes.
Instead, Tav changed with stimulus intensity
in accord with Eq. 3, and the stimulation step
affected b, where b is the slope of the lines
(Fig. 3C and table S2). The smallest step in
CCh concentration (from 50 mM to 100 mM)
caused only small changes inTav (Fig. 3C right,
red line). The practicable duration of exper-
iments limits the reliability with which we can
measure such smallDTav, because the length of
the spike sequences sets the precision with
whichwe can determine Tav. Thus, the linearity
of the relationshipbetweenDTavandTav1−Tmin
was lessclear for this small stimulationstep than
for larger steps. Nevertheless, even with such
small changes in stimulus intensity, b increased
with the size of the concentration step (Fig. 3C
right, table S2), and the value of b obtained fits

well in the context of the additional concentration-response data (Figs. 3H and
4A). Analysis of hepatocytes sequentially stimulated with 0.6 mM and then
1 mM phenylephrine showed a similar linear relationship between DTav and
Tav1 − Tmin (Fig. 3D). We assessed the linearity of the relationship between
DTav andTav1−Tmin using Pearson’s correlation coefficient (r) and analysis of
explaineduncertainty (uex) (seeMaterials andMethods) (30).Avalue of 1 forr
or uex establishes a perfect linear correlation. These analyses (Fig. 3E) con-
firmed that the relationbetweenTav1−TminandDTav is linear and thatb increases
with the stimulus step in agreement with our theoretical predictions (Fig. 3A).

A

C

D

G H

E F

B

Fig. 3. Stimulation steps are encoded by
fold changes in the average stochastic
period of the ISI. (A) Relationship between
Tav1 and DTav calculated from simulations
of IP3-evoked Ca2+ spikes based on the
stochastic model of Thurley et al. (21, 22)
(see Materials and Methods). (B) [Ca2+]i
inasingleHEK293cell subjected toapaired
stimulation protocol. The cell was stimulated

as shown with 30 mM CCh before its removal and replacement with 200 mM CCh. (C) Relationship be-
tween Tav1 and DTav for HEK293 cells successively stimulated with the indicated CCh concentrations
(mM) in the paired stimulation protocol (see table S2 for spiking behavior of cells included in the anal-
ysis). (D) Relationship between Tav1 and DTav for hepatocytes stimulated with 0.6 mM and then 1 mM
phenylephrine. (E) Pearson’s correlation coefficients (r) and explained uncertainties (u ex, Eq. 8) for
Tav1-DTav relations for HEK293 cells stimulated with the indicated steps in CCh concentration (mM),
or hepatocytes stimulated with 0.6 µM and then 1 µM phenylephrine. (F) Comparisons of the average
deviation of individual cell behavior from Tpop [CV(Tpop2)] and Eq. 2 [CV(b)], and the coefficient of var-
iation of the integral ratio [CV(IR)] for the paired stimulation protocols. Codes a to g apply to (E) and (F).
(G) Relationship between Tav1 and Tav2 calculated from individual HEK293 cells stimulated first with
30 mM and then with 150 mMCCh [data from (C)]. The dashed line shows the population average (Tpop2)
of Tav2. The solid line shows Eq. 2 in the form Tav2 = (1 − b)Tav1 + bTmin. (H) Fold changes (b ± 95%
confidence intervals, Eq. 2) calculated from the slopes of Tav1-DTav relations for all steps in CCh concen-
tration. Symbols are color-coded to indicate the initial CCh concentration (red, 30 mM;blue, 50 mM). The line
shows the exponential relationship between the fold change (b) and D[CCh] (Eq. 6), with g being the only fit
parameter, g = 7.84 ± 0.37 mM−1 (mean ± 95% confidence interval).
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In sensory perception, Weber’s law proposes that the ability to detect a
small change in stimulus is a constant fraction of the initial stimulus (29).
Therefore, we evaluated whether fold changes in the stochastic period of
the ISI might encode stimulus intensities in a way that was insensitive to
the variability between cells. Such fold changes in ISI would more reliably
encode stimulus intensities than absolute values only if the fold changes
were less variable than the absolute values. As a starting point, we define
the fold change (b) as the change of the stochastic period relative to its
initial value:

ðTav1 − TminÞ − ðTav2 − TminÞ
Tav1 − Tmin

¼ b ð2Þ

where Tav1 and Tav2 are average ISIs with
different stimulus intensities, and Tmin is the
same as in Eq. 1. (see Fig. 1C and table S1).
Equation 2 implies a linear relationship be-
tween DTav = Tav1 − Tav2 and Tav1 − Tmin.
The linear relationship is also predicted by
an independently derived stochastic model,
which is illustrated in Fig. 3A, and includes
only basic properties of IP3R clusters (21)
(seeMaterials andMethods).We refer to this
relationship between the change of the
stochastic period (DTav) relative to its initial
value as the “encoding relation,” because as
we show later, b reliably encodes changes in
stimulus intensity:

DTav ¼ bðTav1 − TminÞ ð3Þ
We tested whether this relation (Eq. 3)

applies to Ca2+ spiking using a paired stim-
ulation protocol in which we stimulated
HEK293 cells with one concentration of
CCh and then switched the medium to one
with a higher concentration (Fig. 3B). The
amplitude of the Ca2+ spikes remained simi-
lar when the concentration of CCh was in-
creased: for the largest step (30 to 200 mM
CCh), the peak amplitudewas 154 ± 21 nM
(n = 23 cells, 292 spikes) for the first stim-
ulation, and 155 ± 18 nM (632 spikes) for
the second. Changes in stimulus intensity are
not, therefore, encoded by spike amplitudes.
Instead, Tav changed with stimulus intensity
in accord with Eq. 3, and the stimulation step
affected b, where b is the slope of the lines
(Fig. 3C and table S2). The smallest step in
CCh concentration (from 50 mM to 100 mM)
caused only small changes inTav (Fig. 3C right,
red line). The practicable duration of exper-
iments limits the reliability with which we can
measure such smallDTav, because the length of
the spike sequences sets the precision with
whichwe can determine Tav. Thus, the linearity
of the relationshipbetweenDTavandTav1−Tmin
was lessclear for this small stimulationstep than
for larger steps. Nevertheless, even with such
small changes in stimulus intensity, b increased
with the size of the concentration step (Fig. 3C
right, table S2), and the value of b obtained fits

well in the context of the additional concentration-response data (Figs. 3H and
4A). Analysis of hepatocytes sequentially stimulated with 0.6 mM and then
1 mM phenylephrine showed a similar linear relationship between DTav and
Tav1 − Tmin (Fig. 3D). We assessed the linearity of the relationship between
DTav andTav1−Tmin using Pearson’s correlation coefficient (r) and analysis of
explaineduncertainty (uex) (seeMaterials andMethods) (30).Avalue of 1 forr
or uex establishes a perfect linear correlation. These analyses (Fig. 3E) con-
firmed that the relationbetweenTav1−TminandDTav is linear and thatb increases
with the stimulus step in agreement with our theoretical predictions (Fig. 3A).
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Fig. 3. Stimulation steps are encoded by
fold changes in the average stochastic
period of the ISI. (A) Relationship between
Tav1 and DTav calculated from simulations
of IP3-evoked Ca2+ spikes based on the
stochastic model of Thurley et al. (21, 22)
(see Materials and Methods). (B) [Ca2+]i
inasingleHEK293cell subjected toapaired
stimulation protocol. The cell was stimulated

as shown with 30 mM CCh before its removal and replacement with 200 mM CCh. (C) Relationship be-
tween Tav1 and DTav for HEK293 cells successively stimulated with the indicated CCh concentrations
(mM) in the paired stimulation protocol (see table S2 for spiking behavior of cells included in the anal-
ysis). (D) Relationship between Tav1 and DTav for hepatocytes stimulated with 0.6 mM and then 1 mM
phenylephrine. (E) Pearson’s correlation coefficients (r) and explained uncertainties (u ex, Eq. 8) for
Tav1-DTav relations for HEK293 cells stimulated with the indicated steps in CCh concentration (mM),
or hepatocytes stimulated with 0.6 µM and then 1 µM phenylephrine. (F) Comparisons of the average
deviation of individual cell behavior from Tpop [CV(Tpop2)] and Eq. 2 [CV(b)], and the coefficient of var-
iation of the integral ratio [CV(IR)] for the paired stimulation protocols. Codes a to g apply to (E) and (F).
(G) Relationship between Tav1 and Tav2 calculated from individual HEK293 cells stimulated first with
30 mM and then with 150 mMCCh [data from (C)]. The dashed line shows the population average (Tpop2)
of Tav2. The solid line shows Eq. 2 in the form Tav2 = (1 − b)Tav1 + bTmin. (H) Fold changes (b ± 95%
confidence intervals, Eq. 2) calculated from the slopes of Tav1-DTav relations for all steps in CCh concen-
tration. Symbols are color-coded to indicate the initial CCh concentration (red, 30 mM;blue, 50 mM). The line
shows the exponential relationship between the fold change (b) and D[CCh] (Eq. 6), with g being the only fit
parameter, g = 7.84 ± 0.37 mM−1 (mean ± 95% confidence interval).
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 In sensory perception, Weber’s law proposes that the ability to detect a
small change in stimulus is a constant fraction of the initial stimulus (29).
Therefore, we evaluated whether fold changes in the stochastic period of
the ISI might encode stimulus intensities in a way that was insensitive to
the variability between cells. Such fold changes in ISI would more reliably
encode stimulus intensities than absolute values only if the fold changes
were less variable than the absolute values. As a starting point, we define
the fold change (b) as the change of the stochastic period relative to its
initial value:

ðTav1 − TminÞ − ðTav2 − TminÞ
Tav1 − Tmin

¼ b ð2Þ

where Tav1 and Tav2 are average ISIs with
different stimulus intensities, and Tmin is the
same as in Eq. 1. (see Fig. 1C and table S1).
Equation 2 implies a linear relationship be-
tween DTav = Tav1 − Tav2 and Tav1 − Tmin.
The linear relationship is also predicted by
an independently derived stochastic model,
which is illustrated in Fig. 3A, and includes
only basic properties of IP3R clusters (21)
(seeMaterials andMethods).We refer to this
relationship between the change of the
stochastic period (DTav) relative to its initial
value as the “encoding relation,” because as
we show later, b reliably encodes changes in
stimulus intensity:

DTav ¼ bðTav1 − TminÞ ð3Þ
We tested whether this relation (Eq. 3)

applies to Ca2+ spiking using a paired stim-
ulation protocol in which we stimulated
HEK293 cells with one concentration of
CCh and then switched the medium to one
with a higher concentration (Fig. 3B). The
amplitude of the Ca2+ spikes remained simi-
lar when the concentration of CCh was in-
creased: for the largest step (30 to 200 mM
CCh), the peak amplitudewas 154 ± 21 nM
(n = 23 cells, 292 spikes) for the first stim-
ulation, and 155 ± 18 nM (632 spikes) for
the second. Changes in stimulus intensity are
not, therefore, encoded by spike amplitudes.
Instead, Tav changed with stimulus intensity
in accord with Eq. 3, and the stimulation step
affected b, where b is the slope of the lines
(Fig. 3C and table S2). The smallest step in
CCh concentration (from 50 mM to 100 mM)
caused only small changes inTav (Fig. 3C right,
red line). The practicable duration of exper-
iments limits the reliability with which we can
measure such smallDTav, because the length of
the spike sequences sets the precision with
whichwe can determine Tav. Thus, the linearity
of the relationshipbetweenDTavandTav1−Tmin
was lessclear for this small stimulationstep than
for larger steps. Nevertheless, even with such
small changes in stimulus intensity, b increased
with the size of the concentration step (Fig. 3C
right, table S2), and the value of b obtained fits

well in the context of the additional concentration-response data (Figs. 3H and
4A). Analysis of hepatocytes sequentially stimulated with 0.6 mM and then
1 mM phenylephrine showed a similar linear relationship between DTav and
Tav1 − Tmin (Fig. 3D). We assessed the linearity of the relationship between
DTav andTav1−Tmin using Pearson’s correlation coefficient (r) and analysis of
explaineduncertainty (uex) (seeMaterials andMethods) (30).Avalue of 1 forr
or uex establishes a perfect linear correlation. These analyses (Fig. 3E) con-
firmed that the relationbetweenTav1−TminandDTav is linear and thatb increases
with the stimulus step in agreement with our theoretical predictions (Fig. 3A).
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Fig. 3. Stimulation steps are encoded by
fold changes in the average stochastic
period of the ISI. (A) Relationship between
Tav1 and DTav calculated from simulations
of IP3-evoked Ca2+ spikes based on the
stochastic model of Thurley et al. (21, 22)
(see Materials and Methods). (B) [Ca2+]i
inasingleHEK293cell subjected toapaired
stimulation protocol. The cell was stimulated

as shown with 30 mM CCh before its removal and replacement with 200 mM CCh. (C) Relationship be-
tween Tav1 and DTav for HEK293 cells successively stimulated with the indicated CCh concentrations
(mM) in the paired stimulation protocol (see table S2 for spiking behavior of cells included in the anal-
ysis). (D) Relationship between Tav1 and DTav for hepatocytes stimulated with 0.6 mM and then 1 mM
phenylephrine. (E) Pearson’s correlation coefficients (r) and explained uncertainties (u ex, Eq. 8) for
Tav1-DTav relations for HEK293 cells stimulated with the indicated steps in CCh concentration (mM),
or hepatocytes stimulated with 0.6 µM and then 1 µM phenylephrine. (F) Comparisons of the average
deviation of individual cell behavior from Tpop [CV(Tpop2)] and Eq. 2 [CV(b)], and the coefficient of var-
iation of the integral ratio [CV(IR)] for the paired stimulation protocols. Codes a to g apply to (E) and (F).
(G) Relationship between Tav1 and Tav2 calculated from individual HEK293 cells stimulated first with
30 mM and then with 150 mMCCh [data from (C)]. The dashed line shows the population average (Tpop2)
of Tav2. The solid line shows Eq. 2 in the form Tav2 = (1 − b)Tav1 + bTmin. (H) Fold changes (b ± 95%
confidence intervals, Eq. 2) calculated from the slopes of Tav1-DTav relations for all steps in CCh concen-
tration. Symbols are color-coded to indicate the initial CCh concentration (red, 30 mM;blue, 50 mM). The line
shows the exponential relationship between the fold change (b) and D[CCh] (Eq. 6), with g being the only fit
parameter, g = 7.84 ± 0.37 mM−1 (mean ± 95% confidence interval).
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We assessed whether stimulation steps were more reliably encoded by
fold changes (b) in the average stochastic period of the ISI (Tav – Tmin) or
by absolute responses (Tav) by quantifying the variability of each (Fig. 3F),
using the data shown in Fig. 3 (C and D). To illustrate the methods used,
we describe this analysis for HEK293 cells stimulated first with 30 mM
and then with 150 mM CCh as an example (Fig. 3G). We plotted Tav1 and
Tav2 for each single cell. If absolute responses more reliably encoded the
stimulation steps, all values of Tav2 should be similar to the population
average (that is, Tav2 = Tpop2, dashed line in Fig. 3G). If fold changes more
reliably encoded the stimulation steps, the data should obey Eq. 2, which
we rewrite for the purpose of this analysis as Tav2 = (1 − b)Tav1 + bTmin
(Fig. 3G, solid line). To determine whether stimulation steps were more
reliably encoded by absolute responses or fold changes, we compared the
root mean square distances of the data points from these lines. We divided
the distance by Tpop2 to obtain the coefficient of variation (CV), which can
then be compared across the different experiments (a to g) in Fig. 3F (see
Materials and Methods, Eqs. 9 and 10). On the basis of this analysis, we
found that the relative deviation of Tav2 from its population average Tpop2
[CV(Tpop2), Eq. 9] was consistently larger than its relative deviation from
the encoding relation [CV(b), Eq. 10] (Fig. 3F). Thus, we concluded that b
represents individual cell behavior better than does the population average
(Tpop), and b encodes stimulation more reliably than does the average ISI.

Because spike amplitudes and durations were unaffected by stimulus
intensity, the integral ratio (IR), that is, the ratio of the area beneath the
Ca2+ spikes occurring during the stationary phases of responses to the first
stimulus relative to that for the second stimulus, is given by Eq. 11 (see
Materials and Methods). To determine whether absolute values or fold
changes in the integrated Ca2+ signals more reliably encoded differences
in stimulation intensity, we compared the CV(Tpop2) with the CVof the in-
tegral ratio CV(IR) for HEK293 cells and hepatocytes stimulated with
paired steps in CCh or phenylephrine concentration (Fig. 3F). This compar-
ison showed that fold changes of the integrated Ca2+ signal are less variable
than is Tav2. Thus, this analysis indicated that fold changes in the average
stochastic period of the ISI and fold changes in the integrated Ca2+ signal
more reliably encode stimulus changes than does the average ISI (Tav).

Fold changes reliably encode stimulus intensity
through an exponential relationship between the
stimulus concentration and response
For HEK293 cells exposed to paired steps in CCh concentration, we
observed that b depended only on the step size (D[CCh]) and not the
initial CCh concentration. This is illustrated in Fig. 3H, where the relation-
ship between D[CCh] and b was the same whether the first challenge was
with 30 mM (red symbols) or 50 mMCCh (blue). We showed in eq. S7 (see
text S2:Mathematical derivation of the concentration-response relation) that
this observation and Eq. 2 result in the differential equation:

dðTav − TminÞ
d½CCh$ ¼ −gðTav − TminÞ; g ¼ ∂b

∂D½CCh$

!!!!!
D½CCh$¼ 0

ð4Þ

The solution to Eq. 4 is the concentration-response relation, which pre-
dicts an exponential dependence of Tav on CCh concentration:

Tav ¼ e−gð½CCh$−½CCh$ref ÞðTav;ref − TminÞ þ Tmin ð5Þ

Tav,ref is the value of the average ISI measured at a reference CCh
concentration ([CCh]ref), and g describes the sensitivity of the stochastic pe-
riod of Tav to CCh. Cell-to-cell variability appears in Eq. 5 in the variability
ofTav,ref, which captures differences between individual cells in the response

of the average stochastic period to CCh. Because Eq. 5 applies to average
ISIs, it does not conflict with the randomness of individual ISIs. Inserting
Eq. 5 into Eq. 2 shows that these results entail an exponential dependence of
b on stimulation step D[CCh] = [CCh] − [CCh]ref:

b ¼ 1−e−gD½CCh$ ð6Þ

Equation 6 describes the measured data well: The relationship between
D[CCh] and the experimentally determined fold changes (b) fitted to the
exponential function using the fit parameter g confirmed the reliability with
which b describes cell behavior (Fig. 3H).

Analysis of the effects of different CCh concentrations on the population
average (Tpop) of Tav provided additional support for our suggestion that Eq.
5 appropriately describes the concentration-response relationship. If Eq. 5
correctly describes single-cell behavior, all cells contributing to the population
averageTpopmust obey the sameexponential dependence.Consequently,Tpop is
not the sum of exponentials; rather, it obeys a single exponential function:

Tpop ¼ e−gð½CCh$−½CCh$ref ÞðTpop;ref − TminÞ þ Tmin ð7Þ

Therefore, we analyzed the dependence of Tpop derived from analysis of
the Ca2+ spikes evoked by different concentrations of CCh inHEK293 cells
(Fig. 4A) and found that the relationship was well described by the single
exponential function (Eq. 7) with values for g and Tmin obtained from Fig.
3H and Fig. 3C, respectively. This fit of the experimental data to Eq. 7 is
inconsistent with b and g varying substantially between individual cells.

Equation 7 follows from the encoding relation (Eq. 3) and the indepen-
dence of b from the initial stimulus intensity (Fig. 3H, and see text S2:

A B

C D

Fig. 4. Fold changes determine a universal concentration-response relation
for Ca2+ spikes evoked by stimulation of GPCRs. (A) Population average
(Tpop) of Tav for HEK293 cells at each CCh concentration (means ± SEM).
Line drawn using the parameter value g = 7.84 mM−1 (from the fit to Eq. 6
in Fig. 3H) and Tmin = 57 s (the average value of Tmins from the six paired-
stimulation experiments shown in Fig. 3C), but with no additional curve fitting.
(BandC)RelationshipbetweenTpopand ligandconcentration for hepatocytes
is exponential. Hepatocytes (31) were stimulated with phenylephrine (B) or
vasopressin (C). (D) Relationship between Tpop and ligand concentration
for insect salivary gland stimulated with 5-HT (32) is exponential. Lines
in (B) to (D) are best fits in parameters Tmin and g to Eq. 7: for hepatocytes,
g=1.059 µM−1, Tmin = 61 s (phenylephrine), and g=0.279 µM−1, Tmin = 44 s
(vasopressin); and for salivary gland, g = 0.319 nM−1, Tmin = 16 s.
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Stochasticity of CICR (Skupin 2008)

Indeed, we can find the predicted behavior by analyzing
the dependence of the standard deviation ! on the mean
period Tav of the oscillation. Figure 4 illustrates this depen-
dence for spontaneous spiking in astrocytes !black dots" and
stimulated oscillations in human embryonic kidney !HEK"
cells !red squares", where each symbol characterizes one cell.
First, the populations of the two different cell types exhibit a
linear dependence. Second, the offset in direction of Tav in-
dicates a minimal deterministic time Tdet of the ISI.

The spread of data points in Fig. 4 represents properties
of individual cells. They differ first in Tdet generating spread
in the direction of Tav, and second, in the properties of the
stochastic process, shifting them in the !-Tav plane along
curves parametrized by characteristics of the stochastic pro-
cess, namely, " and # of the density !4".

The analysis of experimental data has shown that Tav, !,
and Tdet vary between individual cells of the same cell type.
A deeper analysis demonstrates that cell types exhibit differ-
ent # values and cells of one type vary predominantly in ".
Hence, the different slopes for two cell populations in Fig. 3

are caused by different regeneration rates # of the different
cell types. From the experimental data in Fig. 4 and theoreti-
cally predicted !-Tav relations !see the inset of Fig. 2" we
could fit the cell-type specific rates.5

A further prediction of the model and a prerequisite for
AECR is the relevance of the spatial coupling. Therefore we
loaded additional Ca2+ buffer into cells. From our assump-
tions of the underlying mechanism we expect that both ! and
Tav should increase by the decreased spatial coupling. This
behavior was found in experiments, a representative example
of which is shown in Fig. 5!a", where again the upper panel
exhibits the fluorescent signal of a single stimulated HEK
cell and the lower panel shows the individual ISIs. Red cor-
responds to the reference measurement and blue shows the
Ca2+ time series after loading 1 $M bis-aminophenoxy
ethane-etraacetic acid !BAPTA-AM" for 5 min. Figure 5!a"
shows how additional BAPTA loading increases ISIs and
their variability.

We have also demonstrated in Ref. 5 that the increases in
! and Tav depend on the buffer concentration. Higher con-
centration leads to slower and more irregular spiking. More-
over, we have found that higher concentration of Ca2+ buff-
ers with slower Ca2+ binding rate is needed to have a similar
effect as BAPTA. This was shown with ethylene glycol tet-
raacetic acid !EGTA-AM".

In order to estimate the action of additional buffers with
respect to the nucleation and regeneration rate " and #, re-
spectively, and to decompose the measured Tav according to
expression !2" into its parts Tstoch and Tdet we analyzed the
!-Tav relation of buffer experiments.48 In Fig. 5!c" the de-
pendence for two single cells is shown by the red dots for the
reference measuring period and by blue crosses for the os-
cillations after buffer loading.

We did not expect the small buffer concentrations used
to have an influence on the regeneration rate # or on the
deterministic time Tdet since both are not very sensitive to the
cytosolic buffering capacity. Hence, we predict cells to be
shifted on lines corresponding to #=constant in the inset of
Fig. 2 by lowering ".

From the representative behavior of the !-Tav relation in
Fig. 5 this assumption seems to be justified. For a more
systematic investigation of what distinguishes cells of the
same cell type but with different ! and Tav we inspected the
!-Tav relation more closely. Measuring that relation would
actually require to measure spike trains of a single cell under
different conditions providing several values of ! and Tav. In
the buffer experiments, we have measured at least two points
from which we can obtain an estimate of the slope of the
relation mshift. Alternatively, it might be that all data points
obtained from the population of cells of one type represent
the !-Tav relation. We have approximated the population re-
lation by a linear function in Fig. 4. The slope of that relation
is the population slope mpop. If the population slopes before
!mpop

b " and after !mpop
a " adding additional buffer are similar

and in the same range as mshift, we can assume that the slope
of the !-Tav relation of individual cells is well approximated
by the population slope.

We found48 that the population slopes before and after
buffer loading are in good agreement with the shifting

FIG. 3. A typical experimental fluorescence signal %F of a PLA cell is
shown in the upper panel. %F=F!t" /F0 denotes the amount of bound
Ca2+-sensitive dye compared to the initial amount F0 and corresponds to the
cytosolic Ca2+ concentration. In the lower panel, for each Ca2+ spike the
following ISI is shown by a dot, indicating that Ca2+ oscillations have a
stochastic character, since the individual ISIs vary substantially in their
length. !For more details see Ref. 5."
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FIG. 4. !Color" Ca2+ spikes occur randomly. The standard deviation ! of the
Ca2+ ISIs is in the same range as their average Tav. Black dots show results
for astrocytes and red squares show stimulated HEK cells. The linear de-
pendence is in accordance with the wave nucleation assumption.
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We assessed whether stimulation steps were more reliably encoded by
fold changes (b) in the average stochastic period of the ISI (Tav – Tmin) or
by absolute responses (Tav) by quantifying the variability of each (Fig. 3F),
using the data shown in Fig. 3 (C and D). To illustrate the methods used,
we describe this analysis for HEK293 cells stimulated first with 30 mM
and then with 150 mM CCh as an example (Fig. 3G). We plotted Tav1 and
Tav2 for each single cell. If absolute responses more reliably encoded the
stimulation steps, all values of Tav2 should be similar to the population
average (that is, Tav2 = Tpop2, dashed line in Fig. 3G). If fold changes more
reliably encoded the stimulation steps, the data should obey Eq. 2, which
we rewrite for the purpose of this analysis as Tav2 = (1 − b)Tav1 + bTmin
(Fig. 3G, solid line). To determine whether stimulation steps were more
reliably encoded by absolute responses or fold changes, we compared the
root mean square distances of the data points from these lines. We divided
the distance by Tpop2 to obtain the coefficient of variation (CV), which can
then be compared across the different experiments (a to g) in Fig. 3F (see
Materials and Methods, Eqs. 9 and 10). On the basis of this analysis, we
found that the relative deviation of Tav2 from its population average Tpop2
[CV(Tpop2), Eq. 9] was consistently larger than its relative deviation from
the encoding relation [CV(b), Eq. 10] (Fig. 3F). Thus, we concluded that b
represents individual cell behavior better than does the population average
(Tpop), and b encodes stimulation more reliably than does the average ISI.

Because spike amplitudes and durations were unaffected by stimulus
intensity, the integral ratio (IR), that is, the ratio of the area beneath the
Ca2+ spikes occurring during the stationary phases of responses to the first
stimulus relative to that for the second stimulus, is given by Eq. 11 (see
Materials and Methods). To determine whether absolute values or fold
changes in the integrated Ca2+ signals more reliably encoded differences
in stimulation intensity, we compared the CV(Tpop2) with the CVof the in-
tegral ratio CV(IR) for HEK293 cells and hepatocytes stimulated with
paired steps in CCh or phenylephrine concentration (Fig. 3F). This compar-
ison showed that fold changes of the integrated Ca2+ signal are less variable
than is Tav2. Thus, this analysis indicated that fold changes in the average
stochastic period of the ISI and fold changes in the integrated Ca2+ signal
more reliably encode stimulus changes than does the average ISI (Tav).

Fold changes reliably encode stimulus intensity
through an exponential relationship between the
stimulus concentration and response
For HEK293 cells exposed to paired steps in CCh concentration, we
observed that b depended only on the step size (D[CCh]) and not the
initial CCh concentration. This is illustrated in Fig. 3H, where the relation-
ship between D[CCh] and b was the same whether the first challenge was
with 30 mM (red symbols) or 50 mMCCh (blue). We showed in eq. S7 (see
text S2:Mathematical derivation of the concentration-response relation) that
this observation and Eq. 2 result in the differential equation:

dðTav − TminÞ
d½CCh$ ¼ −gðTav − TminÞ; g ¼ ∂b

∂D½CCh$

!!!!!
D½CCh$¼ 0

ð4Þ

The solution to Eq. 4 is the concentration-response relation, which pre-
dicts an exponential dependence of Tav on CCh concentration:

Tav ¼ e−gð½CCh$−½CCh$ref ÞðTav;ref − TminÞ þ Tmin ð5Þ

Tav,ref is the value of the average ISI measured at a reference CCh
concentration ([CCh]ref), and g describes the sensitivity of the stochastic pe-
riod of Tav to CCh. Cell-to-cell variability appears in Eq. 5 in the variability
ofTav,ref, which captures differences between individual cells in the response

of the average stochastic period to CCh. Because Eq. 5 applies to average
ISIs, it does not conflict with the randomness of individual ISIs. Inserting
Eq. 5 into Eq. 2 shows that these results entail an exponential dependence of
b on stimulation step D[CCh] = [CCh] − [CCh]ref:

b ¼ 1−e−gD½CCh$ ð6Þ

Equation 6 describes the measured data well: The relationship between
D[CCh] and the experimentally determined fold changes (b) fitted to the
exponential function using the fit parameter g confirmed the reliability with
which b describes cell behavior (Fig. 3H).

Analysis of the effects of different CCh concentrations on the population
average (Tpop) of Tav provided additional support for our suggestion that Eq.
5 appropriately describes the concentration-response relationship. If Eq. 5
correctly describes single-cell behavior, all cells contributing to the population
averageTpopmust obey the sameexponential dependence.Consequently,Tpop is
not the sum of exponentials; rather, it obeys a single exponential function:

Tpop ¼ e−gð½CCh$−½CCh$ref ÞðTpop;ref − TminÞ þ Tmin ð7Þ

Therefore, we analyzed the dependence of Tpop derived from analysis of
the Ca2+ spikes evoked by different concentrations of CCh inHEK293 cells
(Fig. 4A) and found that the relationship was well described by the single
exponential function (Eq. 7) with values for g and Tmin obtained from Fig.
3H and Fig. 3C, respectively. This fit of the experimental data to Eq. 7 is
inconsistent with b and g varying substantially between individual cells.

Equation 7 follows from the encoding relation (Eq. 3) and the indepen-
dence of b from the initial stimulus intensity (Fig. 3H, and see text S2:
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Fig. 4. Fold changes determine a universal concentration-response relation
for Ca2+ spikes evoked by stimulation of GPCRs. (A) Population average
(Tpop) of Tav for HEK293 cells at each CCh concentration (means ± SEM).
Line drawn using the parameter value g = 7.84 mM−1 (from the fit to Eq. 6
in Fig. 3H) and Tmin = 57 s (the average value of Tmins from the six paired-
stimulation experiments shown in Fig. 3C), but with no additional curve fitting.
(BandC)RelationshipbetweenTpopand ligandconcentration for hepatocytes
is exponential. Hepatocytes (31) were stimulated with phenylephrine (B) or
vasopressin (C). (D) Relationship between Tpop and ligand concentration
for insect salivary gland stimulated with 5-HT (32) is exponential. Lines
in (B) to (D) are best fits in parameters Tmin and g to Eq. 7: for hepatocytes,
g=1.059 µM−1, Tmin = 61 s (phenylephrine), and g=0.279 µM−1, Tmin = 44 s
(vasopressin); and for salivary gland, g = 0.319 nM−1, Tmin = 16 s.
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Repetitive Ca2+ spiking in stimulated HEK293 cells, hepatocytes, and
many other cells (2, 11, 12, 16) creates a false impression that Ca2+ spikes
are predictable (15, 17). All biological processes include some variability
(18), but we found that in stimulated HEK293 cells and hepatocytes, a
distinguishing feature of the Ca2+ spikes was the correlation between
the variability of the ISI within each cell (s) and Tav. This relationship be-
tween s and Tav has been described previously for Ca

2+ spikes in HEK293
cells, astrocytes, microglia, processed lipoaspirate (PLA) cells (15), and
endothelial progenitor cells (17). The correlation is captured in the Tav-s
relation (Fig. 1B, bottom):

s ¼ aðTav# TminÞ þ smin ð1Þ
where Tmin is the sum of the spike duration and refractory period, and
smin is the SD of ISI sequences with Tav = Tmin. The ISI has three com-
ponents (Fig. 1C): spike duration, refractory period, and an interval
before the next spike initiates that terminates stochastically (15). For
Ca2+ spikes, the relationship between Tav and s reveals the contribution
of such a stochastic process to the ISI. This stochastic period shortens as
the stimulus intensity increases until it becomes so brief that a spike in-
itiates almost as soon as a cell emerges from the refractory period (15). With
high stimulus intensities, spike sequences would have an average ISI equal
to Tmin, and the ISIs would become almost uniform, with a small s (smin).
Under all other conditions, the stochastic component makes a major con-
tribution to the ISI.

We observed that there is also variability in Tav between cells treated
with the same stimulus (Fig. 1D). Under various conditions, this variabil-
ity between cells often exceeded Tav for the cell population, indicating that
there is no consistent relationship between stimulus intensity and Tav that
applies to all cells. These data indicated that there are at least two potential
impediments to transferring information reliably from extracellular signals
through repetitive Ca2+ spikes: individual cells differ in their sensitivities
to stimuli, and within cells, Ca2+ spike sequences have a stochastic or ran-
dom component.

The signal-to-noise ratio is increased by negative
feedback and robust against cell-to-cell variability
The ISI comprises fixed components (Tmin: the spike duration and the re-
fractory period) and a stochastic period (Fig. 1C, bottom). By analyzing
the temporal randomness of the ISI, we can determine how the probability
of a spike occurring changes with time after the refractory period. There-
fore, we examined many sequences of stimulus-evoked Ca2+ spikes to de-
termine the variability of the ISI. If the probability of a spike occurring
stepped immediately to its final value, the occurrence of each spike would
be unaffected by the timing of any preceding Ca2+ spike. The slope of the
Tav-s relation (a) would then be 1 (15), that is, the ISIs would be de-
scribed by a Poisson distribution. Once the refractory period had passed,
the timing of the next Ca2+ spike would then behave like the random
decay of radioactive atoms. Under this condition, the signal-to-noise ratio
(a−1), and thus the information content of the signal, would have their
minimal values (19, 20). There is, however, an interval after the refractory
period when the cell recovers from negative feedback inhibition toward
the maximal probability of firing another Ca2+ spike (eq. S4, fig. S1,
and text S1: Mathematical description of ISI distributions) (15, 17, 19).
This lingering inhibition after the refractory period delays the time at
which the information content of the signal becomes minimal. The time
scale of recovery from feedback inhibition is, therefore, critical in deter-
mining the reliability of signaling: slow recovery from feedback inhibition
improves reliability by increasing signal-to-noise ratios (reducing a) (eqs.
S3 and S6, fig. S2, and text S1: Mathematical description of ISI distribu-
tions) (21, 22).

3

2

2+

min

min

av

2+

3

2+
i

A C

B

D

Fig. 1. Ca2+ spikes are stochastic and vary between cells. (A) Many ex-
tracellular signals activate GPCRs coupled to Gaq proteins, which stimulate
PLCb and the production of IP3. Binding of IP3 and Ca2+ to IP3Rs triggers
release of Ca2+ into the cytosol. The increase in [Ca2+]i can then activate
neighboring IP3Rs to generate a Ca2+ wave. Repetitive initiation of Ca2+

waves generates sequences of Ca2+ spikes that vary in frequency. Informa-
tion is encoded in the properties of these spike sequences and decoded by
downstream effectors. PM, plasma membrane. (B) Ca2+ signals in HEK293
cells and hepatocytes. HEK293 cells were stimulated with CCh (30 µM), and
hepatocytes with phenylephrine (1 µM) or vasopressin (10 nM). Top: [Ca2+]i
is shown for typical cells as fura-2 fluorescence ratios (F340/F380). Middle: In-
dividual ISIs of the traces above. Bottom: For each cell, average ISI (Tav)
and its SD (s) provide a single point on the Tav-s relation. The ratio of axes
scales is preserved in the three Tav-s plots to allow direct comparison of their
slopes. (C) ISI comprises the spike duration and the refractory period (the
sum of which is Tmin), and the stochastic period (Tav − Tmin). Tav and s are
linearly related with slope a. smin is the SD of sequences with Tav = Tmin.
(D) Box plots of Tav from HEK293 cells stimulated with CCh (10 mM, n = 81;
30 µM, n = 135; or 50 mM, n = 50) or hepatocytes stimulated with phenyl-
ephrine (1 µM, n = 60) or vasopressin (10 nM, n = 77). Bold lines indicate
medians, boxes show interquartile ranges, and whiskers show minima and
maxima. Results from hepatocytes and HEK293 cells stimulated with 30 mM
CCh correspond to data shown in (B).

R E S E A R C H A R T I C L E

www.SCIENCESIGNALING.org 24 June 2014 Vol 7 Issue 331 ra59 2

 on June 25, 2014 
stke.sciencemag.org

Downloaded from 

www.nature.com/scientificreports/

10Scientific RepoRts | 6:19316 | DOI: 10.1038/srep19316

Possible nature of the bidirectional Ca2+ flux between the mitochondria and the cytosol. In 
the model, there is another flux allowing a Ca2+ exchange between the mitochondria and the cytosol (Jx, see Eqs. 
(2) and (16)). This flux was initially incorporated in the model to account for the observation that mitochondria 
can still take up Ca2+ when the MCU is inactive42. We found, however, that assuming a reversible flux, the direc-
tion of which depending on the electrochemical gradient, led to a better agreement with experimental results as 
oscillations are maintained when the NCX is inhibited33, indicative that Ca2+ is extruded from mitochondria by 
another pathway. For both directions, best agreement is obtained when assuming a low conductance, propor-
tional to the Ca2+ concentration gradient. A plausible candidate for this flux is the low conductance mode of the 
mitochondrial permeability transition pore (PTP)59. We analysed the impact of this flux on the simulated Ca2+ 
oscillations. As this flux is bidirectional, it could either boost or slow down Ca2+ oscillations. Figure 5A shows that 
its suppression always decreases the frequency of Ca2+ oscillations, as for the NCX. Interestingly, in hepatocytes, 
an inhibition of the PTP by cyclosporin A (CSA) results in an increase in the interspike interval60, in agreement 
with the behaviour of the model. Experiments also reveal a rise in the mitochondrial membrane potential60, 
which is also observed in the model provided that the flux of protons is reduced, reflecting the fact that the PTP 
is also permeable to protons.

To further challenge the prediction that the low conductance mode of the mPTP could be involved during 
cytosolic Ca2+ oscillations in HeLa cells, we stimulated CSA-treated cells with histamine. As shown in Fig. 5B, 
inhibition of the mPTP indeed increased the period of Ca2+ oscillations in response to both 0.3 and 1 µM hista-
mine. It should be noted that CSA has been reported to stimulate SERCA pumps in addition to its effect on the 
mPTP60. An increased rate of Ca2+ pumping back to ER might thus also participate in the effect shown in Fig. 5B. 
As in hepatocytes the effect of CSA on the period of Ca2+ oscillations was eliminated in the presence of mitochon-
drial inhibition60, we conclude from our observations that the mPTP is a realistic candidate for the bidirectional 
flux Jx.

Mitochondrial variables. We next investigated the dynamics of the mitochondrial variables in response to 
a prototypic Ca2+ peak in the cytosol. The Ca2+ peak simulated in Fig. 6 is a square wave pulse of 10 s duration 
and 1.5 µM amplitude. We chose this type of stimulation to optimise the comparison with experimental data. 
Figure 6A shows the massive and long-lasting (> 200 s) increase in NADH resulting from the cytosolic Ca2+ spike. 
It is in agreement with observations in phenylephrine-stimulated hepatocytes4. This accumulation of NADH 
stimulates the Krebs cycle (Eq. (19)) and increases the mitochondrial potential. However, this increase is preceded 
by a transient decrease in ∆ Ψ  due to the entry of Ca2+ from the cytosol into mitochondria (Fig. 6B). Such dynam-
ics for ∆ Ψ  has been observed in HeLa cells stimulated by histamine34. The biphasic change in potential induces 

Figure 4. The rate of Ca2+ entry into mitochondria alters cytosolic Ca2+ oscillations. (A) Relationship 
between the frequency of oscillations and the rate constant of the MCU. The rate constant of the NCX is the 
default value (black curve, VNCX =  0.35 µM.s−1) or is increased (red curve, VNCX =  1 µM.s−1). (B) Effect of the 
rate constant of the MCU on cytosolic Ca2+ oscillations, as predicted by the model. The black curve shows 
oscillations for the default value (VMCU =  0.0006 µM.s−1) given in Table 1, while the red curve shows oscillations 
obtained when VMCU =  0. (C,D) Measurement of Ca2+ variations in control (C) or MCU-silenced HeLa 
cells (D). Cells loaded with Fluo4 were perfused with 3 µM histamine for the time shown by the black line. 
Experiments are representative of more than five trials. See also Supplementary Fig. S4.

(Dupont 2016)DMCU



by interdisciplinary approaches

Chapter 1. Introduction

agonist

GPCR

Endoplasmic 
Reticulum

IP3R

ATPADP

SERCA

Ca2+ ATP

Mitochondrion

Modelling and Simulation

Extracellular Flux Analysis

Calcium Imaging

CaSiAn: Calcium Signalling
 Analysis Software

Figure 1.2. Our approach for dissecting the crosstalk between Ca2+ signaling and mitochondrial
metabolism. The crosstalk between IP3-mediated Ca2+ signaling and mitochondrial metabolism is
mathematically modeled and the predicted scenarios are tested by Ca2+ imaging and metabolic flux
analyses. The extracted Ca2+ signals are analyzed by the developed software and the results are used
for validation and improvement of the model. We also used the outcome of Ca2+ imaging experi-
ments for designing the experiments of flux analysis and vice versa. Thus, we performed all steps
of a system’s biology approach (Figure 1.1) to have a mechanistic understanding of the biological
problem.

nals, tune peak detection parameters for each signal, examine detected peaks/nadirs of Ca2+

signals and access the quantified descriptors of Ca2+ spikes in the form of an excel or text
file.

To know the effect of IP3-mediated Ca2+ signaling on the mitochondrial metabolism, we
measure glucose and glutamine uptake rate for different agonist concentrations. To quan-
tify glucose and glutamine uptake rate, we measure the remaining metabolites within the
medium and then compute the consumed amount of glucose and glutamine over the time.
By normalizing the total glucose or glutamine uptake rate to the cell number, we obtain the
glucose or glutamine uptake rates per cell. Together with the measured periods of Ca2+ sig-
nals for different agonist concentration, these uptake rates can be expressed as a metabolic
decoding relation of Ca2+ signaling. Finally, we investigate the effect of IP3-mediated Ca2+
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Deterministic model based on previous work

Mitochondrial calcium shape cytosolic calcium

Ca2+ affects mitochondrial 
membrane potential

[Bertram 2006]
Bertram Mitochondrial Model

Ca2+ Signaling Model
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We assessed whether stimulation steps were more reliably encoded by
fold changes (b) in the average stochastic period of the ISI (Tav – Tmin) or
by absolute responses (Tav) by quantifying the variability of each (Fig. 3F),
using the data shown in Fig. 3 (C and D). To illustrate the methods used,
we describe this analysis for HEK293 cells stimulated first with 30 mM
and then with 150 mM CCh as an example (Fig. 3G). We plotted Tav1 and
Tav2 for each single cell. If absolute responses more reliably encoded the
stimulation steps, all values of Tav2 should be similar to the population
average (that is, Tav2 = Tpop2, dashed line in Fig. 3G). If fold changes more
reliably encoded the stimulation steps, the data should obey Eq. 2, which
we rewrite for the purpose of this analysis as Tav2 = (1 − b)Tav1 + bTmin
(Fig. 3G, solid line). To determine whether stimulation steps were more
reliably encoded by absolute responses or fold changes, we compared the
root mean square distances of the data points from these lines. We divided
the distance by Tpop2 to obtain the coefficient of variation (CV), which can
then be compared across the different experiments (a to g) in Fig. 3F (see
Materials and Methods, Eqs. 9 and 10). On the basis of this analysis, we
found that the relative deviation of Tav2 from its population average Tpop2
[CV(Tpop2), Eq. 9] was consistently larger than its relative deviation from
the encoding relation [CV(b), Eq. 10] (Fig. 3F). Thus, we concluded that b
represents individual cell behavior better than does the population average
(Tpop), and b encodes stimulation more reliably than does the average ISI.

Because spike amplitudes and durations were unaffected by stimulus
intensity, the integral ratio (IR), that is, the ratio of the area beneath the
Ca2+ spikes occurring during the stationary phases of responses to the first
stimulus relative to that for the second stimulus, is given by Eq. 11 (see
Materials and Methods). To determine whether absolute values or fold
changes in the integrated Ca2+ signals more reliably encoded differences
in stimulation intensity, we compared the CV(Tpop2) with the CVof the in-
tegral ratio CV(IR) for HEK293 cells and hepatocytes stimulated with
paired steps in CCh or phenylephrine concentration (Fig. 3F). This compar-
ison showed that fold changes of the integrated Ca2+ signal are less variable
than is Tav2. Thus, this analysis indicated that fold changes in the average
stochastic period of the ISI and fold changes in the integrated Ca2+ signal
more reliably encode stimulus changes than does the average ISI (Tav).

Fold changes reliably encode stimulus intensity
through an exponential relationship between the
stimulus concentration and response
For HEK293 cells exposed to paired steps in CCh concentration, we
observed that b depended only on the step size (D[CCh]) and not the
initial CCh concentration. This is illustrated in Fig. 3H, where the relation-
ship between D[CCh] and b was the same whether the first challenge was
with 30 mM (red symbols) or 50 mMCCh (blue). We showed in eq. S7 (see
text S2:Mathematical derivation of the concentration-response relation) that
this observation and Eq. 2 result in the differential equation:

dðTav − TminÞ
d½CCh$ ¼ −gðTav − TminÞ; g ¼ ∂b

∂D½CCh$

!!!!!
D½CCh$¼ 0

ð4Þ

The solution to Eq. 4 is the concentration-response relation, which pre-
dicts an exponential dependence of Tav on CCh concentration:

Tav ¼ e−gð½CCh$−½CCh$ref ÞðTav;ref − TminÞ þ Tmin ð5Þ

Tav,ref is the value of the average ISI measured at a reference CCh
concentration ([CCh]ref), and g describes the sensitivity of the stochastic pe-
riod of Tav to CCh. Cell-to-cell variability appears in Eq. 5 in the variability
ofTav,ref, which captures differences between individual cells in the response

of the average stochastic period to CCh. Because Eq. 5 applies to average
ISIs, it does not conflict with the randomness of individual ISIs. Inserting
Eq. 5 into Eq. 2 shows that these results entail an exponential dependence of
b on stimulation step D[CCh] = [CCh] − [CCh]ref:

b ¼ 1−e−gD½CCh$ ð6Þ

Equation 6 describes the measured data well: The relationship between
D[CCh] and the experimentally determined fold changes (b) fitted to the
exponential function using the fit parameter g confirmed the reliability with
which b describes cell behavior (Fig. 3H).

Analysis of the effects of different CCh concentrations on the population
average (Tpop) of Tav provided additional support for our suggestion that Eq.
5 appropriately describes the concentration-response relationship. If Eq. 5
correctly describes single-cell behavior, all cells contributing to the population
averageTpopmust obey the sameexponential dependence.Consequently,Tpop is
not the sum of exponentials; rather, it obeys a single exponential function:

Tpop ¼ e−gð½CCh$−½CCh$ref ÞðTpop;ref − TminÞ þ Tmin ð7Þ

Therefore, we analyzed the dependence of Tpop derived from analysis of
the Ca2+ spikes evoked by different concentrations of CCh inHEK293 cells
(Fig. 4A) and found that the relationship was well described by the single
exponential function (Eq. 7) with values for g and Tmin obtained from Fig.
3H and Fig. 3C, respectively. This fit of the experimental data to Eq. 7 is
inconsistent with b and g varying substantially between individual cells.

Equation 7 follows from the encoding relation (Eq. 3) and the indepen-
dence of b from the initial stimulus intensity (Fig. 3H, and see text S2:

A B

C D

Fig. 4. Fold changes determine a universal concentration-response relation
for Ca2+ spikes evoked by stimulation of GPCRs. (A) Population average
(Tpop) of Tav for HEK293 cells at each CCh concentration (means ± SEM).
Line drawn using the parameter value g = 7.84 mM−1 (from the fit to Eq. 6
in Fig. 3H) and Tmin = 57 s (the average value of Tmins from the six paired-
stimulation experiments shown in Fig. 3C), but with no additional curve fitting.
(BandC)RelationshipbetweenTpopand ligandconcentration for hepatocytes
is exponential. Hepatocytes (31) were stimulated with phenylephrine (B) or
vasopressin (C). (D) Relationship between Tpop and ligand concentration
for insect salivary gland stimulated with 5-HT (32) is exponential. Lines
in (B) to (D) are best fits in parameters Tmin and g to Eq. 7: for hepatocytes,
g=1.059 µM−1, Tmin = 61 s (phenylephrine), and g=0.279 µM−1, Tmin = 44 s
(vasopressin); and for salivary gland, g = 0.319 nM−1, Tmin = 16 s.
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Figure 1.2. Our approach for dissecting the crosstalk between Ca2+ signaling and mitochondrial
metabolism. The crosstalk between IP3-mediated Ca2+ signaling and mitochondrial metabolism is
mathematically modeled and the predicted scenarios are tested by Ca2+ imaging and metabolic flux
analyses. The extracted Ca2+ signals are analyzed by the developed software and the results are used
for validation and improvement of the model. We also used the outcome of Ca2+ imaging experi-
ments for designing the experiments of flux analysis and vice versa. Thus, we performed all steps
of a system’s biology approach (Figure 1.1) to have a mechanistic understanding of the biological
problem.

nals, tune peak detection parameters for each signal, examine detected peaks/nadirs of Ca2+

signals and access the quantified descriptors of Ca2+ spikes in the form of an excel or text
file.

To know the effect of IP3-mediated Ca2+ signaling on the mitochondrial metabolism, we
measure glucose and glutamine uptake rate for different agonist concentrations. To quan-
tify glucose and glutamine uptake rate, we measure the remaining metabolites within the
medium and then compute the consumed amount of glucose and glutamine over the time.
By normalizing the total glucose or glutamine uptake rate to the cell number, we obtain the
glucose or glutamine uptake rates per cell. Together with the measured periods of Ca2+ sig-
nals for different agonist concentration, these uptake rates can be expressed as a metabolic
decoding relation of Ca2+ signaling. Finally, we investigate the effect of IP3-mediated Ca2+
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Impact of mitochondrial substrate on Ca2+

Decreasing mitochondrial substrates leads to decreasing cytosolic 
ATP and increasing frequency of Ca2+ signals.
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FIG. 2. Variability in Ca2+ signals. A: The transient cy-
tosolic Ca2+ concentration of an astrocyte stimulated with
10 µM ATP (upper panel) exhibits some variability as indi-
cated by the variable individual ISIs (lower panel). B: An
astrocyte of the same experiments shows slower and more
irregular spiking pointing to the cellular heterogeneity. C:
The systematic analysis of the standard deviation � of ISI
versus the average ISI Tav for HeLa cells stimulated with
100 µM histamine reveals a linear dependence in accordance
with the moment relation (2) where each data point corre-
sponds to the characteristic of an individual cell. D: The
�-Tav relation of astrocytes stimulated with 10 µM ATP ex-
hibits also a linear dependence with a di↵erent slope than
HeLa cells. Tav-Tmin is the average stochastic part of the ISI.

like manner. Waves occur if a critical number of releas-
ing clusters is reached16,43,44. The randomness of pu↵s
causes randomness of spike timing with a linear relation
between the standard deviation � of interspike intervals
(ISI) and the average Tav

� = ↵ (Tav � Tmin) (2)

as shown in Fig. 2 and further for 8 cell types and 10
conditions27,39,45–47 (see also48). The slope ↵ of this
relation between SD and average is the same for all
cells of the same type stimulated with the same ago-
nist27,39,45,46,49 and robust against changes in stimulation
strength27, pharmacological perturbations27, changes in
bu↵ering conditions39, and the large cell variability. It
has been verified even in cells not exhibiting channel
clusters and pu↵s46. Values of ↵ are for example about
0.2 for hepatocytes stimulated with vasopressin, 0.25 for
HEK cells stimulated with CCh, 0.37 for hepatocytes
stimulated with phenylephrine27, 0.7 for PLA cells49 and
close to 1 for spontaneously spiking astrocytes39. Con-
sequently, the standard deviation is of the same order of
magnitude as the average ISI.

The standard deviation of ISI of oscillatory systems
moving on a limit cycle in phase space and perturbed by
noise is typically smaller than the values measured for
Ca2+ spiking50, and/or the cumulant relation may ex-

hibit a negative slope50. Varying parameter values across
the range covered by cell variability and the perturba-
tions causes loss of a unique relation between � and Tav

50

with these oscillatory systems, since the period and the
noise causing the standard deviation are determined by
di↵erential processes. Thus the robustness of ↵ against
cell variability and perturbations can hardly be recon-
ciled with an oscillatory dynamics, but points rather to a
stochastic process determining both the stochastic part
of the ISI following Tmin and �.
The second parameter of Eq. (2), the absolute refrac-

tory period Tmin, was also found to be the same for all
individual cells of the same type stimulated with the same
agonist27,39. When Tmin has passed, the pu↵ probability
recovers from 0 gradually to its asymptotic value. This
slow recovery delays initiation of the next spike. That
spike may occur during recovery, if the asymptotic spike
generation probability is large compared to the recovery
rate, or after recovery in the opposite case. The con-
tribution of this stochastic part of the ISI to the total
average ISI has been thoroughly investigated and is well
known. It contributes typically 40%-70% to the total av-
erage ISI, and the measured range is from 8% to 95%
contribution27,39,45–47. The recovery reduces also the SD
(of the stochastic part) of the ISI27,39,45–47. The slower
the recovery the smaller is the ratio of SD to average ISI
(coe�cient of variation CV)51.
The wave-nucleation like generation of global release

spikes as well as the ISI statistics strongly suggest ex-
citability as the dynamic regime of IP3 induced Ca2+

spiking in agreement with the analysis of the local dy-
namics. Excitable systems exhibit a stationary state
which is stable against small perturbations. However,
perturbations above the excitation threshold are ampli-
fied to a transition to the excited state. The stochastic
behavior of channel clusters causes incidental local tran-
sitions to the excited state which then spread with some
probability into the whole cell. The resulting large frac-
tion of open clusters - i.e. a release spike - causing a
high Ca2+ concentration and high open probability are
the excited state of Ca2+ dynamics. This state is termi-
nated by negative feedback acting on a slower time scale
than the excitation. The probability for generating this
supercritical local excitation fixes the average stochastic
part Tav-Tmin and the standard deviation �.
The complete distribution of ISI cannot be easily de-

termined from experimental data since measured spike
trains are not longer than about 60 ISI. Fusion of ISI se-
quences normalised by Tav have been used as a surrogate
data set and led to skewed distributions with an absolute
refractory period52. More sophisticated methods based
on the time rescaling theorem and Kolmogorov-Smirnov
tests for comparison of measured and hypothetical dis-
tributions identified an inhomogeneous Gamma distribu-
tion as the most likely experimental ISI distribution with
time dependent stimulus53.
The response of the average ISI to stimulation with ex-

tracellular agonists has features applying to all of the four
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FIG. 2. Variability in Ca2+ signals. A: The transient cy-
tosolic Ca2+ concentration of an astrocyte stimulated with
10 µM ATP (upper panel) exhibits some variability as indi-
cated by the variable individual ISIs (lower panel). B: An
astrocyte of the same experiments shows slower and more
irregular spiking pointing to the cellular heterogeneity. C:
The systematic analysis of the standard deviation � of ISI
versus the average ISI Tav for HeLa cells stimulated with
100 µM histamine reveals a linear dependence in accordance
with the moment relation (2) where each data point corre-
sponds to the characteristic of an individual cell. D: The
�-Tav relation of astrocytes stimulated with 10 µM ATP ex-
hibits also a linear dependence with a di↵erent slope than
HeLa cells. Tav-Tmin is the average stochastic part of the ISI.

like manner. Waves occur if a critical number of releas-
ing clusters is reached16,43,44. The randomness of pu↵s
causes randomness of spike timing with a linear relation
between the standard deviation � of interspike intervals
(ISI) and the average Tav

� = ↵ (Tav � Tmin) (2)

as shown in Fig. 2 and further for 8 cell types and 10
conditions27,39,45–47 (see also48). The slope ↵ of this
relation between SD and average is the same for all
cells of the same type stimulated with the same ago-
nist27,39,45,46,49 and robust against changes in stimulation
strength27, pharmacological perturbations27, changes in
bu↵ering conditions39, and the large cell variability. It
has been verified even in cells not exhibiting channel
clusters and pu↵s46. Values of ↵ are for example about
0.2 for hepatocytes stimulated with vasopressin, 0.25 for
HEK cells stimulated with CCh, 0.37 for hepatocytes
stimulated with phenylephrine27, 0.7 for PLA cells49 and
close to 1 for spontaneously spiking astrocytes39. Con-
sequently, the standard deviation is of the same order of
magnitude as the average ISI.

The standard deviation of ISI of oscillatory systems
moving on a limit cycle in phase space and perturbed by
noise is typically smaller than the values measured for
Ca2+ spiking50, and/or the cumulant relation may ex-

hibit a negative slope50. Varying parameter values across
the range covered by cell variability and the perturba-
tions causes loss of a unique relation between � and Tav

50

with these oscillatory systems, since the period and the
noise causing the standard deviation are determined by
di↵erential processes. Thus the robustness of ↵ against
cell variability and perturbations can hardly be recon-
ciled with an oscillatory dynamics, but points rather to a
stochastic process determining both the stochastic part
of the ISI following Tmin and �.
The second parameter of Eq. (2), the absolute refrac-

tory period Tmin, was also found to be the same for all
individual cells of the same type stimulated with the same
agonist27,39. When Tmin has passed, the pu↵ probability
recovers from 0 gradually to its asymptotic value. This
slow recovery delays initiation of the next spike. That
spike may occur during recovery, if the asymptotic spike
generation probability is large compared to the recovery
rate, or after recovery in the opposite case. The con-
tribution of this stochastic part of the ISI to the total
average ISI has been thoroughly investigated and is well
known. It contributes typically 40%-70% to the total av-
erage ISI, and the measured range is from 8% to 95%
contribution27,39,45–47. The recovery reduces also the SD
(of the stochastic part) of the ISI27,39,45–47. The slower
the recovery the smaller is the ratio of SD to average ISI
(coe�cient of variation CV)51.
The wave-nucleation like generation of global release

spikes as well as the ISI statistics strongly suggest ex-
citability as the dynamic regime of IP3 induced Ca2+

spiking in agreement with the analysis of the local dy-
namics. Excitable systems exhibit a stationary state
which is stable against small perturbations. However,
perturbations above the excitation threshold are ampli-
fied to a transition to the excited state. The stochastic
behavior of channel clusters causes incidental local tran-
sitions to the excited state which then spread with some
probability into the whole cell. The resulting large frac-
tion of open clusters - i.e. a release spike - causing a
high Ca2+ concentration and high open probability are
the excited state of Ca2+ dynamics. This state is termi-
nated by negative feedback acting on a slower time scale
than the excitation. The probability for generating this
supercritical local excitation fixes the average stochastic
part Tav-Tmin and the standard deviation �.
The complete distribution of ISI cannot be easily de-

termined from experimental data since measured spike
trains are not longer than about 60 ISI. Fusion of ISI se-
quences normalised by Tav have been used as a surrogate
data set and led to skewed distributions with an absolute
refractory period52. More sophisticated methods based
on the time rescaling theorem and Kolmogorov-Smirnov
tests for comparison of measured and hypothetical dis-
tributions identified an inhomogeneous Gamma distribu-
tion as the most likely experimental ISI distribution with
time dependent stimulus53.
The response of the average ISI to stimulation with ex-

tracellular agonists has features applying to all of the four
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FIG. 2. Variability in Ca2+ signals. A: The transient cy-
tosolic Ca2+ concentration of an astrocyte stimulated with
10 µM ATP (upper panel) exhibits some variability as indi-
cated by the variable individual ISIs (lower panel). B: An
astrocyte of the same experiments shows slower and more
irregular spiking pointing to the cellular heterogeneity. C:
The systematic analysis of the standard deviation � of ISI
versus the average ISI Tav for HeLa cells stimulated with
100 µM histamine reveals a linear dependence in accordance
with the moment relation (2) where each data point corre-
sponds to the characteristic of an individual cell. D: The
�-Tav relation of astrocytes stimulated with 10 µM ATP ex-
hibits also a linear dependence with a di↵erent slope than
HeLa cells. Tav-Tmin is the average stochastic part of the ISI.

like manner. Waves occur if a critical number of releas-
ing clusters is reached16,43,44. The randomness of pu↵s
causes randomness of spike timing with a linear relation
between the standard deviation � of interspike intervals
(ISI) and the average Tav

� = ↵ (Tav � Tmin) (2)

as shown in Fig. 2 and further for 8 cell types and 10
conditions27,39,45–47 (see also48). The slope ↵ of this
relation between SD and average is the same for all
cells of the same type stimulated with the same ago-
nist27,39,45,46,49 and robust against changes in stimulation
strength27, pharmacological perturbations27, changes in
bu↵ering conditions39, and the large cell variability. It
has been verified even in cells not exhibiting channel
clusters and pu↵s46. Values of ↵ are for example about
0.2 for hepatocytes stimulated with vasopressin, 0.25 for
HEK cells stimulated with CCh, 0.37 for hepatocytes
stimulated with phenylephrine27, 0.7 for PLA cells49 and
close to 1 for spontaneously spiking astrocytes39. Con-
sequently, the standard deviation is of the same order of
magnitude as the average ISI.

The standard deviation of ISI of oscillatory systems
moving on a limit cycle in phase space and perturbed by
noise is typically smaller than the values measured for
Ca2+ spiking50, and/or the cumulant relation may ex-

hibit a negative slope50. Varying parameter values across
the range covered by cell variability and the perturba-
tions causes loss of a unique relation between � and Tav

50

with these oscillatory systems, since the period and the
noise causing the standard deviation are determined by
di↵erential processes. Thus the robustness of ↵ against
cell variability and perturbations can hardly be recon-
ciled with an oscillatory dynamics, but points rather to a
stochastic process determining both the stochastic part
of the ISI following Tmin and �.
The second parameter of Eq. (2), the absolute refrac-

tory period Tmin, was also found to be the same for all
individual cells of the same type stimulated with the same
agonist27,39. When Tmin has passed, the pu↵ probability
recovers from 0 gradually to its asymptotic value. This
slow recovery delays initiation of the next spike. That
spike may occur during recovery, if the asymptotic spike
generation probability is large compared to the recovery
rate, or after recovery in the opposite case. The con-
tribution of this stochastic part of the ISI to the total
average ISI has been thoroughly investigated and is well
known. It contributes typically 40%-70% to the total av-
erage ISI, and the measured range is from 8% to 95%
contribution27,39,45–47. The recovery reduces also the SD
(of the stochastic part) of the ISI27,39,45–47. The slower
the recovery the smaller is the ratio of SD to average ISI
(coe�cient of variation CV)51.
The wave-nucleation like generation of global release

spikes as well as the ISI statistics strongly suggest ex-
citability as the dynamic regime of IP3 induced Ca2+

spiking in agreement with the analysis of the local dy-
namics. Excitable systems exhibit a stationary state
which is stable against small perturbations. However,
perturbations above the excitation threshold are ampli-
fied to a transition to the excited state. The stochastic
behavior of channel clusters causes incidental local tran-
sitions to the excited state which then spread with some
probability into the whole cell. The resulting large frac-
tion of open clusters - i.e. a release spike - causing a
high Ca2+ concentration and high open probability are
the excited state of Ca2+ dynamics. This state is termi-
nated by negative feedback acting on a slower time scale
than the excitation. The probability for generating this
supercritical local excitation fixes the average stochastic
part Tav-Tmin and the standard deviation �.
The complete distribution of ISI cannot be easily de-

termined from experimental data since measured spike
trains are not longer than about 60 ISI. Fusion of ISI se-
quences normalised by Tav have been used as a surrogate
data set and led to skewed distributions with an absolute
refractory period52. More sophisticated methods based
on the time rescaling theorem and Kolmogorov-Smirnov
tests for comparison of measured and hypothetical dis-
tributions identified an inhomogeneous Gamma distribu-
tion as the most likely experimental ISI distribution with
time dependent stimulus53.
The response of the average ISI to stimulation with ex-

tracellular agonists has features applying to all of the four

4

 0
 0.5

 1

∆
F

 
 0

 50
 100

 0  1250  2500

IS
I (

s)

Time (s) 

 0
 0.5

 1

∆
F

 
 0

 200
 400

 0  1250  2500

IS
I (

s)

Time (s) 

��

���

����

�� ��� ���� ����

��
��
�

���	

�
���
�
��

���

���

�� ��� ��� ��� ����

��
��
�

�	
�

��
����

A 

C D 

B 

FIG. 2. Variability in Ca2+ signals. A: The transient cy-
tosolic Ca2+ concentration of an astrocyte stimulated with
10 µM ATP (upper panel) exhibits some variability as indi-
cated by the variable individual ISIs (lower panel). B: An
astrocyte of the same experiments shows slower and more
irregular spiking pointing to the cellular heterogeneity. C:
The systematic analysis of the standard deviation � of ISI
versus the average ISI Tav for HeLa cells stimulated with
100 µM histamine reveals a linear dependence in accordance
with the moment relation (2) where each data point corre-
sponds to the characteristic of an individual cell. D: The
�-Tav relation of astrocytes stimulated with 10 µM ATP ex-
hibits also a linear dependence with a di↵erent slope than
HeLa cells. Tav-Tmin is the average stochastic part of the ISI.

like manner. Waves occur if a critical number of releas-
ing clusters is reached16,43,44. The randomness of pu↵s
causes randomness of spike timing with a linear relation
between the standard deviation � of interspike intervals
(ISI) and the average Tav

� = ↵ (Tav � Tmin) (2)

as shown in Fig. 2 and further for 8 cell types and 10
conditions27,39,45–47 (see also48). The slope ↵ of this
relation between SD and average is the same for all
cells of the same type stimulated with the same ago-
nist27,39,45,46,49 and robust against changes in stimulation
strength27, pharmacological perturbations27, changes in
bu↵ering conditions39, and the large cell variability. It
has been verified even in cells not exhibiting channel
clusters and pu↵s46. Values of ↵ are for example about
0.2 for hepatocytes stimulated with vasopressin, 0.25 for
HEK cells stimulated with CCh, 0.37 for hepatocytes
stimulated with phenylephrine27, 0.7 for PLA cells49 and
close to 1 for spontaneously spiking astrocytes39. Con-
sequently, the standard deviation is of the same order of
magnitude as the average ISI.

The standard deviation of ISI of oscillatory systems
moving on a limit cycle in phase space and perturbed by
noise is typically smaller than the values measured for
Ca2+ spiking50, and/or the cumulant relation may ex-

hibit a negative slope50. Varying parameter values across
the range covered by cell variability and the perturba-
tions causes loss of a unique relation between � and Tav

50

with these oscillatory systems, since the period and the
noise causing the standard deviation are determined by
di↵erential processes. Thus the robustness of ↵ against
cell variability and perturbations can hardly be recon-
ciled with an oscillatory dynamics, but points rather to a
stochastic process determining both the stochastic part
of the ISI following Tmin and �.
The second parameter of Eq. (2), the absolute refrac-

tory period Tmin, was also found to be the same for all
individual cells of the same type stimulated with the same
agonist27,39. When Tmin has passed, the pu↵ probability
recovers from 0 gradually to its asymptotic value. This
slow recovery delays initiation of the next spike. That
spike may occur during recovery, if the asymptotic spike
generation probability is large compared to the recovery
rate, or after recovery in the opposite case. The con-
tribution of this stochastic part of the ISI to the total
average ISI has been thoroughly investigated and is well
known. It contributes typically 40%-70% to the total av-
erage ISI, and the measured range is from 8% to 95%
contribution27,39,45–47. The recovery reduces also the SD
(of the stochastic part) of the ISI27,39,45–47. The slower
the recovery the smaller is the ratio of SD to average ISI
(coe�cient of variation CV)51.
The wave-nucleation like generation of global release

spikes as well as the ISI statistics strongly suggest ex-
citability as the dynamic regime of IP3 induced Ca2+

spiking in agreement with the analysis of the local dy-
namics. Excitable systems exhibit a stationary state
which is stable against small perturbations. However,
perturbations above the excitation threshold are ampli-
fied to a transition to the excited state. The stochastic
behavior of channel clusters causes incidental local tran-
sitions to the excited state which then spread with some
probability into the whole cell. The resulting large frac-
tion of open clusters - i.e. a release spike - causing a
high Ca2+ concentration and high open probability are
the excited state of Ca2+ dynamics. This state is termi-
nated by negative feedback acting on a slower time scale
than the excitation. The probability for generating this
supercritical local excitation fixes the average stochastic
part Tav-Tmin and the standard deviation �.
The complete distribution of ISI cannot be easily de-

termined from experimental data since measured spike
trains are not longer than about 60 ISI. Fusion of ISI se-
quences normalised by Tav have been used as a surrogate
data set and led to skewed distributions with an absolute
refractory period52. More sophisticated methods based
on the time rescaling theorem and Kolmogorov-Smirnov
tests for comparison of measured and hypothetical dis-
tributions identified an inhomogeneous Gamma distribu-
tion as the most likely experimental ISI distribution with
time dependent stimulus53.
The response of the average ISI to stimulation with ex-

tracellular agonists has features applying to all of the four
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FIG. 2. Variability in Ca2+ signals. A: The transient cy-
tosolic Ca2+ concentration of an astrocyte stimulated with
10 µM ATP (upper panel) exhibits some variability as indi-
cated by the variable individual ISIs (lower panel). B: An
astrocyte of the same experiments shows slower and more
irregular spiking pointing to the cellular heterogeneity. C:
The systematic analysis of the standard deviation � of ISI
versus the average ISI Tav for HeLa cells stimulated with
100 µM histamine reveals a linear dependence in accordance
with the moment relation (2) where each data point corre-
sponds to the characteristic of an individual cell. D: The
�-Tav relation of astrocytes stimulated with 10 µM ATP ex-
hibits also a linear dependence with a di↵erent slope than
HeLa cells. Tav-Tmin is the average stochastic part of the ISI.

like manner. Waves occur if a critical number of releas-
ing clusters is reached16,43,44. The randomness of pu↵s
causes randomness of spike timing with a linear relation
between the standard deviation � of interspike intervals
(ISI) and the average Tav

� = ↵ (Tav � Tmin) (2)

as shown in Fig. 2 and further for 8 cell types and 10
conditions27,39,45–47 (see also48). The slope ↵ of this
relation between SD and average is the same for all
cells of the same type stimulated with the same ago-
nist27,39,45,46,49 and robust against changes in stimulation
strength27, pharmacological perturbations27, changes in
bu↵ering conditions39, and the large cell variability. It
has been verified even in cells not exhibiting channel
clusters and pu↵s46. Values of ↵ are for example about
0.2 for hepatocytes stimulated with vasopressin, 0.25 for
HEK cells stimulated with CCh, 0.37 for hepatocytes
stimulated with phenylephrine27, 0.7 for PLA cells49 and
close to 1 for spontaneously spiking astrocytes39. Con-
sequently, the standard deviation is of the same order of
magnitude as the average ISI.

The standard deviation of ISI of oscillatory systems
moving on a limit cycle in phase space and perturbed by
noise is typically smaller than the values measured for
Ca2+ spiking50, and/or the cumulant relation may ex-

hibit a negative slope50. Varying parameter values across
the range covered by cell variability and the perturba-
tions causes loss of a unique relation between � and Tav

50

with these oscillatory systems, since the period and the
noise causing the standard deviation are determined by
di↵erential processes. Thus the robustness of ↵ against
cell variability and perturbations can hardly be recon-
ciled with an oscillatory dynamics, but points rather to a
stochastic process determining both the stochastic part
of the ISI following Tmin and �.
The second parameter of Eq. (2), the absolute refrac-

tory period Tmin, was also found to be the same for all
individual cells of the same type stimulated with the same
agonist27,39. When Tmin has passed, the pu↵ probability
recovers from 0 gradually to its asymptotic value. This
slow recovery delays initiation of the next spike. That
spike may occur during recovery, if the asymptotic spike
generation probability is large compared to the recovery
rate, or after recovery in the opposite case. The con-
tribution of this stochastic part of the ISI to the total
average ISI has been thoroughly investigated and is well
known. It contributes typically 40%-70% to the total av-
erage ISI, and the measured range is from 8% to 95%
contribution27,39,45–47. The recovery reduces also the SD
(of the stochastic part) of the ISI27,39,45–47. The slower
the recovery the smaller is the ratio of SD to average ISI
(coe�cient of variation CV)51.
The wave-nucleation like generation of global release

spikes as well as the ISI statistics strongly suggest ex-
citability as the dynamic regime of IP3 induced Ca2+

spiking in agreement with the analysis of the local dy-
namics. Excitable systems exhibit a stationary state
which is stable against small perturbations. However,
perturbations above the excitation threshold are ampli-
fied to a transition to the excited state. The stochastic
behavior of channel clusters causes incidental local tran-
sitions to the excited state which then spread with some
probability into the whole cell. The resulting large frac-
tion of open clusters - i.e. a release spike - causing a
high Ca2+ concentration and high open probability are
the excited state of Ca2+ dynamics. This state is termi-
nated by negative feedback acting on a slower time scale
than the excitation. The probability for generating this
supercritical local excitation fixes the average stochastic
part Tav-Tmin and the standard deviation �.
The complete distribution of ISI cannot be easily de-

termined from experimental data since measured spike
trains are not longer than about 60 ISI. Fusion of ISI se-
quences normalised by Tav have been used as a surrogate
data set and led to skewed distributions with an absolute
refractory period52. More sophisticated methods based
on the time rescaling theorem and Kolmogorov-Smirnov
tests for comparison of measured and hypothetical dis-
tributions identified an inhomogeneous Gamma distribu-
tion as the most likely experimental ISI distribution with
time dependent stimulus53.
The response of the average ISI to stimulation with ex-

tracellular agonists has features applying to all of the four
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How does Ca2+ spiking affect enzyme activity and substrate uptake? 
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Figure 1.2. Our approach for dissecting the crosstalk between Ca2+ signaling and mitochondrial
metabolism. The crosstalk between IP3-mediated Ca2+ signaling and mitochondrial metabolism is
mathematically modeled and the predicted scenarios are tested by Ca2+ imaging and metabolic flux
analyses. The extracted Ca2+ signals are analyzed by the developed software and the results are used
for validation and improvement of the model. We also used the outcome of Ca2+ imaging experi-
ments for designing the experiments of flux analysis and vice versa. Thus, we performed all steps
of a system’s biology approach (Figure 1.1) to have a mechanistic understanding of the biological
problem.

nals, tune peak detection parameters for each signal, examine detected peaks/nadirs of Ca2+

signals and access the quantified descriptors of Ca2+ spikes in the form of an excel or text
file.

To know the effect of IP3-mediated Ca2+ signaling on the mitochondrial metabolism, we
measure glucose and glutamine uptake rate for different agonist concentrations. To quan-
tify glucose and glutamine uptake rate, we measure the remaining metabolites within the
medium and then compute the consumed amount of glucose and glutamine over the time.
By normalizing the total glucose or glutamine uptake rate to the cell number, we obtain the
glucose or glutamine uptake rates per cell. Together with the measured periods of Ca2+ sig-
nals for different agonist concentration, these uptake rates can be expressed as a metabolic
decoding relation of Ca2+ signaling. Finally, we investigate the effect of IP3-mediated Ca2+

6
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Metabolic Decoding of Ca2+ Spikes
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Integration of Ca2+ triggering activity 
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stochastic model

6.2. Future Perspectives
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Figure 6.1. Simulation of the relation between frequency of Ca2+ signals and PDH enzyme activity
in our Ca2+-mitochondrial model. (A) Increasing Ca2+ concentration leads to increasing the flux of
PDH revealing Ca2+ activates PDH enzyme. (B) Our Ca2+-mitochondrial model cannot to exhibit
the sigmoidal relation between frequency of Ca2+ spikes and PDH enzyme activity.
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Indicates further importance of stochastic dynamics
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Figure 2. Extraction and Processing of Single-Cell Transcriptomes by Drop-Seq
(A) Schematic of single-cell mRNA-seq library preparation with Drop-seq. A custom-designed microfluidic device joins two aqueous flows before their

compartmentalization into discrete droplets. One flow contains cells, and the other flow contains barcoded primer beads suspended in a lysis buffer. Immediately

following droplet formation, the cell is lysed and releases its mRNAs, which then hybridize to the primers on the microparticle surface. The droplets are broken by

adding a reagent to destabilize the oil-water interface (Experimental Procedures), and the microparticles collected and washed. The mRNAs are then reverse-

transcribed in bulk, forming STAMPs, and template switching is used to introduce a PCR handle downstream of the synthesized cDNA (Zhu et al., 2001).

(B) Microfluidic device used in Drop-seq. Beads (brown in image), suspended in a lysis agent, enter the device from the central channel; cells enter from the top

and bottom. Laminar flow prevents mixing of the two aqueous inputs prior to droplet formation (see alsoMovie S1). Schematics of the device design and how it is

operated can be found in Figure S2.

(C) Molecular elements of a Drop-seq sequencing library. The first read yields the cell barcode and UMI. The second, paired read interrogates sequence from the

cDNA (50 bp is typically sequenced); this sequence is then aligned to the genome to determine a transcript’s gene of origin.

(D) In silico reconstruction of thousands of single-cell transcriptomes. Millions of paired-end reads are generated from a Drop-seq library on a high-throughput

sequencer. The reads are first aligned to a reference genome to identify the gene-of-origin of the cDNA. Next, reads are organized by their cell barcodes,

and individual UMIs are counted for each gene in each cell (Supplemental Experimental Procedures). The result, shown at far right, is a ‘‘digital expressionmatrix’’

in which each column corresponds to a cell, each row corresponds to a gene, and each entry is the integer number of transcripts detected from that gene, in

that cell.
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Figure 1: Bringing Waddington’s vision to action. In his visionary work Waddington conceptualized cell fate in an 
epigenetic landscape (Waddington 1966). Within this illustration (left panel) a cell represented as a ball is rolling down 
a hill and cellular differentiation occurs as a “series of branching decisions, taken under the control of genes” 
(Waddington 1940). Today we know that cell fate involves several spatiotemporal scales (middle panel) where the fast 
and stochastic dynamics on the molecular scales is regulated on the level of the cell by auto- and paracrine signalling 
(shown by grey and red arrows, respectively) leading to cellular heterogeneity (Skupin 2008; Altschuler 2010) and 
coordination of multicellular organization in tissues and organisms (Raj 2008; Eldar 2010). The interdisciplinary 
ISCO_DB project aims at further developing and applying single cell omics approaches to characterize cell fate as 
“cellular nanoevolution” in multicellular model systems. The obtained high dimensional trait distributions P(x) will be 
subsequently analysed from a mechanistic perspective using methods from non-equilibrium statistical physics to unveil 
general underlying principles of multicellularity (right panel), where cell differentiation can be quantified by 
mathematical solid potentials U = – log(P) shown in the right lower panel (Skupin 2015). By integrating over different 
cellular levels and model systems, the vision of the project is to establish the basics for a novel “distribution biology” 
framework as a higher-level description of development. [Some figure elements compiled in the middle panel are taken 
from (Farris 2015; Human 2014; Ionarchive 2014; Novation 2008; Putney 1993).] 
 

resolution, either by averaging over many cells like in microarray and proteomics technologies or by 
restriction to smaller subsets of cellular properties due to limited availability and combinability of antibodies. 
In contrast, recent developments in single cell omics analysis methods allow now for a more 
comprehensive characterization of cell states in high throughput manner (Tang 2009; Shalek 2013 & 2014; 
Makosko 2015; Skupin 2015). These achievements have triggered an on-going discussion how to use and 
interpret the high-dimensional data from a statistical physics perspective to characterise dynamics in 
multicellularity (Pujadas 2012; Garcia-Ojalvo 2012; MacArthur 2013). The major challenge for the 
suggested approaches is the required incessant interdisciplinary strategy needed for a fast and intensive 
interplay of theory-based hypothesis and experimental data generation. To respect these central requirements 
I will interrelate single cell omics methods directly with data analysis and theory developments. 
Therefore the project will use at the institute available, established single cell pipelines like Fluidigm’s C1 
system for transcriptional and epigenetic characterisation, further develop our ELISA-based customized 
single cell barcode chip (SCBC) for protein analysis (Shi 2012) and establish a beads-sequencing based 
method for a combined single cell transcription and protein analysis (TPA) workflow. These complementary 
approaches will be applied to clinical relevant, prototypic model systems of development (see below) for 
the establishment of “cellular nanoevolution” as a mechanistic multiscale model of cell fate. Although the 
mechanistic analysis of the resulting high-dimensional distribution data will extend our knowledge of the 
specific model systems and lead to new molecular insights of related complex diseases, it will not provide a 
solid theory of multicellularity. For this purpose, the distribution dynamics will be analysed by the 
proposed “distribution biology” framework.  Applying these two physics-based concepts to complex 
biological data goes beyond the current approaches in network biology and will allow for new 
interpretation approaches like mathematically firm quasi-potentials U (Fig. 1) in analogy to Waddington’s 
epigenetic landscapes to identify generic biological principles. 
 

B. Objectives 
In order to overcome our current limitations in understanding multicellularity and to enable new approaches 
for tackling complex diseases, the overarching aim of the proposal is to lay the foundation of a new, 
distribution-based theory of cell fate and multicellular organisation with applications to medical relevant 
systems. To address this ambitious challenge, the project proposes an interdisciplinary approach that will 
integrate cutting-edge developments of single cell omics techniques (Shalek 2013, Mocasko 2015) including 

Waddington’s vision

FACS

Chapter 2 High-content screening platform to identify critical transitions 16

Figure 2.1: Screening platform components: HeLa cells were counted
using an automated cell counter. An automated liquid handling robot performs
cell seeding, fluorescence staining and applies the toxin perturbations. Images
are acquired by an automated microscope system and are stored on a file system
on a custom-designed storage facility and are automatically analyzed using a
high-performance cluster. These building blocks are modular and permit easy
adaptation to other workflows. Figure by Christophe Trefois.

toxin perturbations on the cells (see Section 2.1). The methodological details are

provided in Chapter 3. For assay developments I cooperated with Dr. Paul Antony

and Laurent Bück. For running the platform, I received experimental support from

Laurent Bück and Sandra Köglsberger. Initial scripts to perform image analysis on

the University of Luxembourg high-performance cluster (HPC) were developed by

Bob Pepin.

The first section of this chapter will provide a general overview of the screening

platform while the second section will give implementation details for the di↵erent

building blocks of the platform.

2.1 Bifurcation screening platform overview

To address the high-throughput needs of the intended critical transitions analysis,

we conceptualized and established a state of the art HCS platform. The platform

Microscopy
Kamil Suresh
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Cellular heterogeneity and gene characterization

Cell cycle (and stemness) and mito genes differ most at day 10 and 14

Indicate faster dopaminergic (mDA) neuron development
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Mutant faster reaching the end-points!

Figure adapted from: Walter et al., in preparation.
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What’s about calcium and LRRK2?
Maintenance media

Ascorbic Acid + PMA + CHIR

Differentiation media (+PMA)

Ascorbic Acid + BDNF + GDNF + TGFβ3 + dbcAMP + PMA

Differentiation media (-PMA)

Ascorbic Acid + BDNF + GDNF+ TGFβ3 + dbcAMP

a

…
Day 1-3 Day 3-9 Day 10... Day 30… Day 39

fb c d e

Figure 1: Differentiation of hNESC into dopaminergic neurons. (a) Protocol using small molecules. Bright field
images of (b) hNESCs 1 day after seeding, cultured in maintenance media containing N2B27 medium, ascorbic
acid, PMA and CHIR. (c) hNESCs 3 days after seeding, cultured in differentiation media containing N2B27 medium
ascorbic acid, BDNF, GDNF, TGFb3, dbcAMP and PMA. (d) hNESCs 10 days after seeding, cultured in differenti-
ation media as in (c) but without PMA. (e) hNESCs differentiated into neurons in well of 96 well plate after 1 month
differentiation. (f) Immunostaining of selected region in the well, showing neurons positive for nuclei with Hoechst
(blue), TUBbIII (green) and TH (red); scale bar 50mm

DMEM/F12 medium (Invitrogen/life technologies)
supplemented with 1% penicillin/streptomycin (life
technologies), 2 mM L-glutamine (life technolo-
gies), 0.5 X B27 supplement without Vitamin A (life
technologies) and 0.5X N2 supplement (life techno-
logies).

The medium to maintain the hNESC in culture
“maintenance medium” consisted of N2B27 me-
dium with 0.5 mM PMA (Enzo life sciences), 3 mM
CHIR (Axon Medchem) and 150 mM Ascorbic Acid
(Sigma Aldrich). The differentiation medium for-
mulation to induce the differentiation of hNESC to-
wards midbrain dopaminergic neurons “differenti-
ation medium with PMA” consisted in N2B27 me-
dium with 200 mM ascorbic acid, 0.01 ng/mL BDNF
(Peprotech), 0.01 ng/mL GDNF (Peprotech), 0.001
ng/mL TGFb3 (Peprotech), 2.5 mM dbcAMP (Sigma
Aldrich) and 1 mM PMA. The function of PMA in
this medium preparation was to stimulate the sonic
hedghog pathway in the cultured hNESC. 80 mL
of differentiation medium with PMA was changed
every 2 days during the first 6 days of culture in the
differentiation process. For the maturation of dif-
ferentiated neurons PMA was no longer added to
the differentiation medium “differentiation medium
without PMA” from day 7 onwards, this differenti-
ation medium without PMA was changed every 2
days during 3 weeks.

To monitor cellular morphology during differ-
entiation, bright field images were acquired auto-

matically using a Leica DMI6000 B (Germany) mi-
croscope equipped with a cooled sCMOS camera
(Neo 5.5, Andor technology, UK), both equipment
were controlled with Micro-manager (version 1.4)
using a custom Matlab (release 2013b; Mathworks)
script.

Calcium imaging

A calcium imaging assay was done on representat-
ive wells of a black CellCarrier optically clear bot-
tom, tissue treated 96 well plate (Perkin Elmer). 80
mL of 5 mM cell permeant Fluo-4 AM (Life techno-
logies) in neurobasal medium was added to cells
in selected wells at room temperature. Images of
spontaneously firing hNESC-derived neurons were
acquired using a spinning disk confocal (Zeiss cell
observer SD, Yokogawa CSU-X1) equipped with a
CMOS camera (Orca Flash 4.0, Hamamatsu). Im-
ages (2048 x 2048 pixels) were sampled at a rate of
5 Hz for ~ 3 min, stored as image stacks and ana-
lysed using custom Matlab (version 2013b; Math-
Works) scripts. From each time series, a sequence
of 400 representative frames were selected for ana-
lysis. We acquired three calcium time-series of
randomly selected fields of view in one well with
LRRK2-G2019S neurons and one well with control
neurons2.

Immunofluorescence staining

The in vitro dopaminergic neuronal phenotype can
be characterised by detecting the expression of

2RF: In the experiment, actually 3 different LRRK2-G2019S lines (and isogenic controls) were cultured. There were also 4
wells from each cell line. The aim was to complete Ca2+ imaging from ~3 representative fields of view from each well. However,
due to problems encountered when carrying out the Ca2+ imaging, far fewer useful Ca2+ imaging time series were obtained,
hence the low numbers here.

3

a c

Original

Scale 3

Scale 4

Scale 5

b

Figure 4: Automated segmentation of calcium time-series of a neuronal population. (a) Mean fluorescence frame
of a calcium time-series (top) and colour-coded segmentation of individual neuronal somata (bottom). (b) Fluor-
escence traces corresponding to the segmented neurons in (a) rank ordered by inter-spike interval. Scale bar 20
mm. (c) Effect of different wavelet scales on fluorescence intensity of a field of view containing one soma.

to random phenomenon, we located the position of
the real data in the probability distribution. The dif-
ference was considered significant when the prob-
ability of the real data was small enough.3

Results

Neuronal differentiation from wild type hNESC

Human neuroepithelial stem cells (hNESC) were
successfully differentiated into functional neurons
using an established protocol [25] (Figure 1). In
the first 2 days in culture, cells were under main-
tenance conditions, they were mainly proliferating
and forming aggregates in wells of the 96 well plate
(Figure 1a). Cellular differentiation was started at
day 3, by exposing the cells to the differentiation
medium without PMA (Figure 1c-d). hNESC un-
der this condition started to differentiate toward a
neuronal midbrain linage and significant changes
in morphology started to appear (Figure 1e). This
was confirmed by the immunostaining assay for
neurons positive for TUBbIII (green) a marker for
neuronal processes and TH (red), a marker for
dopaminergic neurons (Figure 1f).

Automated neuronal segmentation of calcium

time-series

We implemented an semi-automated analysis
pipeline (Figure 2) for quantification of neuronal
activity in calcium imaging data and applied it
to spontaneously firing hNESC-derived neurons.
An automated sparse dictionary learning algorithm
was adapted and successfully applied to segment
calcium imaging data (Figure 4a). Choosing the
right wavelet scale in this algorithm is crucial to

obtain well segmented cells. We used a wave-
let scale of 5 which better fitted our data. Smal-
ler wavelet scales yielded inhomogeneous fluores-
cence intensity within a single region of interest
representing a neuron (Figure 4c) leading to over-
segmentation. Larger wavelet scales exceeded the
limit of the dimensions of our cells and included
parts of their neighbourhood resulting in erroneous
segmentation. Another important parameter to
choose carefully is the intensity threshold of the
pixels to consider. This value represents the per-
centage of the maximum intensity of the smoothed
image. If the threshold is too low then regions
containing pixels with low intensity that might not
be cell bodies would be considered. On the other
hand, if the threshold is too high then cell bodies
with lower intensity would be excluded. Here the
thresholds we used varied between 0.18 - 0.25 de-
pending on the calcium time-series. After optim-
ising the different parameters, individual neurons
were accurately automatically segmented, colour-
coded and numbered and the measured fluores-
cence traces were rank ordered by calcium transi-
ent frequency (Figure 4b). These traces give rise to
calcium transients of different waveforms and differ-
ent frequencies showing the diversity in firing rates
and firing patterns in this neuronal culture.

Hyperactivity of LRRK2-G2019S mutant neur-

ons

To determine whether LRRK2-G2019S mutants
and WT neurons showed differences in spontan-
eous neuronal firing rate, we quantified the inter-
spike interval. We analysed these data using our

3RF: Statistical test for KL distance still to be implemented.

6

dc

a

b

Figure 5: Hyperactivity of LRRK2-G2019S mutant neurons. (a) Scatter plot of merged inter-spike intervals (ISI,
seconds) from WT and LRRK2-G2019S mutants (left) and classification of inter-spike intervals into 1 sec interval
groups (right), colours correspond to individual classes (1 - 4). (b) Scatter plots of the merged inter-spike intervals
from WT and LRRK2-G2019S neurons for each class. (c) Pie charts showing relative proportions of neurons in
each inter-spike interval class colour-coded same as in (a). (d,left) Probability density estimate of inter-spike in-
tervals for WT and LRRK2-G2019S mutant neurons showing that LRRK2-G2019S mutants tend to have shorter
inter-spike intervals. (d,right) Comparison of the original KL distance between the distributions of inter-spike in-
terval (red line) and the distance between the distributions of the KL distance for 1000 datasets each derived from
the original data subjected to randomised labelling of WT and LRRK2.

pipeline to segment individual neurons and meas-
ure the corresponding fluorescence traces. After
prepossessing of the resulted traces, we obtained
a total of 222 signals of WT neurons and 223 of
LRRK2-G2019S mutants. Inter-spike interval data-
sets from the two populations were merged to-
gether to form one dataset (Figure 5a left panel).
This dataset was separated into classes at 1 sec
intervals (Figure 5a right panel). Each class con-
tained values from both WT and LRRK2-G2019S-
mutated neurons as depicted in Figure 5b. Interest-
ingly, we observed that the proportion of neurons
carrying a LRRK2-G2019S mutation is higher than
WT in classes of short inter-spike intervals. Figure
5b shows that this proportion of LRRK2-G2019S-
mutated neurons starts to decrease as the range
of inter-spike intervals increases, while the amount
of WT neurons increases. Further analysis indic-
ated that there was a trend toward higher rates of
calcium transients in LRRK2-G2019S mutated pop-
ulation than in WT. Approximately 90% of neurons
with LRRK2-G2019S mutation exhibit inter-spike
intervals between 2.25 - 8.23 sec against less than
50% in WT (Figure 5c). The distribution of inter-

spike intervals for each population is shown in Fig-
ure 5d (left panel) and the distribution of the dis-
crepancy we measured at each iteration of random-
isation is presented in Figure 5d (right panel). This
demonstrates that the differences in inter-spike in-
terval that we observe between LRRK2-G2019S-
mutated and WT neurons are statistically signific-
ant4. Figure 6a and 6b (left panels) show mean
fluorescence frames of representative fields of view
for WT neurons and LRRK2-G2019S mutants re-
spectively. The fluorescence traces in Figure 6a
and 6b (middle panels) show that LRRK2-G2019S
mutants are more likely to have short inter-spike in-
tervals than WT neurons.

LRRK2-G2019S mutant neurons exhibit shorter

spike widths

We examined whether neurons carrying LRRK2-
G2019S mutation differed from WT neurons with
respect to spike width of calcium transients rep-
resenting the duration of a transient. After the
transient peaks were detected and the amplitudes
calculated, spike width was measured at 20% of
the amplitude of each transient (Figure 7a, left
panel). This was applied to fluorescence traces

4Stat test pending.
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Figure 5: Hyperactivity of LRRK2-G2019S mutant neurons. (a) Scatter plot of merged inter-spike intervals (ISI,
seconds) from WT and LRRK2-G2019S mutants (left) and classification of inter-spike intervals into 1 sec interval
groups (right), colours correspond to individual classes (1 - 4). (b) Scatter plots of the merged inter-spike intervals
from WT and LRRK2-G2019S neurons for each class. (c) Pie charts showing relative proportions of neurons in
each inter-spike interval class colour-coded same as in (a). (d,left) Probability density estimate of inter-spike in-
tervals for WT and LRRK2-G2019S mutant neurons showing that LRRK2-G2019S mutants tend to have shorter
inter-spike intervals. (d,right) Comparison of the original KL distance between the distributions of inter-spike in-
terval (red line) and the distance between the distributions of the KL distance for 1000 datasets each derived from
the original data subjected to randomised labelling of WT and LRRK2.
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ure the corresponding fluorescence traces. After
prepossessing of the resulted traces, we obtained
a total of 222 signals of WT neurons and 223 of
LRRK2-G2019S mutants. Inter-spike interval data-
sets from the two populations were merged to-
gether to form one dataset (Figure 5a left panel).
This dataset was separated into classes at 1 sec
intervals (Figure 5a right panel). Each class con-
tained values from both WT and LRRK2-G2019S-
mutated neurons as depicted in Figure 5b. Interest-
ingly, we observed that the proportion of neurons
carrying a LRRK2-G2019S mutation is higher than
WT in classes of short inter-spike intervals. Figure
5b shows that this proportion of LRRK2-G2019S-
mutated neurons starts to decrease as the range
of inter-spike intervals increases, while the amount
of WT neurons increases. Further analysis indic-
ated that there was a trend toward higher rates of
calcium transients in LRRK2-G2019S mutated pop-
ulation than in WT. Approximately 90% of neurons
with LRRK2-G2019S mutation exhibit inter-spike
intervals between 2.25 - 8.23 sec against less than
50% in WT (Figure 5c). The distribution of inter-

spike intervals for each population is shown in Fig-
ure 5d (left panel) and the distribution of the dis-
crepancy we measured at each iteration of random-
isation is presented in Figure 5d (right panel). This
demonstrates that the differences in inter-spike in-
terval that we observe between LRRK2-G2019S-
mutated and WT neurons are statistically signific-
ant4. Figure 6a and 6b (left panels) show mean
fluorescence frames of representative fields of view
for WT neurons and LRRK2-G2019S mutants re-
spectively. The fluorescence traces in Figure 6a
and 6b (middle panels) show that LRRK2-G2019S
mutants are more likely to have short inter-spike in-
tervals than WT neurons.

LRRK2-G2019S mutant neurons exhibit shorter

spike widths

We examined whether neurons carrying LRRK2-
G2019S mutation differed from WT neurons with
respect to spike width of calcium transients rep-
resenting the duration of a transient. After the
transient peaks were detected and the amplitudes
calculated, spike width was measured at 20% of
the amplitude of each transient (Figure 7a, left
panel). This was applied to fluorescence traces
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à LRRK2 mutation induces hyperactivity that may increase 
mitochondrial activity and aging …

BUT: no variability (s) encoding

(Flemming lab)



3. Epithelial to mesenchymal transition
essential in:

epithelial

à tissue cells

mesenchymal

àmobile multipotent cells

[Peinato,	2007]
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Branching analysis with dynamic clustering
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Ca2+ in physiology Experiment Modeling Summary Appendix

How to understand Ca2+ spiking

Tstoch described by:
time-dependent Poisson process
with rate Λ(t) = λ

(

1 − e−ξt)

λ ⇒ nucleation rate
ξ ⇒ regeneration rate

probability of a spike at time t: Tdet Tstoch

ISI consists of 2 parts ...

ISI

Pξ(t) = λ
(

1 − e−ξt) exp
[

−
∫ t

0 λ
(

1 − e−ξt′
)

dt ′
]

minimal ISI

linear dependence of standard
deviation σ on mean Tav
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• CADM3ê epithelial marker
• CDH1ê epithelial marker
• CDH3ê epithelial marker
• EPCAMé epithelial marker

• DSPê epithelial marker
• COL17A1ê epithelial marker
• BCAMê epithelial marker
• CD63é mesenchymal marker
• FN1ê mesenchymal marker
• FSTê epithelial marker
• FXYD3é epithelial marker, insufficient for EMT(involved in E cell polarity)
• ITGB4ê epithelial marker
• JUPê epithelial marker
• LAMB3ê epithelial marker
• LAMC2ê mesenchymal(EMT potential) in lung adenocarcinoma
• TMSB4Xé facilitate cell motility(EMT)

Stochastic spiking supports EMT

… and increases cellular heterogeneity – to be followed up 



Ca2+ as the mediator of life: 
balance energy and information processing

à using energy for gene-environment adaptation away from equilibrium

P

We assessed whether stimulation steps were more reliably encoded by
fold changes (b) in the average stochastic period of the ISI (Tav – Tmin) or
by absolute responses (Tav) by quantifying the variability of each (Fig. 3F),
using the data shown in Fig. 3 (C and D). To illustrate the methods used,
we describe this analysis for HEK293 cells stimulated first with 30 mM
and then with 150 mM CCh as an example (Fig. 3G). We plotted Tav1 and
Tav2 for each single cell. If absolute responses more reliably encoded the
stimulation steps, all values of Tav2 should be similar to the population
average (that is, Tav2 = Tpop2, dashed line in Fig. 3G). If fold changes more
reliably encoded the stimulation steps, the data should obey Eq. 2, which
we rewrite for the purpose of this analysis as Tav2 = (1 − b)Tav1 + bTmin
(Fig. 3G, solid line). To determine whether stimulation steps were more
reliably encoded by absolute responses or fold changes, we compared the
root mean square distances of the data points from these lines. We divided
the distance by Tpop2 to obtain the coefficient of variation (CV), which can
then be compared across the different experiments (a to g) in Fig. 3F (see
Materials and Methods, Eqs. 9 and 10). On the basis of this analysis, we
found that the relative deviation of Tav2 from its population average Tpop2
[CV(Tpop2), Eq. 9] was consistently larger than its relative deviation from
the encoding relation [CV(b), Eq. 10] (Fig. 3F). Thus, we concluded that b
represents individual cell behavior better than does the population average
(Tpop), and b encodes stimulation more reliably than does the average ISI.

Because spike amplitudes and durations were unaffected by stimulus
intensity, the integral ratio (IR), that is, the ratio of the area beneath the
Ca2+ spikes occurring during the stationary phases of responses to the first
stimulus relative to that for the second stimulus, is given by Eq. 11 (see
Materials and Methods). To determine whether absolute values or fold
changes in the integrated Ca2+ signals more reliably encoded differences
in stimulation intensity, we compared the CV(Tpop2) with the CVof the in-
tegral ratio CV(IR) for HEK293 cells and hepatocytes stimulated with
paired steps in CCh or phenylephrine concentration (Fig. 3F). This compar-
ison showed that fold changes of the integrated Ca2+ signal are less variable
than is Tav2. Thus, this analysis indicated that fold changes in the average
stochastic period of the ISI and fold changes in the integrated Ca2+ signal
more reliably encode stimulus changes than does the average ISI (Tav).

Fold changes reliably encode stimulus intensity
through an exponential relationship between the
stimulus concentration and response
For HEK293 cells exposed to paired steps in CCh concentration, we
observed that b depended only on the step size (D[CCh]) and not the
initial CCh concentration. This is illustrated in Fig. 3H, where the relation-
ship between D[CCh] and b was the same whether the first challenge was
with 30 mM (red symbols) or 50 mMCCh (blue). We showed in eq. S7 (see
text S2:Mathematical derivation of the concentration-response relation) that
this observation and Eq. 2 result in the differential equation:

dðTav − TminÞ
d½CCh$ ¼ −gðTav − TminÞ; g ¼ ∂b

∂D½CCh$

!!!!!
D½CCh$¼ 0

ð4Þ

The solution to Eq. 4 is the concentration-response relation, which pre-
dicts an exponential dependence of Tav on CCh concentration:

Tav ¼ e−gð½CCh$−½CCh$ref ÞðTav;ref − TminÞ þ Tmin ð5Þ

Tav,ref is the value of the average ISI measured at a reference CCh
concentration ([CCh]ref), and g describes the sensitivity of the stochastic pe-
riod of Tav to CCh. Cell-to-cell variability appears in Eq. 5 in the variability
ofTav,ref, which captures differences between individual cells in the response

of the average stochastic period to CCh. Because Eq. 5 applies to average
ISIs, it does not conflict with the randomness of individual ISIs. Inserting
Eq. 5 into Eq. 2 shows that these results entail an exponential dependence of
b on stimulation step D[CCh] = [CCh] − [CCh]ref:

b ¼ 1−e−gD½CCh$ ð6Þ

Equation 6 describes the measured data well: The relationship between
D[CCh] and the experimentally determined fold changes (b) fitted to the
exponential function using the fit parameter g confirmed the reliability with
which b describes cell behavior (Fig. 3H).

Analysis of the effects of different CCh concentrations on the population
average (Tpop) of Tav provided additional support for our suggestion that Eq.
5 appropriately describes the concentration-response relationship. If Eq. 5
correctly describes single-cell behavior, all cells contributing to the population
averageTpopmust obey the sameexponential dependence.Consequently,Tpop is
not the sum of exponentials; rather, it obeys a single exponential function:

Tpop ¼ e−gð½CCh$−½CCh$ref ÞðTpop;ref − TminÞ þ Tmin ð7Þ

Therefore, we analyzed the dependence of Tpop derived from analysis of
the Ca2+ spikes evoked by different concentrations of CCh inHEK293 cells
(Fig. 4A) and found that the relationship was well described by the single
exponential function (Eq. 7) with values for g and Tmin obtained from Fig.
3H and Fig. 3C, respectively. This fit of the experimental data to Eq. 7 is
inconsistent with b and g varying substantially between individual cells.

Equation 7 follows from the encoding relation (Eq. 3) and the indepen-
dence of b from the initial stimulus intensity (Fig. 3H, and see text S2:

A B

C D

Fig. 4. Fold changes determine a universal concentration-response relation
for Ca2+ spikes evoked by stimulation of GPCRs. (A) Population average
(Tpop) of Tav for HEK293 cells at each CCh concentration (means ± SEM).
Line drawn using the parameter value g = 7.84 mM−1 (from the fit to Eq. 6
in Fig. 3H) and Tmin = 57 s (the average value of Tmins from the six paired-
stimulation experiments shown in Fig. 3C), but with no additional curve fitting.
(BandC)RelationshipbetweenTpopand ligandconcentration for hepatocytes
is exponential. Hepatocytes (31) were stimulated with phenylephrine (B) or
vasopressin (C). (D) Relationship between Tpop and ligand concentration
for insect salivary gland stimulated with 5-HT (32) is exponential. Lines
in (B) to (D) are best fits in parameters Tmin and g to Eq. 7: for hepatocytes,
g=1.059 µM−1, Tmin = 61 s (phenylephrine), and g=0.279 µM−1, Tmin = 44 s
(vasopressin); and for salivary gland, g = 0.319 nM−1, Tmin = 16 s.
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metabolic decoding

Indeed, we can find the predicted behavior by analyzing
the dependence of the standard deviation ! on the mean
period Tav of the oscillation. Figure 4 illustrates this depen-
dence for spontaneous spiking in astrocytes !black dots" and
stimulated oscillations in human embryonic kidney !HEK"
cells !red squares", where each symbol characterizes one cell.
First, the populations of the two different cell types exhibit a
linear dependence. Second, the offset in direction of Tav in-
dicates a minimal deterministic time Tdet of the ISI.

The spread of data points in Fig. 4 represents properties
of individual cells. They differ first in Tdet generating spread
in the direction of Tav, and second, in the properties of the
stochastic process, shifting them in the !-Tav plane along
curves parametrized by characteristics of the stochastic pro-
cess, namely, " and # of the density !4".

The analysis of experimental data has shown that Tav, !,
and Tdet vary between individual cells of the same cell type.
A deeper analysis demonstrates that cell types exhibit differ-
ent # values and cells of one type vary predominantly in ".
Hence, the different slopes for two cell populations in Fig. 3

are caused by different regeneration rates # of the different
cell types. From the experimental data in Fig. 4 and theoreti-
cally predicted !-Tav relations !see the inset of Fig. 2" we
could fit the cell-type specific rates.5

A further prediction of the model and a prerequisite for
AECR is the relevance of the spatial coupling. Therefore we
loaded additional Ca2+ buffer into cells. From our assump-
tions of the underlying mechanism we expect that both ! and
Tav should increase by the decreased spatial coupling. This
behavior was found in experiments, a representative example
of which is shown in Fig. 5!a", where again the upper panel
exhibits the fluorescent signal of a single stimulated HEK
cell and the lower panel shows the individual ISIs. Red cor-
responds to the reference measurement and blue shows the
Ca2+ time series after loading 1 $M bis-aminophenoxy
ethane-etraacetic acid !BAPTA-AM" for 5 min. Figure 5!a"
shows how additional BAPTA loading increases ISIs and
their variability.

We have also demonstrated in Ref. 5 that the increases in
! and Tav depend on the buffer concentration. Higher con-
centration leads to slower and more irregular spiking. More-
over, we have found that higher concentration of Ca2+ buff-
ers with slower Ca2+ binding rate is needed to have a similar
effect as BAPTA. This was shown with ethylene glycol tet-
raacetic acid !EGTA-AM".

In order to estimate the action of additional buffers with
respect to the nucleation and regeneration rate " and #, re-
spectively, and to decompose the measured Tav according to
expression !2" into its parts Tstoch and Tdet we analyzed the
!-Tav relation of buffer experiments.48 In Fig. 5!c" the de-
pendence for two single cells is shown by the red dots for the
reference measuring period and by blue crosses for the os-
cillations after buffer loading.

We did not expect the small buffer concentrations used
to have an influence on the regeneration rate # or on the
deterministic time Tdet since both are not very sensitive to the
cytosolic buffering capacity. Hence, we predict cells to be
shifted on lines corresponding to #=constant in the inset of
Fig. 2 by lowering ".

From the representative behavior of the !-Tav relation in
Fig. 5 this assumption seems to be justified. For a more
systematic investigation of what distinguishes cells of the
same cell type but with different ! and Tav we inspected the
!-Tav relation more closely. Measuring that relation would
actually require to measure spike trains of a single cell under
different conditions providing several values of ! and Tav. In
the buffer experiments, we have measured at least two points
from which we can obtain an estimate of the slope of the
relation mshift. Alternatively, it might be that all data points
obtained from the population of cells of one type represent
the !-Tav relation. We have approximated the population re-
lation by a linear function in Fig. 4. The slope of that relation
is the population slope mpop. If the population slopes before
!mpop

b " and after !mpop
a " adding additional buffer are similar

and in the same range as mshift, we can assume that the slope
of the !-Tav relation of individual cells is well approximated
by the population slope.

We found48 that the population slopes before and after
buffer loading are in good agreement with the shifting

FIG. 3. A typical experimental fluorescence signal %F of a PLA cell is
shown in the upper panel. %F=F!t" /F0 denotes the amount of bound
Ca2+-sensitive dye compared to the initial amount F0 and corresponds to the
cytosolic Ca2+ concentration. In the lower panel, for each Ca2+ spike the
following ISI is shown by a dot, indicating that Ca2+ oscillations have a
stochastic character, since the individual ISIs vary substantially in their
length. !For more details see Ref. 5."

0

300

600

0 300 600

σ
(s

)

Tav (s)

FIG. 4. !Color" Ca2+ spikes occur randomly. The standard deviation ! of the
Ca2+ ISIs is in the same range as their average Tav. Black dots show results
for astrocytes and red squares show stimulated HEK cells. The linear de-
pendence is in accordance with the wave nucleation assumption.
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Abstract

Summary: Ca2+ is a central second messenger in eukaryotic cells that regulates many cellular processes.
Recently, we have demonstrated that typical Ca2+ signals are not oscillatory as widely assumed but exhibit
stochastic spiking with cell type and pathway specific characteristics. Here, we present CaSiAn (Calcium
Signaling Analyzer), an open source software tool that allows for quantifying these signal characteristics
including individual spike properties and time course statistics in a semi-automated manner. CaSiAn
provides an intuitive graphical user interface allowing experimentalists to easily process a large amount
of Ca2+ signals, interactively tune peak detection, revise statistical measures and access the quantified
signal properties as excel or text files.
Availability and implementation: CaSiAn is implemented in Java and available on Github
(https://github.com/mmahsa/CaSiAn) as well as on the project page (http://r3lab.uni.lu/web/casa).
Contact: alexander.skupin@uni.lu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ca2+ is a universal intracellular messenger that translates extracellular
signals into intracellular responses through sequences of concentration
spikes. The versatility of Ca2+ is afforded by a broad spectrum of signals
allowing for well-controlled activation of distinct pathways including
proliferation, gene expression, metabolism, muscle contraction, learning
and memory as well as apoptosis (Berridge et al., 2000; Clapham, 2007).
The often rather regular appearing spiking behaviour has led to the
perception that Ca2+ signaling transmits information in a frequency
encoded manner as exemplified experimentally for gene expression
efficiency of NF-AT, OCT4, and NF-B (Dolmetsch et al., 1998).

More recently, we have shown that these Ca2+ signals exhibit
a non-negligible stochastic character consisting of random sequence
of concentration spikes rather than deterministic oscillations (Skupin
et al., 2008; Dupont et al., 2008). The observed fluctuations reflect the
properties of the underlying spike generating mechanism where molecular

fluctuations of individual Ca2+ release channels are carried onto the level
of the cell by Ca2+-induced Ca2+ release (CICR) (Skupin and Falcke,
2009). The spatial coupling and self amplification of random events by
CICR introduce an hierarchical signaling systems with a linear relation
between the variability measured by the standard deviation � and the
average period Tav of interspike intervals (ISIs) (Skupin et al., 2008, 2010).
Interestingly, this relation is cell type and pathway specific indicating that
cells do not only encode information in the frequency but also may use
higher statistical moments for information processing (Skupin and Falcke,
2009; Thurley et al., 2014).

Understanding this signaling mechanism relies on a statistically firm
characterization of signal properties. Available tools for such an automatic
analysis of spiking data are typically tailored towards spiking dynamics
of neuronal membrane potentials (Cajigas et al., 2012) but do not reflect
the specific needs for Ca2+ signals that often exhibit more noise and slow
underlying trends. A recent approach addresses Ca2+ spike recognition
by Matlab scripts (Russo et al., 2013) but in a non-interactive manner
limiting the application to computational scientists. In particular, these

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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S1 Illustrative Summary of the CaSiAn workflow

A typical workflow of the CaSiAn based analysis is shown in Fig. S1 for the astrocytes
experiments described in the main text and detailed below in Section S6.1. Based on ex-
tracted signals, CaSiAn enables background removal and normalisation, determination of
ISIs, spike characterization and investigation of the linear s – Tav relation. Finally, all data
can be exported for further analysis.

Extracted signals

200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

Time

Sign
al-6

Data 1

200 300 400 500
0

1

2

3

Time

Sign
al-8

Data 2

200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

Time

Sign
al-1

5

Data 3

200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

Time

Sig
nal-

6

Data 1

200 300 400 500
0

1

2

3

Time

Sig
nal-

8

Data 2

200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

Time

Sig
nal-

15

Data 3

200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

Time

Sign
al-6

Data 1

200 300 400 500
0

1

2

3

Time

Sign
al-8

Data 2

200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

Time

Sign
al-1

5

Data 3

In
te

ns
ity

A Signal preprocessingB Peak and nadir detectionC

0 50 100 150 200 250
0

50

100

150

200

sigma-tav

Tav (s)

σ
 (s

)

29.5 30.0 30.5 31.0 31.5 32.0 32.5
0.8

1.6

2.4

3.2

Time (min)

F/
F0

ISI

AMP

TTP

IR DR

SW

Time

Intensity

SW threshold

Peak value

Nadir value
SW

Extracting signal featuresD E �!Tav analysis Statistical analysisF

Time Time (s)

500 1000 1500 2000 2500 3000 35000
120

160

200

240

280

320

360

400

In
te

ns
ity

 (F
)

Time (s)

500 1000 1500 2000 2500 3000 35000
0

0.4

0.8

1.2

Δ
F/

F 0

500 1000 1500 2000 2500 3000 3500
0

100

200

300

IS
I (

s)

First treatment Second treatment

0 100 200 300 400
0

50

100

150

200

250

ISI (s)

Fr
qu

en
cy

 (I
S

I)

10 (µM) ATP

80 (µΜ) ATP

10 80
0

50

100

150

200

ATP Concentration (µΜ)

A
M

P
sg

 (F
)

**

10 80
0

10

20

30

40

ATP Concentration (µΜ)

S
W

sg
 (s

)

****

0 100 200 300 400
0

50

100

150

200

250

ISI (s)

Fr
qu

en
cy

 (I
S

I)

10 (µM) ATP

80 (µΜ) ATP

10 80
0

50

100

150

200

ATP Concentration (µΜ)

A
M

P
sg

 (F
)

**

10 80
0

10

20

30

40

ATP Concentration (µΜ)

S
W

 (s
)

****

Figure S1. Workflow of CaSiAn. (A) Time course data extracted from fluorescence images are
loaded into CaSiAn. (B) Preprocessing allows for defining different analysis periods (red and blue,
respectively), normalization and background removal by several non-linear fitting methods. (C) Peaks
and nadirs are automatically detected by threshold parameters interactively adjustable in the GUI.
Misclassified peaks and nadirs can be interactively added or removed leading to identification of
individual ISIs. (D) Based on the processed time courses, CaSiAn determines signal properties like
ISI, amplitude, spike width and further characteristics. (E) After automated processing of all signals,
CaSiAn offers to plot the s – Tav relation where each dot corresponds to an individual signal. This
relation can be further analyzed in an interactive manner. (F) Finally, all processed signals including
ISI detection can be saved in a single pdf file and determined signal characteristics can be exported
as csv or excel files for further analysis.

S2 Background Removal and Normalization

CaSiAn can represent the intensities of Ca2+ signals in two common ways: (1) by the ratio
of the relative fluorescence change and the baseline fluorescence (I) and (2) by the ratio of
fluorescence intensity and the baseline fluorescence (I0).

I(k) =
f (k)�F0(k)

F0(k)
, (S1)

2

S6. Materials and Methods

Figure S10. Linear regression between s and Tav is shown in the interactive popup window. In this
window, the data can be filtered by the number of spikes and clicking on a (s , Tav) tuple (shown by
circle) will display the corresponding spike train in the main window.

S6 Materials and Methods

S6.1 Ca
2+

Imaging in C8-D1A cells

Cells were grown in poly-L-lysine-coated cover-slips for three days in DMEM medium
(Thermofisher, A14430-01) containing 25 mM glucose, 4 mM glutamine supplemented with
10% fetal bovine serum and 1% penicillin streptomycin until ˙ 80 % confluency. Then cells
were washed with phosphate buffered saline (PBS) and new phenol red free medium contain-
ing 25 mM glucose, 4 mM glutamine, supplemented with 10% fetal bovine serum and 1%
penicillin streptomycin were added to the cells. Then cells were loaded with 250 µl of Fluo-4
Direct from Thermofisher for 30 min in the incubator and then immediately transferred to an
imaging chamber at 37�C. Cells were imaged on Nikon Ti Eclipse inverted microscope using
excitation at 490 to 510 nm (ET500/20x filter from Chroma) with a sample rate of 0.33 s�1.
The exposure time was set to 80 ms. During imaging cells are treated to 10 µM ATP (Sigma-
Aldrich, A1852-1VL) for 27 minutes and 80 µM ATP for 37 minutes as indicated in Fig. S1
by red and blue bars, respectively.

After acquisition of images for three independent experiments, Ca2+ signals were extracted
using ImageJ (version 1.48) and exported as excel files. These files were loaded into the
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