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Why Dark Matter Self-Interactions!?

Problems with Collisionless Cold Dark Matter
e Core-cusp profile in dwarf galaxies
e Diversity Problem

. “Too big to fail’ See Hai-Bo Yu’s talk

Extra motivation:

Provide seeds for the Supermassive Black hole at the center of galaxy
Pollack Spergel Steinhardt ‘15

Numerical Simulations suggest O.1cmZ/g< o/m<1 CrT12/g



An Alternative to VWIMPs:
Asymmetric Dark Matter

* Asymmetric DM can emerge naturally in theories beyond the SM
* Alternative to thermal production
*Possible link between baryogenesis and DM relic density
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Asymmetric Dark Stars

Can asymmetric dark matter with self-interactions form its own
compact objects!?

* How do they look like?
- Can we detect them and distinguish them from NS or BH?
* What is the formation mechanism!?



Asymmetric Fermionic Dark Stars

Tolman-Oppenheimer-Volkoff with Yukawa

self-interactions
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(a) M(R) for repulsive interactions
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(b) p(r) for repulsive interactions

CK, Nielsen ‘15



Asymmetric Bosonic Dark Stars

BEC Bosonic DM with A¢'

Repulsive Interactions: Solve Einstein equation together with the Klein-Gordon

ds? = —B(r)dt® + A(r)dr® + r?dQ)?
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Attractive Interactions: We can use the nonrelativistic limit solving the the Gross-Pitaevskii with the Poisson

Ey(r) = ( _ V_ +V(r)+ %W(r)ﬁ)w(r) §2V(r) = 4rGmp(r)
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Eby, CK, Nielsen, Wijewardhana ‘15



Asymmetric Bosonic Dark
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Figure 3: The maximum mass of a boson star with repulsive self-interactions satisfying Eq. (4), as
a function of DM particle mass m. The green band is the region consistent with solving the small

scale problems of collisionless cold DM. The blue region represents generic allowed interaction strengths
(smaller than 0.1 cm?/g) extending down to the Kaup limit which is shown in black. The red shaded

region corresponds to A 2 4w, Note that the horizontal axis is measured in solar masses M.
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Gravitational Waves from Dark Stars
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- Gravitational Waves:
- DS+DS->DS or BH

- DS+NS-> DS*
- DS+BH->BH

- Spinning DS

Giudice, McCullough,
Urbano ‘16



Tidal Deformations of Dark Stars

How stars deform in the presence of an external gravitational field?
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Similarly we can estimate the deformation due to rotation



|-Love-Q for Dark Stars
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The Bright Side of Dark Stars

Dark Stars could shine via dark Bremsstrahlung if there is e.g. kinetic mixing

between the dark and ordinary photon

- The luminosity might not be small compared to neutron stars because it is a
volume vs surface effect.

- The morphology of the spectrum is different from that of a blackbody radiation due
to the dependence of the gravitational redshift on the depth of photon production
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How Asymmetric Dark Stars form!?

A small fraction of asymmetric SIMP DM interacting via dark photons
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- Dark Fine Structure Constant should be sufficiently large to deplete antiparticles
- Relic dark photons should neither overclose the Universe nor violate BBN constraints of Neff
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Formation of Asymmetric Dark Stars
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Formation of Asymmetric Dark Stars

Collapse can proceed via dark photon Bremsstrahlung Cooling
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Formation of Asymmetric Dark Stars
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Neutron Decay Anomaly and Neutron
Star Stability

There is a 40 discrepancy between bottle and beam experimental measurements of the decay
width of neutron.

Thottle = 879.6 0.6 s Theam = 888.0 £ 2.0 S

This could be explained if neutron could partially decay to a DM particle Fornal Grinstein ’18.
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Avoid proton decays p—=n*+e +u, mp —me < My < my

However such a scenario leads to significant conversion of neutrons to DM, softening the NS
EoS making NS unable to reach 2 Msun. Baym Beck Geltenbort Shelton ’18, Cline Cornell ’18

Adding repulsive DM self-interactions is barely consistent with 2 Msun NS. Cline Cornell 18,
Grinstein Nielsen CK ’18.



Baryon-DM Interactions via the Higgs
Portal

L=Xg 7% uS . dpj®r + \®*'Xdri + Ao X x ¢ +pH Ho+ gy Xx 6+ h.c.

The Higgs portal induces neutron-DM interactions
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Converting Neutron Stars to Black Holes

Astrophysical black holes produced as the end result of stellar evolution are
expected to have masses above 3Msun. Therefore in case of a ~Msun black hole
discovery, one would naively expect that it is of primordial origin.

This does not have to be the case. Asymmetric DM could implode inside NS
converting them to black holes of <3Msun. This can set constraints on DM self-
interactions since they dictate how easily asymmetric DM can collapse.



Asymmetric Dark Matter in Neutron Stars
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Setting New Constraints on Dark Matter
Self-Interactions

BNS detections (per year)
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FIG. 2. Spectrum of GW from a (1.5 + 1.5)M; BBH at
40 Mpc (red solid). The spectrum of a corresponding BNS
is schematically depicted by the break (red dashed). Also
shown are a (1.5+1.5)M; BBH at 400 Mpc (blue solid) and a
(24+2)M BBH at 40 Mpc (grey dot-dashed). The sensitivity
curves are for to LIGO2017 (black solid), LIGO design (black
dot-dashed) and ET design (black dotted).



Conclusions

Dark Matter Self-Interactions
- important to solve CCDM problems

Asymmetric Dark Stars
- can be probed by gravitational waves
New Dark Stars distinguishable from NS and BH binaries

Neutron Decay Anomaly
- if this persists, deviation from SM
- strong constraints from NS

Dark Matter Collapse inside NS
- create astrophysical black holes with M<3Msun
* new constraints on asymmetric DM and DM self-interactions



