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Say that there is a population of PBH floating around...

How do they affect cosmology?
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Constraints on PBH abundance

Different type of constraints:
® Dynamical

® Lensing

® Accretion

e LSS
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Is the PBH scenario compatible with
merger rates?

Assuming that DM halos are made of PBH the merger rate is compatible with LIGO observed one.
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Merging binary black holes:
stellar or primordial?

Scelfo, Bellomo et al. 2018
In a not too distant future we wiill have...

galaxies .
AN TG s B e GW events ———> Low resolution map

In several z bins



Big halos

Courtesy of AlviseRaccanelli



Small halos

How small?
majority of events

in M<10° M

Courtesy of Alvise Raccanelli



Merging binary black holes:
stellar or primordial?

Scelfo, Bellomo et al. 2018

Cross correlation!

galaxies .
AN TG s B e GW events ———> Low resolution map

In several z bins



Cross-correlation

Courtesy of AlviseRaccanelli
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Technicalities

Develop cross correlation description in different z bins including z-bins cross
correlations

Real and Redshift Space in GR
Hubble expansion +
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Different bias parameters:

Low mass halos b=0.5
DM b=1
High mass halos b=1.5




More technicalities

GW170104

Events are poorly localised

ALIGO+VIRGO

LVT151012
GW151226

\

GW170817

GW150914

ALIGO+VIRGO+LIGO-India+KAGRA \ -

Einstein Telescope cwirosis TN o

We use angular power spectra Cl with Imax~180/6

Null hypothesis testing comparing the two cases
(primordial or stellar origin)
S/N in specific cases

Can’t ignore projection effects
(e.g., Magnification bias)



Uncertainties ....

Extended
M PBH

Monochromatic
M PBH
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RESULTS: Forecasts
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This is a promising approach, can probe big part of parameter space




The devil is in the details

This is all analytic
Simplified bias assumptions

The merger rate depends also on the metallicity
not just on the host mass

Large uncertainties in e.g., Merger rates, star formation rates,



Converting constraints between MMD and EMD

What is the effective MMD for an EMD?
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So now you have....

Meq(r4,{¢})

ERE ({4} = rrfip (Meq(rs.{¢1))

largest allowed abundance for a MMD with M = Meq
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Examples of Extended Mass Distributions
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You need g and Meq...



Where the physics is...

For microlensing

o d® (L(M))
For CMB Pinj = Pdm /PBH / AM 30 Rate of energy injection
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Power Law, v = —0.5 Power Law, v = 0.0 Lognormal
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Good practice:
the adopted modelling defines a mass range of validity; outside this range, results
(if any) are not reliable or unphysical.




Connecting Primordial Black Holes abundance
to the primordial power spectrum

It is established how to connect abundance of clusters to the primordial P(k)
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Why not for PBH? And what would it take?



This is not new...
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E anlly Umierse amygsies with PBEiFS

But this is for
AOMYPEBEM
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Motivation and background

Primordial Black Holes form in the early Universe from the
gravitational collapse of large density perturbations
generated during inflation.

Radiation domination era: at first
approximation PBHs mass depends on the time
of formation mpg,=m,, =c’t,/G

= t~10 s = mpy,~1077 M
o t~1ls= mpp~10"M

High peaks in the density field: the statistics is
specified by the power spectrum

J

constraints on inflationary models.




Ingredients

PBH formation

Say you have a (primordial) (curvature) perturbation in radiation era...
The relation between curvature and density is non linear

Threshold for collapse might be affected

GR simulations (llia Musco)

Cosmological analogy



BBKS

Statistics of Gaussian random fields

THE ASTROPHYSICAL JOURNAL, 304:15-61, 1986 May 1
¢ 1986. The American Astronomical Society. All rights reserved. Printed in U.S.A

THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM FIELDS

J. M. BARDEEN'
Physics Department, University of Washington
J. R. Bonp?
Physics Department, Stanford University

N. KAISER!
Astronomy Department, University of California at Berkeley, and Institute of Astronomy, Cambridge University

AND

A. S. SzALAY!
Astrophysics Group, Fermilab
Received 1985 July 25 ; accepted 1985 October 9

ABSTRACT

Cosmological density fluctuations are often assumed to be Gaussian random fields. The local maxima of
such fields are obvious sites for the formation of nonlinear structures. The statistical properties of the peaks
can be used to predict the abundances and clustering properties of objects of various types. In this paper, we
derive (1) the number density of peaks of various heights va, above the rms g,; (2) the factor by which the
peak density is enhanced in large-scale overdense regions; (3) the n-point peak-peak correlation function in the
limit that the peaks are well separated, with special emphasis on the two- and three-point correlations; and (4)
the density profiles centered on peaks. To illustrate the predictive power of this semianalytic approach, we
apply our formulae to structure formation in the adiabatic and isocurvature Q = 1 cold dark matter (CDM)
models. We assume bright galaxies form only at those peaks in the density field (smoothed on a galactic scale)
that are above some global threshold height v, ~ 3 fixed by normalizing to the galaxy number density. We
find, for example, that the shapes of the peak-peak two- and three-point correlation functions for the adiabatic
CDM model agree well with observations before any dynamical evolution, just due to the propensity of the
peaks to be clustered in the initial conditions. Only moderate dynamical evolution is required to bring the
amplitude of the correlations up to the observed level. The corresponding redshift of galaxy formation z, in
the isocurvature model is too recent (z, = 0) for this model to be viable. Even for the adiabatic models z, ~
3-4 is predicted. We show that the mass-per-peak ratio in clusters, and thus presumably the cluster mass-to-
light ratio, is substantially lower than in the ambient medium, alleviating the Q problem. We also confirm that
the smoothed density profiles of collapsing structures of height ~v, are inherently triaxial.

Subject headings: early universe — galaxies: clustering — galaxies: formation



Ingredients

PBH formation

Say you have a (primordial) (curvature) perturbation in radiation era...
The relation between curvature and density is non linear

Threshold for collapse might be affected

llia Musco simulations

Cosmological analogy

“mutatis mutandis’:

Works (of course) but one has to be carerful to recognize the relevant physics
Define wisely the characteristic scale of the perturbation

Peaks theory
Average profile shape
Improve approximations to connect to P(k)

Power Spe(:trum reconstruction Given the above and fPBH from observations



PBH formation

Start simulations on super horizon scales (all “frozen”)

Parameterization of perturbation initial conditions

. llia Musco
Cosmo: curvature perturbation

Synchronous metric: curvature on uniform energy density hypersurfaces

0.5 1.0 1.5

7/ (e el

r., typical scale of the perturbation >> horizon (at ti)
See: arXiv:1809.02127



Numerical Results: PBH formation

R(r,t) =2M(r,t)

MPBH = /C(5 — 5C)WMH
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6-6, ~ 6.76-10-10

w=1/3

O log(Mg,/My)

o 10g[(tc—tBH)/tH]

log(6-46,)

M, J. Miller et al. - CQG (2005, 2009, 2012)

llia Musco




PBH formation

Some subtelties: over density

2
— 3(1 + ’lU) 1 _é G’BCpeak('f)
543w \aH 3

2
. L1 ) .
) GQCpeak( | [Vgcl)eak (7) - §VCpea.k<7’) ) VCPeak(T)

10! : : - :
0.00 0.25 0.50 0.75 1.00
7/3/ (fme_Cpeak(rm))

NL effects damp and shrink the density profile




Collapse threshold

(Musco ‘18, Harada et al ’15, Shibata Sasaki 99)

C(t, R) = 2(6M /R)

Compaction function has a max (at Rm),
when this is above a threshold PBH forms

C(tma R m) — 5] (tm,’ R 771,) > 0 I ,C(af)

Harada limit 07 pin = 0.4135




How many peaks above the threshold value
for a given P(k)?

BBKS used in matter domination, no pressure forces,
factorize scale and time dependence.

Not here in radn domination

Can still use BBKS result

To compute the collapse fraction

The average peak profile is related to the
correlation function of the density field




And what’s the mass?

Time when perturbation crosses horizon

MPBH(V, Tm) = ’Cpeathor(Trn (5peak,0 - 6peak,0,c)r

Result of GR numerical simulations



Connect to P(k)

Two regimes

Large scales towards small scales: Small scales :

P(k) grows to reach an amplitude such Peaks profile > £, > P(k)
that PBH can be formed with fog,=0bs. limit



Connection to P(k)
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Assume P(k) grows ~k?* (Byrnes) MPBH — 1M@



RESULTS

From f 5,

Steep profile

Broad profile

Previous constraints, arXiv:1110.2484

109 107 1012 101 1018
K cjg\lltnn—])

“Ceiling” to a possible P(k) “spike” amplitude, point by point
for a MMD of PBH



Conclusions

Multi-messengers cosmology: an example
X-correlation GW-Galaxies = progenitors of BBH mergers

Conversion PBH constraints from MMD to EMD

Connecting PBH abundance to the (primordial)
power spectrum -2 inflation
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