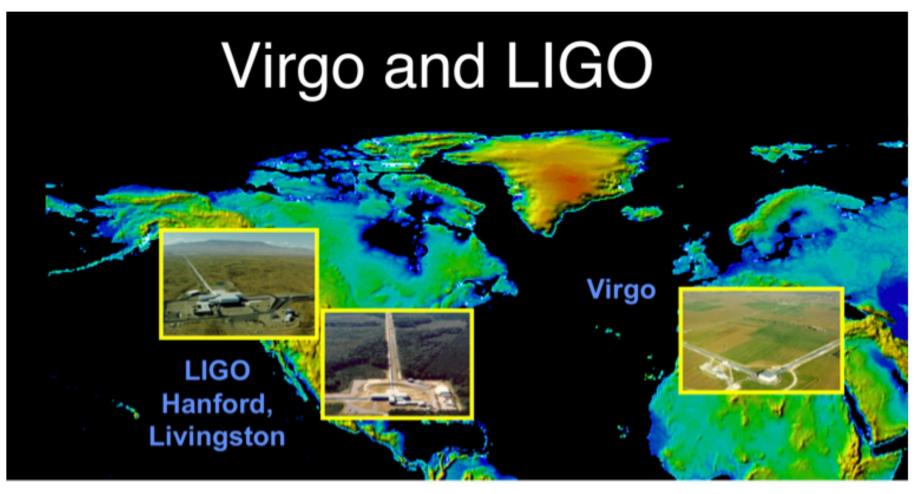
Gravitational wave results from LIGO and Virgo

Jo van den Brand, Nikhef and VU University Amsterdam, jo@nikhef.nl Solvay Workshop on "The Dark Side of Black Holes", Brussels, April 3, 2019



LIGO and Virgo

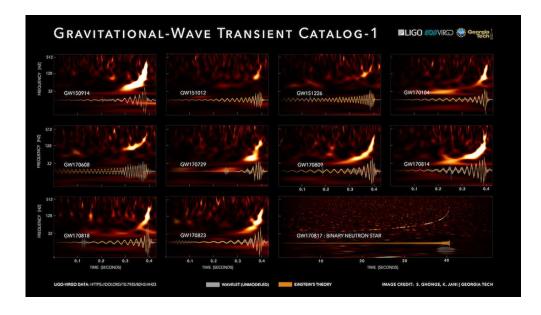
Observe together as a Network of GW detectors. LVC have integrated their data analysis

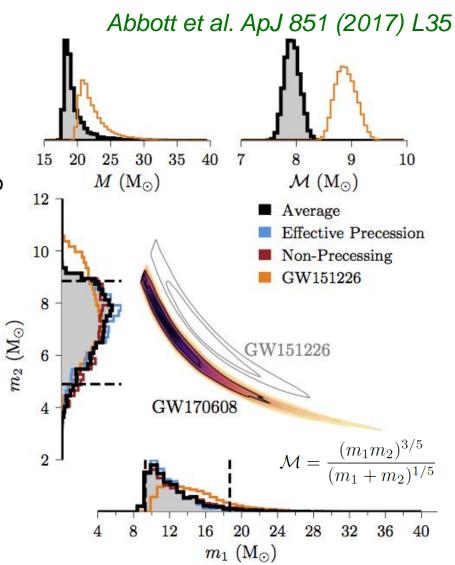
LIGO and Virgo have coordinated data taking and analysis, and release joint publications LIGO and Virgo work under an MOU already for more than a decade KAGRA expected to join in 2019

LIGO-Virgo analyses for sources of gravitational waves

Sources can be transient or of continuous nature, and can be modeled or unmodeled

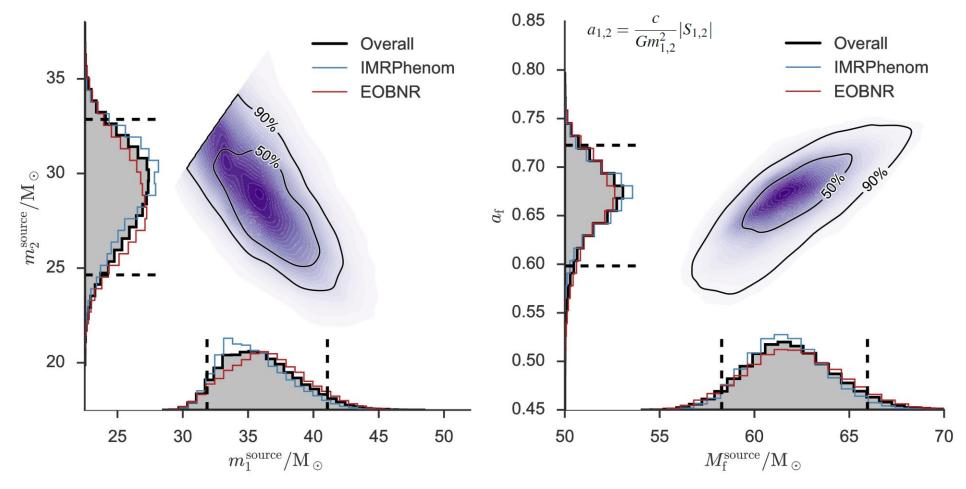
Scientific achievements: properties of black holes


Extract information on masses, spins, energy radiated, position, distance, inclination, polarization. Population distribution may shed light on formation mechanisms


LVC reported on 10 BBH mergers and 1 BNS

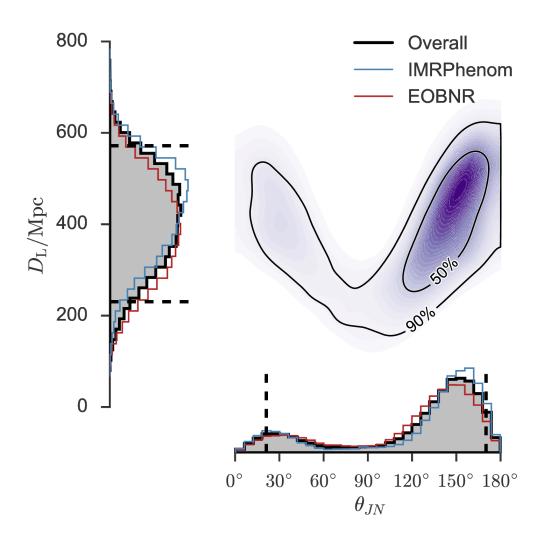
Chirp mass is well inferred

Merger dynamics more sensitive to total mass


"GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs", The LIGO Virgo Collaboration, arXiv:1811.12907

Source parameters for GW150914

Estimated masses (90% probability intervals) for the two black holes in the binary (m_1^{source} is the mass of the heavier black hole). Different curves show different models. Mass and spin of the final black hole



Energy radiated: 3.0 ± 0.5 solar masses. Peak power at merger: 200 solar masses per second

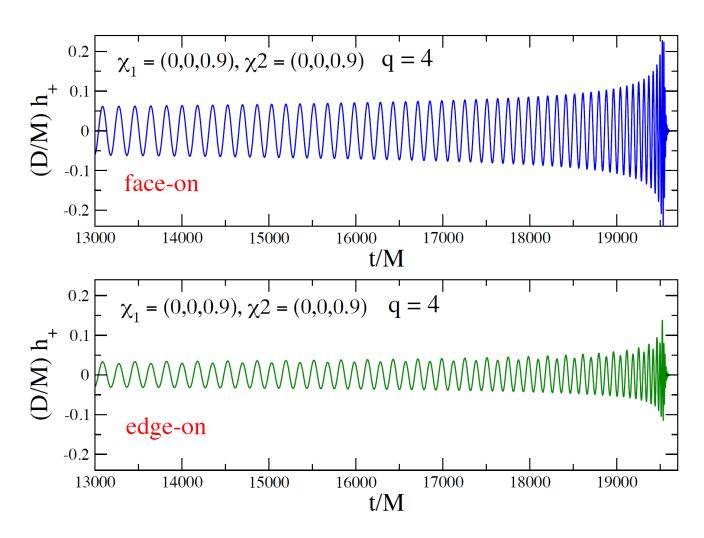
See "Properties of the Binary Black Hole Merger GW150914" http://arxiv.org/abs/1602.03840

Luminosity distance to the source

Estimated luminosity distance and binary inclination angle. An inclination of $\theta_{JN}=90^{\circ}$ means we are looking at the binary (approximately) edge-on. Again 90% credible level contours

Polarization can be used to break the degeneracy between distance and inclination

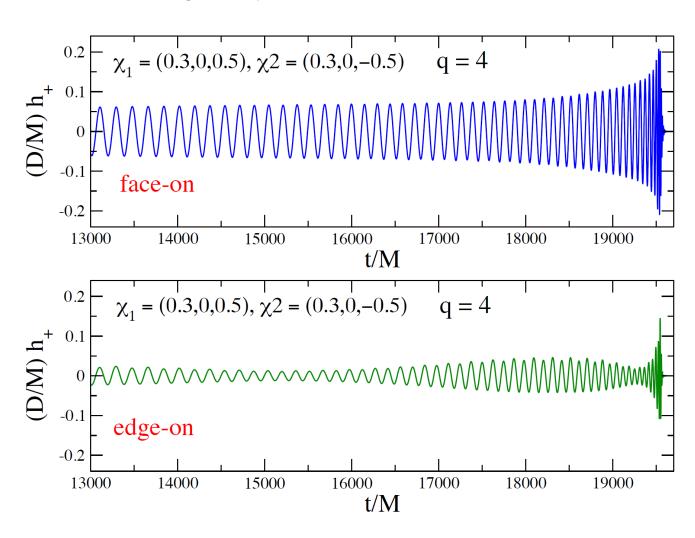
$$h_{+} = \frac{2\nu M}{d} [\pi M f(t)]^{2/3} (1 + \cos^{2}\iota) \cos[2\varphi(t)]$$


$$h_{\times} = \frac{4\nu M}{d} [\pi M f(t)]^{2/3} \cos\iota \sin[2\varphi(t)]$$

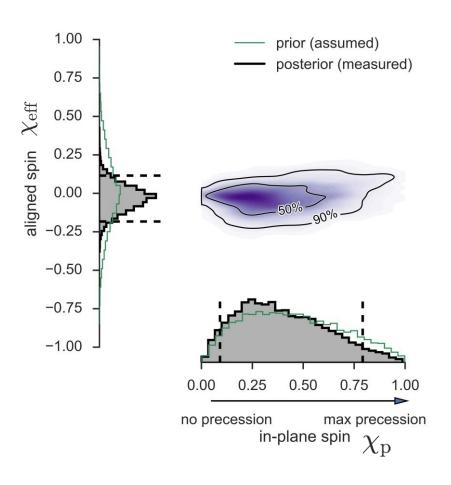
For this we need a third detector: Virgo

Effect of orientation of binary's orbital plane

Polarization of gravitational waves depends on the orientation of the orbital plan of the binary system. Face-on we observe a mixture, while edge-on we observe pure h+


Spinning, but non-precessing binary

Effect of orientation of binary's orbital plane


Spin precession leads to amplitude and frequency modulation

Spin-precessing binary

Combinations of component spins for GW150914

GW150914 suggests that the individual spins were either small, or they were pointed opposite from one another, cancelling each other's effect

Effective spin parameter

$$\chi_{\text{eff}} = \frac{c}{GM} \left(\frac{S_1}{m_1} + \frac{S_2}{m_2} \right) \cdot \frac{L}{|\mathbf{L}|}$$

Precession in BBH

$$\dot{\boldsymbol{L}} = \frac{G}{c^2 r^3} (B_1 \boldsymbol{S}_{1\perp} + B_2 \boldsymbol{S}_{2\perp}) \times \boldsymbol{L}$$

$$\dot{\mathbf{S}}_i = \frac{G}{c^2 r^3} B_i \mathbf{L} \times \mathbf{S}_i,$$

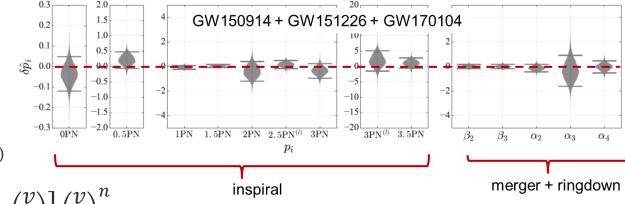
Effective precession spin parameter
$$\chi_p = \frac{c}{B_1 G m_1^2} \max(B_1 S_{1\perp}, B_2 S_{2\perp}) > 0$$

 $\chi_p = 0$ aligned-spin (non-precessing) system

$$B_1 = 2 + 3q/2$$
 and $B_2 = 2 + 3/(2q)$, and $i = \{1, 2\}$

See "Properties of the Binary Black Hole Merger GW150914" http://arxiv.org/abs/1602.03840

Precision tests of GR with BBH mergers


Bayesian analysis increases accuracy on parameters by combining information from multiple events

Inspiral and PN expansion

Inspiral PN and logarithmic terms: Sensitive to GW back-reaction, spin-orbit, spin-spin couplings, ...

Orbital phase (post Newtonian expansion): $h^{\alpha\beta}(f) = h^{\alpha\beta}e^{i\Phi(f)}$

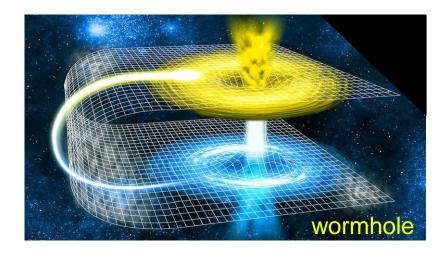
$$\Phi(v) = \left(\frac{v}{c}\right)^{-5} \sum_{n=0}^{\infty} \left[\varphi_n + \varphi_n^{(l)} \ln\left(\frac{v}{c}\right)\right] \left(\frac{v}{c}\right)^n$$

Merger terms: numerical GR

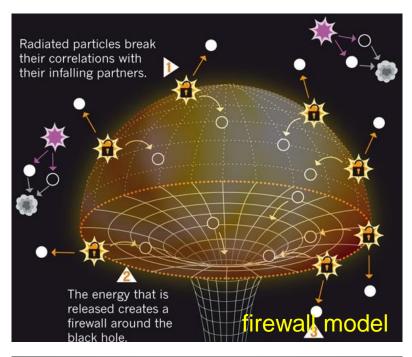
Ringdown terms: quasi-normal modes; do we see Kerr black holes?

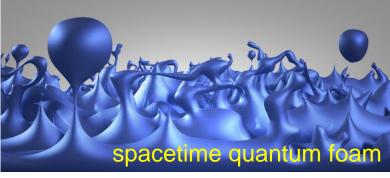
Towards high precision tests of gravity

Combining information from multiple events and having high-SNR events will allow unprecedented tests of GR and other theories of gravity

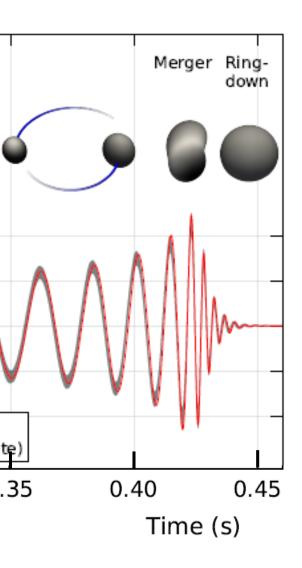

Our collaborations set ambitious goals for the future

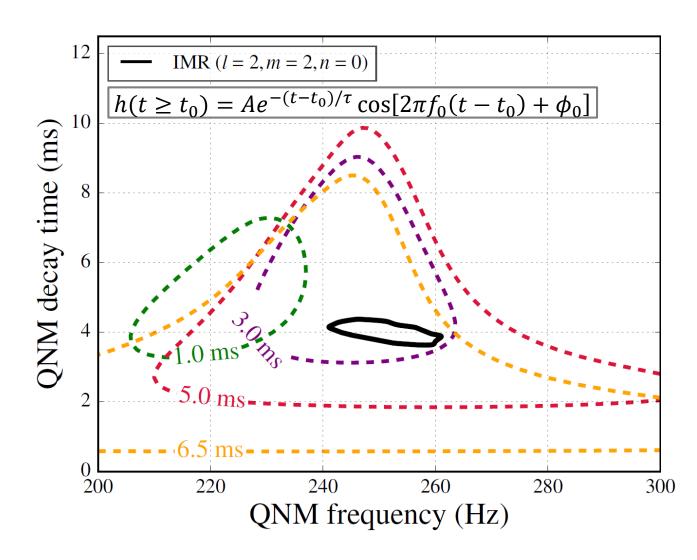
We need to improve:


- sensitivity of our instruments over the entire frequency range
- optimize our computing and analysis
- improve our source modeling (NR)


Fundamental physics: did we observe black holes?

Our theories "predict" the existence of other objects, such as quantum modifications of GR black holes, boson stars, gravastars, firewalls, *etc*. Why do we believe we have seen black holes?





Is a black hole created in the final state?

From the inspiral we can predict that the ringdown frequency of about 250 Hz and 4 ms decay time. This is what we measure (http://arxiv.org/abs/1602.03841). We will pursue this further and perform test of no-hair theorem

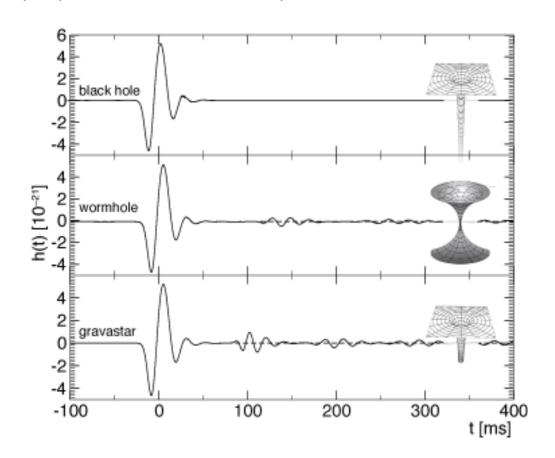
Exotic compact objects

Gravitational waves from coalescence of two compact objects is the Rosetta Stone of the strong-field regime. It may hold the key and provide an in-depth probe of the nature of spacetime

Quantum modifications of GR black holes

- Motivated by Hawking's information paradox
- Firewalls, fuzzballs, EP = EPR, ...

Fermionic dark matter

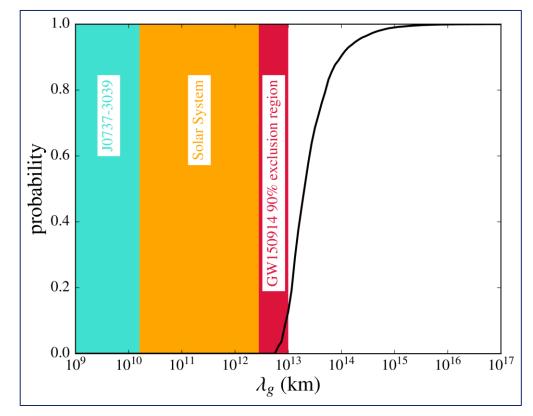

Dark matter stars

Boson stars

Macroscopic objects made up of scalar fields

Gravastars

- Objects with de Sitter core where spacetime is self-repulsive
- · Held together by a shell of matter
- Relatively low entropy object



GW observables

- Inspiral signal: modifications due to tidal deformation effects
- Ringdown process: use QNM to check no-hair theorem
- Echoes: even for Planck-scale corrections $\Delta t \approx -nM \log \frac{l}{M}$

Limit on the mass of the graviton

Bounds on the Compton wavelength $\lambda_g = {}^h/m_g c$ of the graviton compared to Solar System or double pulsar tests. Some cosmological tests are stronger (but make assumptions about dark matter)

See "Tests of general relativity with GW150914" http://arxiv.org/abs/1602.03841

$$\delta\Phi(f) = -\frac{\pi Dc}{\lambda_a^2(1+z)} f^{-1}$$

Will, Phys. Rev. D 57, 2061 (1998)

Massive-graviton theory dispersion relation $E^2 = p^2c^2 + m_q^2c^4$

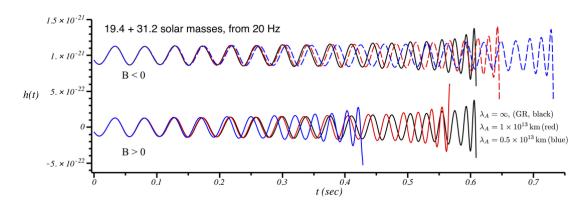
We have $\lambda_q = h/(m_q c)$

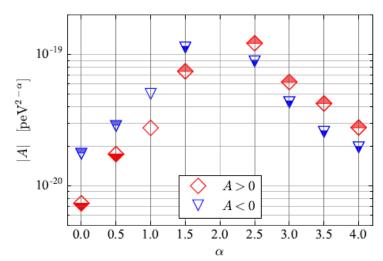
Thus frequency dependent speed

$$\frac{v_g^2}{c^2} \equiv \frac{c^2 p^2}{E^2} \cong 1 - h^2 c^2 / (\lambda_g^2 E^2)$$

$$\lambda_g > 10^{13} \text{ km}$$
 $m_g \le 10^{-22} \text{eV/c}^2$

Bounds on violation of Lorentz invariance


First bounds derived from gravitational-wave observations, and the first tests of superluminal propagation in the gravitational sector


Generic dispersion relation

$$E^2 = p^2c^2 + Ap^{\alpha}c^{\alpha}$$
, $\alpha \ge 0 \Rightarrow \frac{v_g}{c} \cong 1 + (\alpha - 1)AE^{\alpha - 2}/2$

Gravitational wave phase term

$$\delta \Psi = \begin{cases} \frac{\pi}{\alpha - 1} \frac{AD_{\alpha}}{(hc)^{2 - \alpha}} \left[\frac{(1 + z)f}{c} \right]^{\alpha - 1} & \alpha \neq 1 \\ \frac{\pi AD_{\alpha}}{hc} \ln \left(\frac{\pi G \mathcal{M}^{det} f}{c^{3}} \right) & \alpha = 1 \end{cases} \qquad A \cong \pm \frac{MD_{\alpha}}{\lambda_{A}^{2}}$$

Several modified theories of gravity predict specific values of α :

- massive-graviton theories (α = 0, A > 0), multifractal spacetime (α = 2.5),
- doubly special relativity (α = 3), and Horava-Lifshitz and extradimensional theories (α = 4)

Virgo joins LIGO in August 2017

Virgo Collaboration

Virgo is a European collaboration with about 400 members from about 80 institutes

Advanced Virgo (AdV) and AdV+: upgrades of the Virgo interferometric detector

Participation by scientists from France, Italy, Belgium, The Netherlands, Poland, Hungary, Spain, Germany

- Institutes in Virgo Steering Committee
 - APC Paris
 - ARTEMIS Nice
 - IFAE Barcelona
 - INFN Firenze-Urbino
 - INFN Genova
 - INFN Napoli
 - INFN Perugia

- INFN Pisa
- INFN Roma La Sapienza
- INFN Roma Tor Vergata
- INFN Trento-Padova
- LAL Orsay ESPCI Paris

- LAPP Annecy
- LKB Paris
- LMA Lyon
- Nikhef Amsterdam
- POLGRAW(Poland)
- RADBOUD Uni.
 Nijmegen

- RMKI Budapest
- UCLouvain, ULiege
- Univ. of Barcelona
- University of Sannio
- Univ. of Valencia
- University of Jena

2018: IFAE and UBarcelona, ULiège and UCLouvain

New groups strengthen Virgo in areas as Computing and Stray Light Mitigation

2019: USannio/UniSA and Jena Univ.

Groups from UTorino, UMaastricht, USardinia joined Virgo indirectly

Advanced Virgo

Most infrastructure installed for Advanced Virgo. It features many improvements with respect to Virgo and Virgo+. However the absence of Signal Recycling has great impact

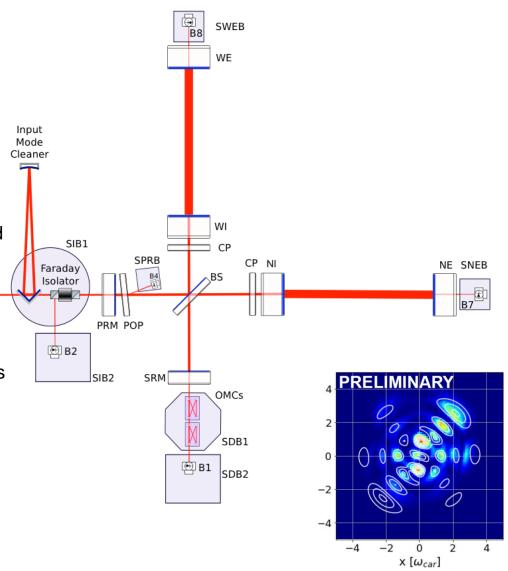
200W

Laser

Instrumentation improvements for Observing run 2

Larger beam: 2.5x larger at ITMs

Heavier mirrors: 2x heavier


Higher quality optics: residual roughness < 0.5 nm

 Improved coatings for lower losses: absorption < 0.5 ppm, scattering < 10 ppm

 Reducing shot noise: arm finesse of cavities are 3 x larger than in Virgo+

 Thermal control of aberrations: compensate for cold and hot defects on the core optics:

- ring heaters
- double axicon CO2 actuators
- CO2 central heating
- diagnostics: Hartmann sensors & phase cameras
- Stray light control: suspended optical benches in vacuum, and new set of baffles and diaphragms to catch diffuse light
- Improved vacuum: 10⁻⁹ mbar instead of 10⁻⁷ mbar

January 4, 2017 August 1, 2017 Advanced LIGO's Second Virgo **Observing Run** turns on May Nov Dec Feb Apr Jul Jan Mar Jun Aug 2017 2016 2017 2017 2017 2017 2017 2017 2016 2017

June 6, 2017

Table of O1 and O2 triggers with source properties

See https://dcc.ligo.org/LIGO-G1801864

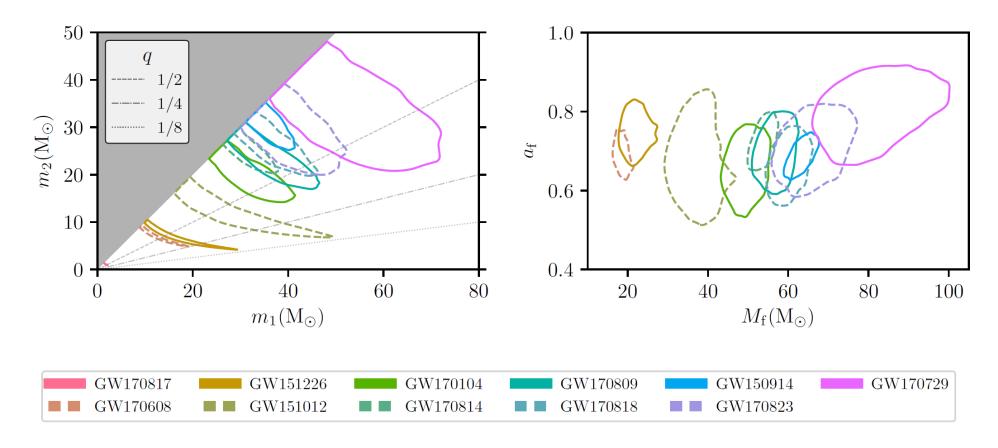
Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	$M_{ m f}/M_{\odot}$	$a_{ m f}$	$E_{\rm rad}/(M_{\odot}c^2)$	$\ell_{\rm peak}/({\rm erg~s^{-1}})$	$D_{\rm L}/{ m Mpc}$	Z	$\Delta\Omega/{\rm deg^2}$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430+150	$0.09^{+0.03}_{-0.03}$	194
GW151012	$23.2^{+14.0}_{-5.4}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.2}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.7}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21^{+0.09}_{-0.09}$	1491
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18^{+0.20}_{-0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09^{+0.04}_{-0.04}$	1075
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.4^{+5.2}_{-3.9}$	$0.66^{+0.09}_{-0.11}$	$2.2^{+0.5}_{-0.5}$	$3.2^{+0.7}_{-1.0} \times 10^{56}$	960^{+430}_{-410}	$0.19^{+0.07}_{-0.08}$	912
GW170608	$11.2^{+5.4}_{-1.9}$	$7.5^{+1.5}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.04^{+0.19}_{-0.06}$	$17.9^{+3.4}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.8^{+0.1}_{-0.1}$	$3.4^{+0.5}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07^{+0.02}_{-0.02}$	524
GW170729	$50.7^{+16.3}_{-10.2}$	$34.4^{+8.9}_{-10.2}$	$35.8^{+6.3}_{-4.9}$	$0.37^{+0.21}_{-0.26}$	$80.3^{+14.5}_{-10.3}$	$0.81^{+0.07}_{-0.13}$	$4.9^{+1.6}_{-1.7}$	$4.2^{+0.8}_{-1.5} \times 10^{56}$	2760^{+1290}_{-1350}	$0.48^{+0.18}_{-0.21}$	1069
GW170809	$35.2^{+8.3}_{-5.9}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.17}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70^{+0.08}_{-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} \times 10^{56}$	990^{+320}_{-380}	$0.20^{+0.05}_{-0.07}$	310
GW170814	$30.7^{+5.5}_{-2.9}$	$25.6^{+2.8}_{-4.0}$	$24.3^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.6^{+3.2}_{-2.5}$	$0.73^{+0.07}_{-0.05}$	$2.8^{+0.4}_{-0.3}$	$3.7^{+0.5}_{-0.5} \times 10^{56}$	560^{+140}_{-210}	$0.12^{+0.03}_{-0.04}$	99
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01^{+0.00}_{-0.00}$	22
GW170818	$35.5^{+7.5}_{-4.7}$	$26.9^{+4.4}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8^{+4.8}_{-3.7}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-370}	$0.20^{+0.07}_{-0.07}$	35
GW170823	$39.5^{+10.1}_{-6.6}$	$29.4^{+6.5}_{-7.1}$	$29.3_{-3.1}^{+4.2}$	$0.08^{+0.19}_{-0.22}$	$65.6^{+9.3}_{-6.5}$	$0.71^{+0.08}_{-0.09}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1860^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1780

Table of O1 and O2 triggers with source properties

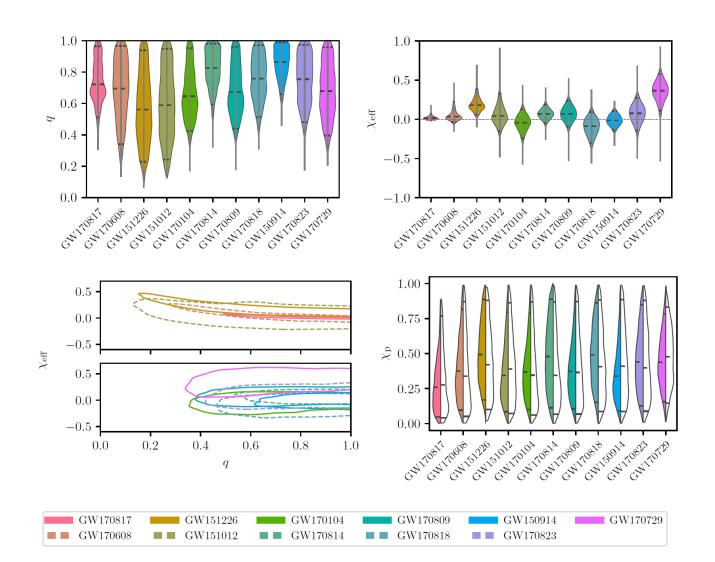
See https://dcc.ligo.org/LIGO-G1801864

Virgo data contributed to Parameter Estimation of 5 events

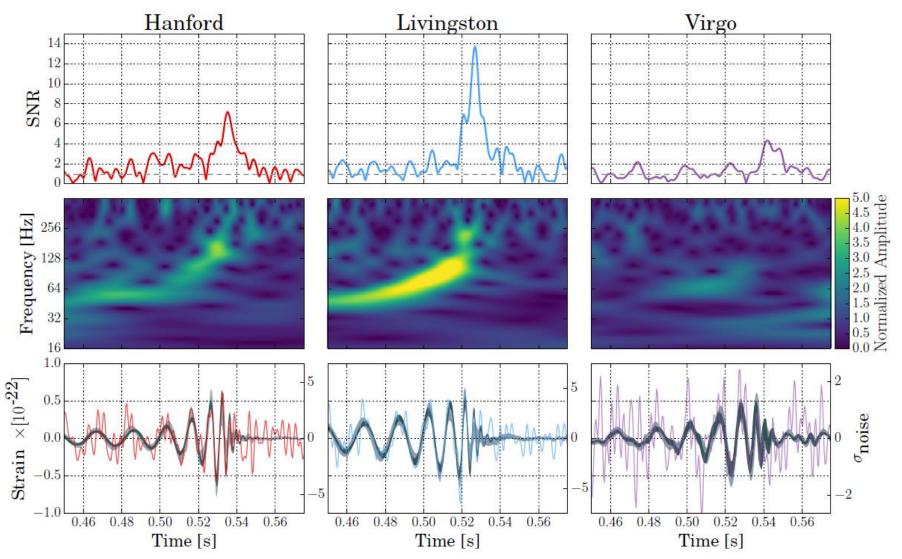
Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	$M_{ m f}/M_{\odot}$	$a_{ m f}$	$E_{\rm rad}/(M_{\odot}c^2)$	$\ell_{\rm peak}/({\rm erg~s^{-1}})$	$D_{\rm L}/{ m Mpc}$	Z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430+150	$0.09^{+0.03}_{-0.03}$	194
GW151012	$23.2^{+14.0}_{-5.4}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.2}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.7}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21^{+0.09}_{-0.09}$	1491
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18^{+0.20}_{-0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09^{+0.04}_{-0.04}$	1075
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.4^{+5.2}_{-3.9}$	$0.66^{+0.09}_{-0.11}$	$2.2^{+0.5}_{-0.5}$	$3.2^{+0.7}_{-1.0} \times 10^{56}$	960^{+430}_{-410}	$0.19^{+0.07}_{-0.08}$	912
GW170608	$11.2^{+5.4}_{-1.9}$	$7.5^{+1.5}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.04^{+0.19}_{-0.06}$	$17.9^{+3.4}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.8^{+0.1}_{-0.1}$	$3.4^{+0.5}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07^{+0.02}_{-0.02}$	524
GW170729	$50.7^{+16.3}_{-10.2}$	$34.4^{+8.9}_{-10.2}$	$35.8^{+6.3}_{-4.9}$	$0.37^{+0.21}_{-0.26}$	80.3 ^{+14.5} _{-10.3}	$0.81^{+0.07}_{-0.13}$	$4.9^{+1.6}_{-1.7}$	$4.2^{+0.8}_{-1.5} \times 10^{56}$	2760^{+1290}_{-1350}	$0.48^{+0.18}_{-0.21}$	1069
GW170809	$35.2^{+8.3}_{-5.9}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.17}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70^{+0.08}_{-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} \times 10^{56}$	990^{+320}_{-380}	$0.20^{+0.05}_{-0.07}$	310
GW170814	$30.7^{+5.5}_{-2.9}$	$25.6^{+2.8}_{-4.0}$	$24.3^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.6^{+3.2}_{-2.5}$	$0.73^{+0.07}_{-0.05}$	$2.8^{+0.4}_{-0.3}$	$3.7^{+0.5}_{-0.5} \times 10^{56}$	560^{+140}_{-210}	$0.12^{+0.03}_{-0.04}$	99
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01^{+0.00}_{-0.00}$	22
GW170818	$35.5^{+7.5}_{-4.7}$	$26.9^{+4.4}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8^{+4.8}_{-3.7}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-370}	$0.20^{+0.07}_{-0.07}$	35
GW170823	$39.5^{+10.1}_{-6.6}$	$29.4^{+6.5}_{-7.1}$	$29.3^{+4.2}_{-3.1}$	$0.08^{+0.19}_{-0.22}$	$65.6^{+9.3}_{-6.5}$	$0.71^{+0.08}_{-0.09}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1860^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1780



Properties of black holes


Extract information on masses, spins, energy radiated, position, distance, inclination, polarization. Population distribution may shed light on formation mechanisms

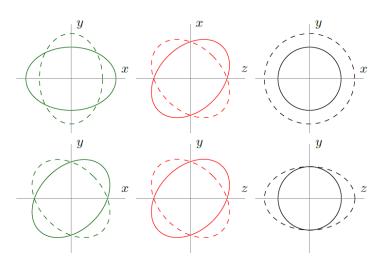
"GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs", The LIGO Virgo Collaboration, arXiv:1811.12907

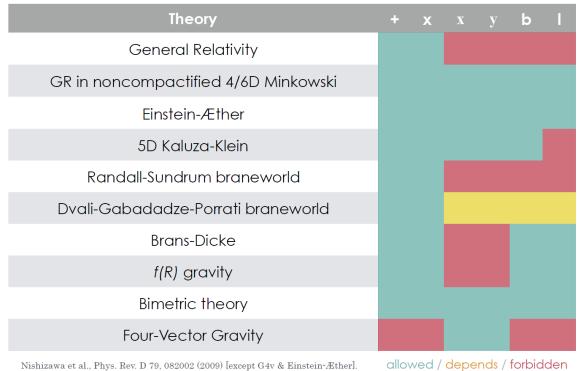

Properties of black holes: spins

"GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs", The LIGO Virgo Collaboration, arXiv:1811.12907

First triple detection by Virgo and LIGO

August 14, 2017 three detectors observed BBH. Initial black holes were 31 and 25 solar mass, while the final black hole featured 53 solar masses. About 3 solar mass radiated as pure GWs

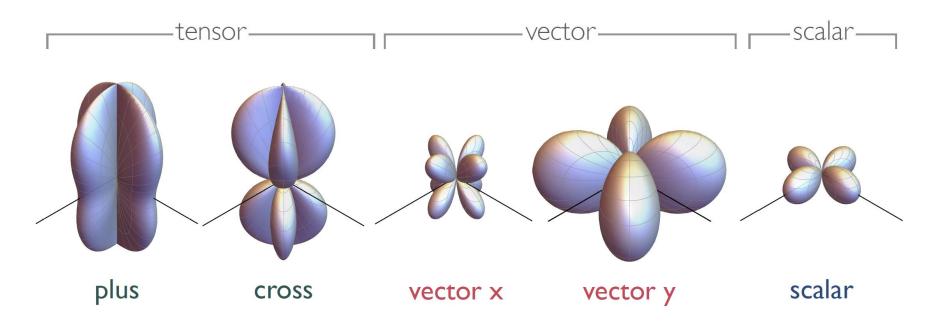



Polarization of gravitational waves

Polarization is a fundamental property of spacetime. It determined how spacetime can be deformed. General metric theories allow six polarizations. General Relativity allows two (tensor) polarizations

GR only allows (T) polarizations

General metric theories also know vector (V) and scalar (S) polarizations



First test of polarizations of gravitational waves

According to Einstein's General Relativity there exist only two polarizations. General metric theories of gravity allow six polarizations. GW170814 confirms Einstein's prediction

Angular dependence (antenna-pattern) differs for T, V, S

LIGO and Virgo have different antenna-patterns
This allows for a fundamental of the polarizations of spacetime

First test of polarizations of gravitational waves

According to Einstein's General Relativity there exist only two polarizations. General metric theories of gravity allow six polarizations. GW170814 confirms Einstein's prediction

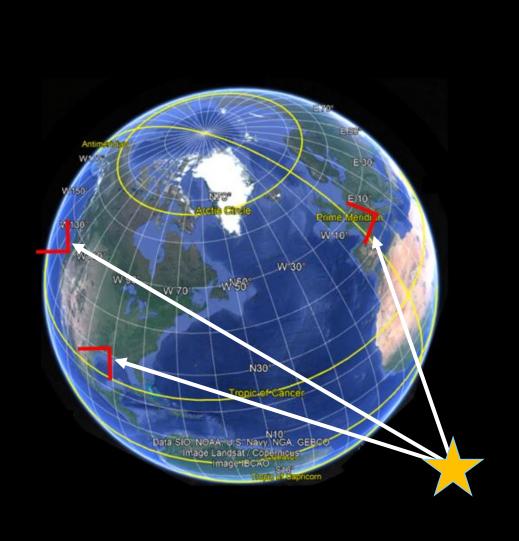
Angular dependence (antenna-pattern) differs for T, V, S

LIGO and Virgo have different antenna-patterns
This allows for a fundamental of the polarizations of spacetime

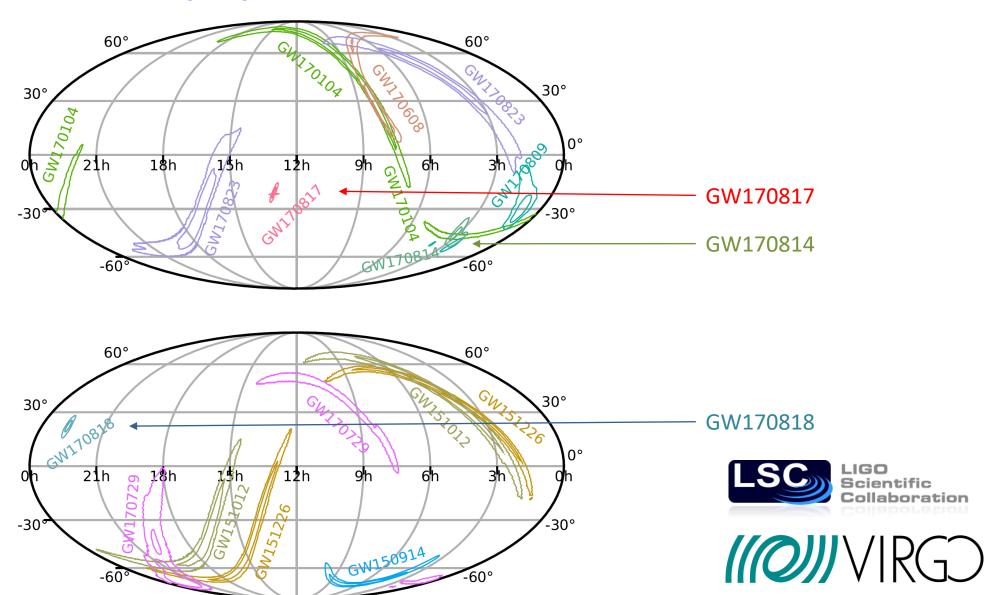
——tensor——_I——vector——_I—scalar—_I

Our analysis favors tensor polarizations in support of General Relativity

Our data favor tensor structure over vector by about a (Bayes) factor 200 And tensor over scalar by about a factor 1000

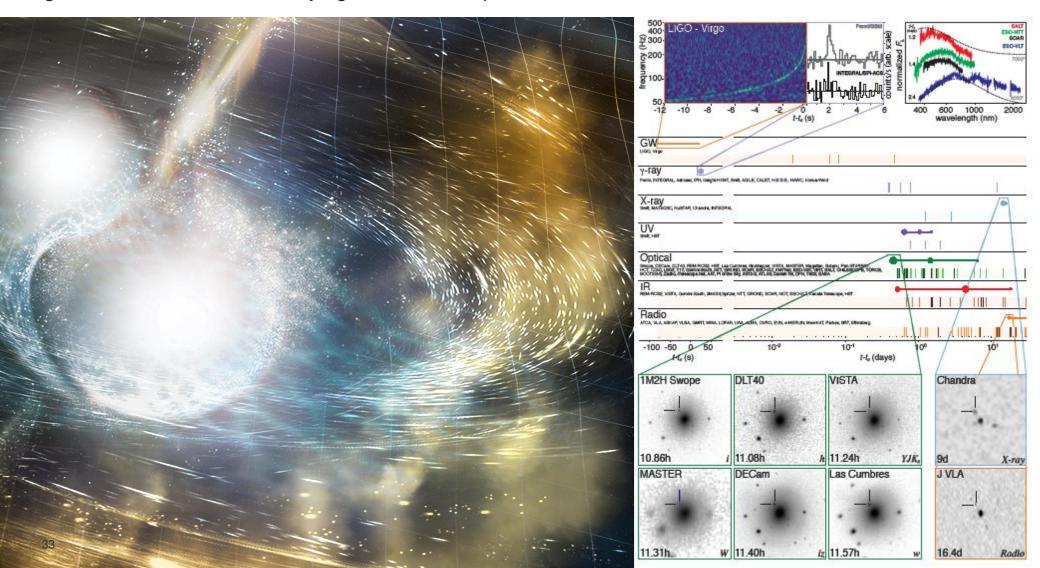

This is a first test, and for BBH we do not know the source position very well

Virgo allowed source location via triangulation


GW170817 first arrived at Virgo, after 22 ms it arrived at LLO, and another 3 ms later LLH detected it

Distributed skymaps

See https://dcc.ligo.org/LIGO-G1801864


Multi-messenger astronomy

Gamma rays reached Earth 1.7 seconds after GW event

GW170817: start of multi-messenger astronomy with GW

Many compact merger sources emit, besides gravitational waves, also light, gamma- and X-rays, and UV, optical, IR, and radio waves, as well as neutrino's or other subatomic particles. Our three-detector global network allows identifying these counterparts

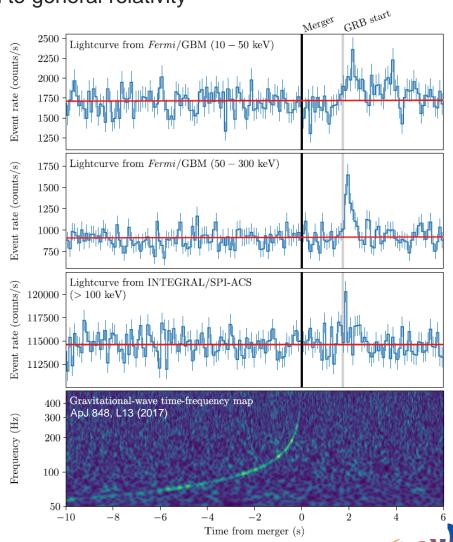
Implications for fundamental physics

Gamma rays reached Earth 1.7 s after the end of the gravitational wave inspiral signal. The data are consistent with standard EM theory minimally coupled to general relativity

GWs and light propagation speeds

Identical speeds to (assuming conservative lower bound on distance from GW signal of 26 Mpc)

$$-3 \times 10^{-15} < \frac{\Delta v}{v_{\scriptscriptstyle FM}} < +7 \times 10^{-16}$$


Test of Equivalence Principle

According to General Relativity, GW and EM waves are deflected and delayed by the curvature of spacetime produced by any mass (i.e. background gravitational potential). Shapiro delays affect both waves in the same manner

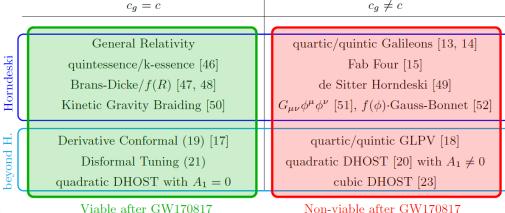
$$\Delta t_{\text{gravity}} = -\frac{\Delta \gamma}{c^3} \int_{r_0}^{r_e} U(r(t); t) dr$$

Milky Way potential gives same effect to within $-2.6\times 10^{-7} \le \gamma_{\rm GW} - \gamma_{\rm EM} \le 1.2\times 10^{-6}$

Including data on peculiar velocities to 50 Mpc we find $\Delta \gamma \leq 4 \times 10^{-9}$

Dark Energy and Dark Matter after GW170817

GW170817 had consequences for our understanding of Dark Energy and Dark Matter


Dark Energy after GW170817

Adding a scalar field to a tensor theory of gravity, yields two generic effects:

- 1. There's generally a tensor speed excess term, which modifies (increases) the propagation speed of GW
- 2. The scale of the effective Planck mass changes over cosmic times, which alters the damping of the gravitational wave signal as the Universe expands

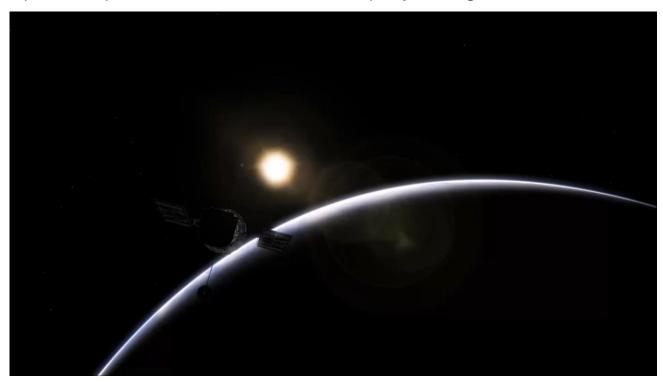
Simultaneous detection of GW and EM signals rules out a class of modified gravity theories (arXiv:1710.05901v2)

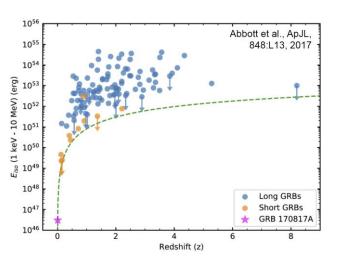
A large class of scalar-tensor theories and DE models are highly disfavored, e.g. covariant Galileon, but also other gravity theories predicting varying cg such as Einstein-Aether, Horava gravity, Generalized Proca, TeVeS and other MOND-like gravities $c_a = c$ $c_a \neq c$

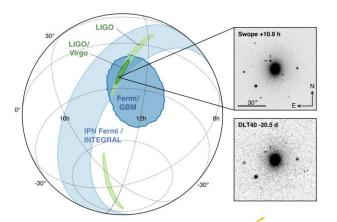
GW170817 falsifies Dark Matter Emulators

No-dark-matter modified gravity theories like TeVeS and relativistic bi-metric extensions of Milgrom's MOND ideas have the property that GW propagate on different geodesics (normal matter) from those followed by photons and neutrinos (effective mass to emulate dark matter)

This would give a difference in arrival times between photons and gravitational waves by approximately 800 days, instead of the 1.7 seconds observed (<u>arXiv:1710.06168v1</u>)

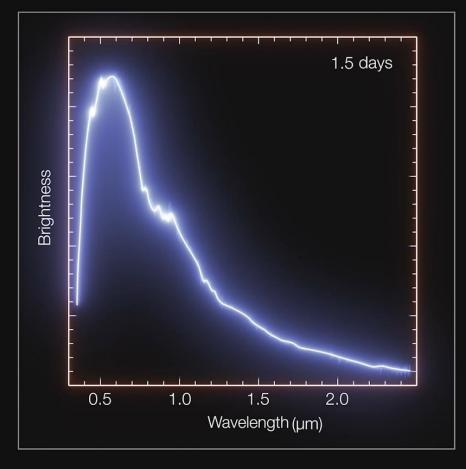

Looking into the heart of a dim nearby sGRB


Gravitational waves identified the progenitor of the sGRB and provided both space localization and distance of the source. This triggered the EM follow-up by astronomers for the kilonova


Closest by and weakest sGRB, highest SNR GW event

LIGO/Virgo network allowed source localization of 28 (degr)² and distance measurement of about 40 Mpc

This allowed astronomers to study for the first time a kilonova, the r-process production of elements, a rapidly fading source

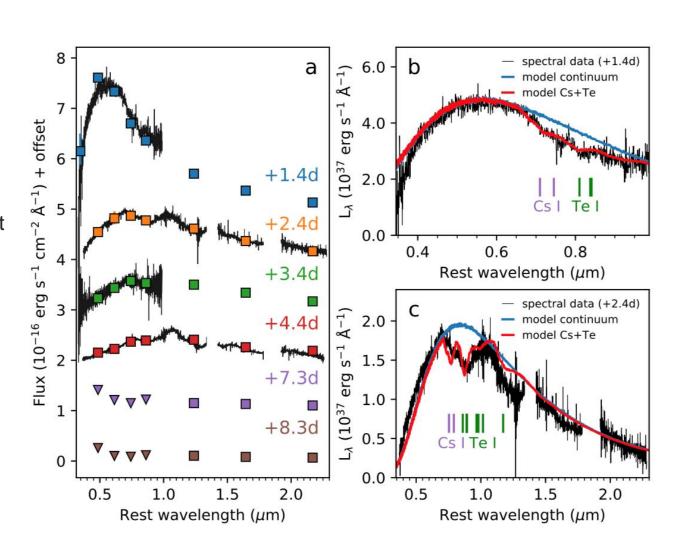


European Southern Observatory

About 70 observatories worldwide observed the event by using space telescope (e.g. Hubble and Chandra) and ground-based telescopes (e.g. ESO) in all frequency bands (UVOIR). We witness the creation of heavy elements by studying their spectral evolution

Since LIGO/Virgo provide the distance and BNS source type, it was recognized that we are dealing with a weak (non-standard) GRB. This led to the optical counterpart to be found in this region

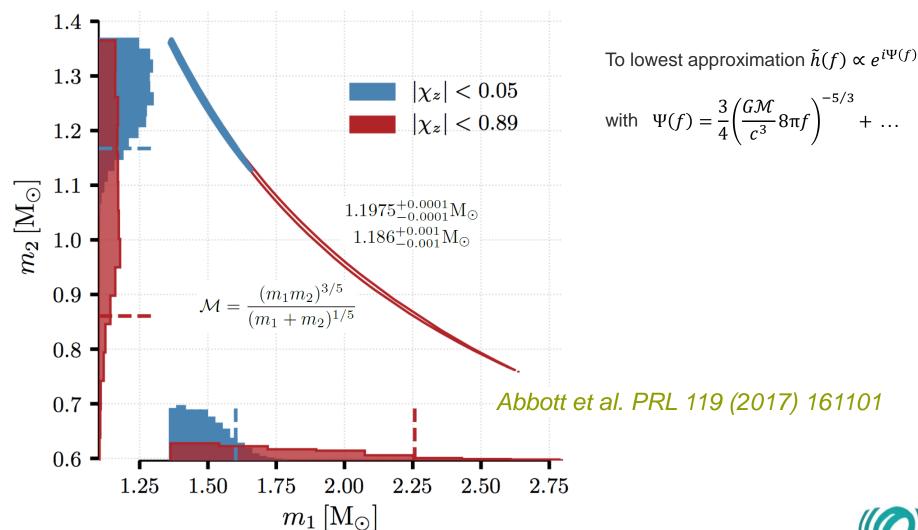
Kilonova description for GW170817


ePESSTO and VLT xshooter spectra with TARDIS radiative transfer models See Smartt S.J. *et al.*, Nature, 551, 75-79, 2017 for more details

The kilonova essentially has a black-body spectrum (6000 K; blue curve in panel C)

Data shows evidence for absorption lines (see model with tellurium and cesium with atomic numbers 52 and 55)

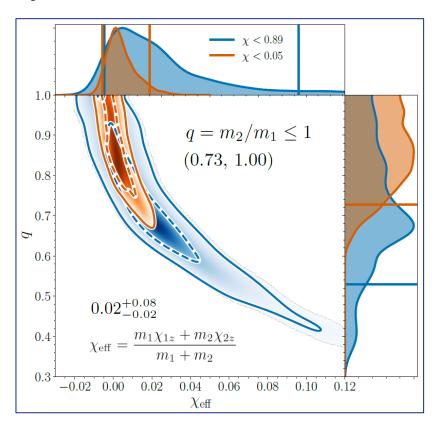
Formation of Cs and Te is difficult to explain in supernova explosions


The lines are Doppler broadened due to the high speed of the ejected material (about 60,000 km/s)

GW170817 source properties: BNS chirp mass

Chirp mass can be inferred to high precision. There is a degeneracy between masses and spins

Observation of binary pulsars in our galaxy indicates spins are not larger than ~0.04



GW170817 inferred properties: spins

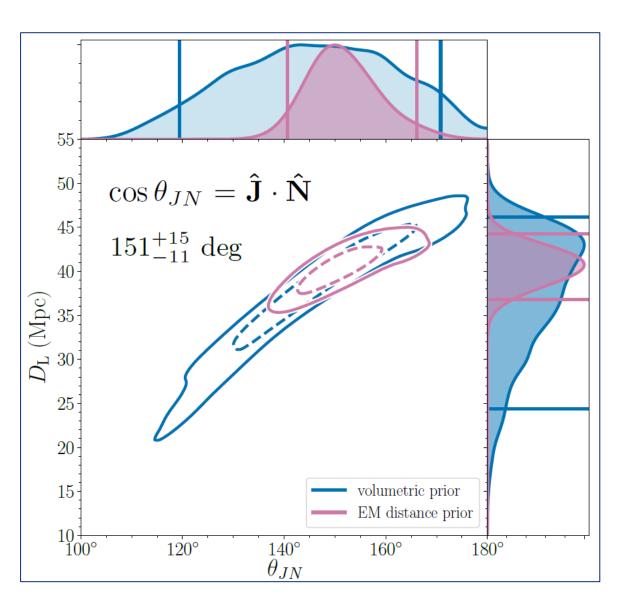
Constrains on mass ratio q, χ_i dimensionless spin, χ_{eff} effective spin, and χ_p effective spin precession parameter. See https://arxiv.org/abs/1805.11579

No evidence for NS spin

 $\chi_{\rm eff}$ contributes to GW phase at 1.5 PN, and degenerate with q $\chi_{\rm p}$ starts contributing at 2 PN

GW170817 properties: inclination angle

Including EM-distance information allows to constrain the inclination angle of the binary system

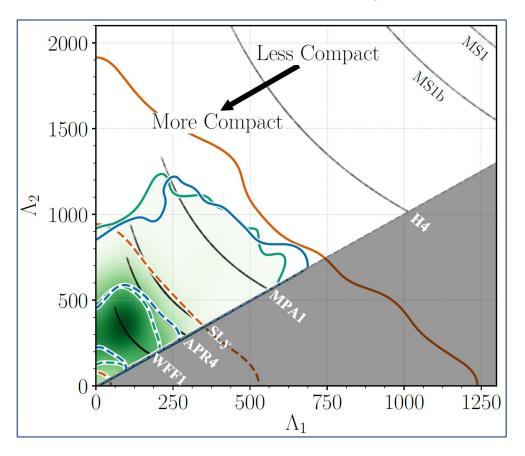

GW amplitude and polarization are dependent on binary inclination angle

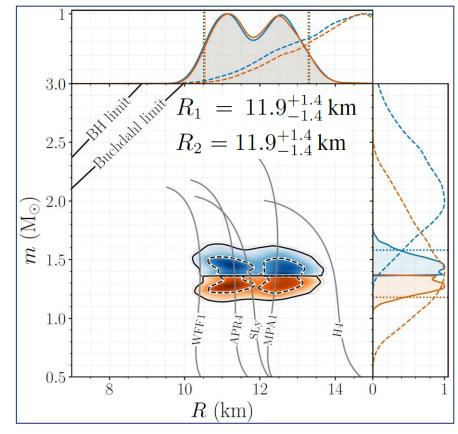
Use distance prior from EM follow-up observations

Use volumetric prior from GW measurements

Line of sight vector \hat{N}

Binary angular momentum vector \hat{J}



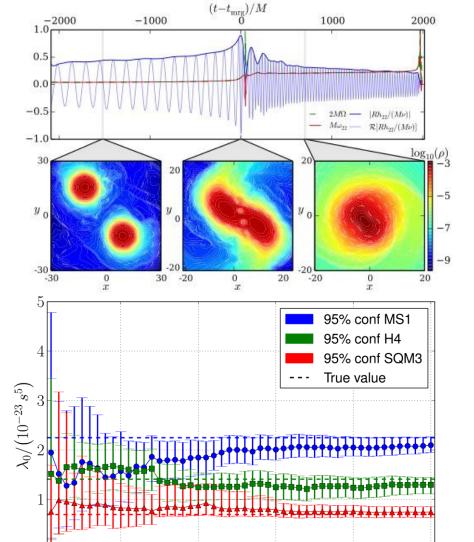

GW170817 properties: tidal deformability, EOS, radii

Tidal deformability gives support for "soft" EOS, leading to more compact NS. Various models can now be excluded. We can place the additional constraint that the EOS must support a NS $1.97\,\mathrm{M}_\odot$

Leading tidal contribution to GW phase appears at 5 PN: $\tilde{\Lambda} = \frac{16}{13} \frac{(m_1+12m_2)m_1^4\Lambda_1 + (m_2+12m_1)m_2^4\Lambda_2}{(m_1+m_2)^5}$

Employ common EOS for both NS (green shading), EOS insensitive relations (green), parametrized EOS (blue), independent EOSs (orange). See: LVC, https://arxiv.org/abs/1805.11581

Probing the structure of neutron stars


Tidal effects leave their imprint on the gravitational wave signal from binary neutron stars. This provides information about their deformability. There is a strong need for more sensitive detectors

Gravitational waves from inspiraling binary neutron stars

- When close, the stars induce tidal deformations in each other
- These affect orbital motion
- Tidal effects imprinted upon gravitational wave signal
- Tidal deformability maps directly to neutron star equation of state

Measurement of tidal deformations on GW170817

- More compact neutron stars favored
- "Soft" equation of state
- See LVC, https://arxiv.org/abs/1805.11581
- LVC, PRL 119, 161101 (2017)

50

40

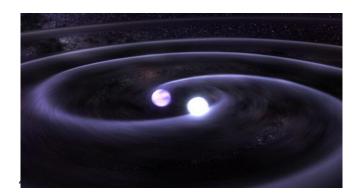
10

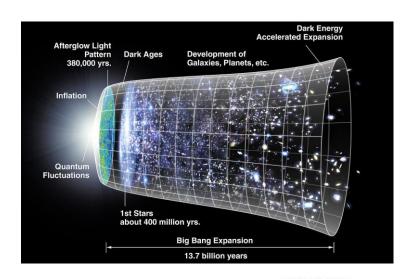
20

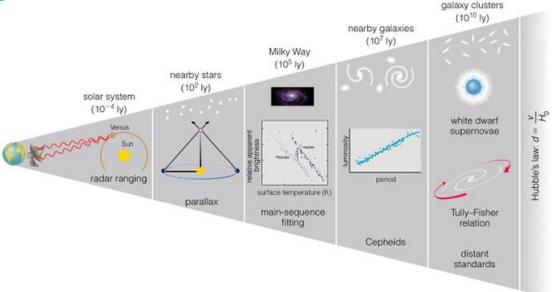
30

Events

A new cosmic distance marker


Binary neutron stars allow a new way of mapping out the large-scale structure and evolution of spacetime by comparing distance and redshift


Current measurements depend on cosmic distance ladder


- Intrinsic brightness of e.g. supernovae determined by comparison with different, closer-by objects
- Possibility of systematic errors at every "rung" of the ladder

Gravitational waves from binary mergers

Distance can be measured directly from the gravitational wave signal!

A new cosmic distance marker

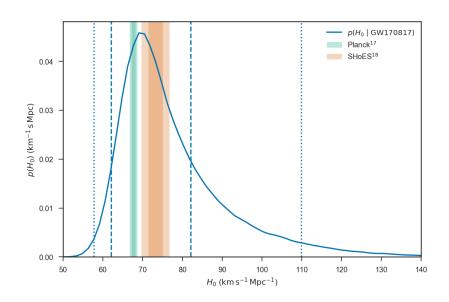
A few tens of detections of binary neutron star mergers allow determining the Hubble parameters to about 1-2% accuracy

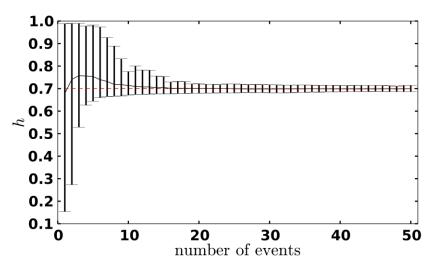
Measurement of the local expansion of the Universe

The Hubble constant

- · Distance from GW signal
- Redshift from EM counterpart (galaxy NGC 4993)

LIGO+Virgo et al., Nature 551, 85 (2017)


GW170817


- One detection: limited accuracy
- Few tens of detections with LIGO/Virgo will be needed to obtain O(1-2%) accuracy

Bernard Schutz, Nature 323, 310-311 (1986)

Walter Del Pozzo, PRD 86, 043011 (2012)

Third generation observatories allow studies of the Dark Energy equation of state parameter

Scientific impact of gravitational wave science

Multi-messenger astronomy started: a broad community is relying of detection of gravitational waves

Fundamental physics

Access to dynamic strong field regime, new tests of General Relativity Black hole science: inspiral, merger, ringdown, quasi-normal modes, echo's Lorentz-invariance, equivalence principle, polarization, parity violation, axions

Astrophysics

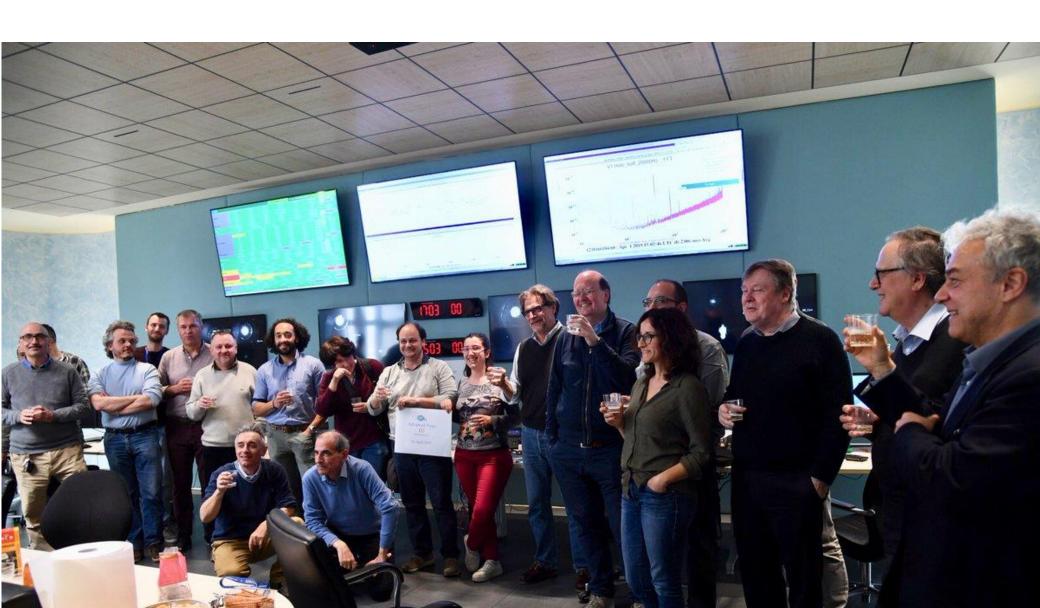
First observation for binary neutron star merger, relation to sGRB Evidence for a kilonova, explanation for creation of elements heavier than iron

Astronomy

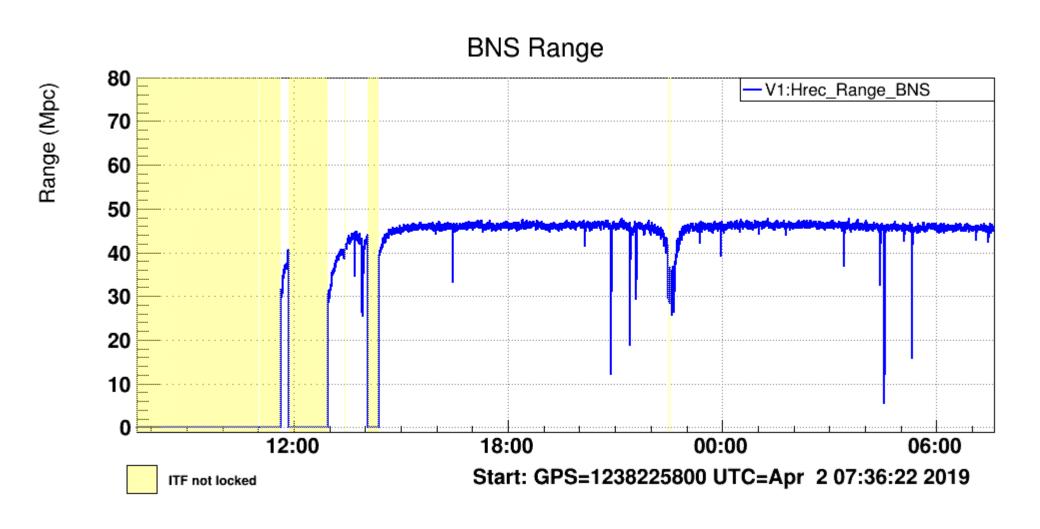
Start of gravitational wave astronomy, population studies, formation of progenitors, remnant studies

Cosmology

Binary neutron stars can be used as standard "sirens" Dark Matter and Dark Energy

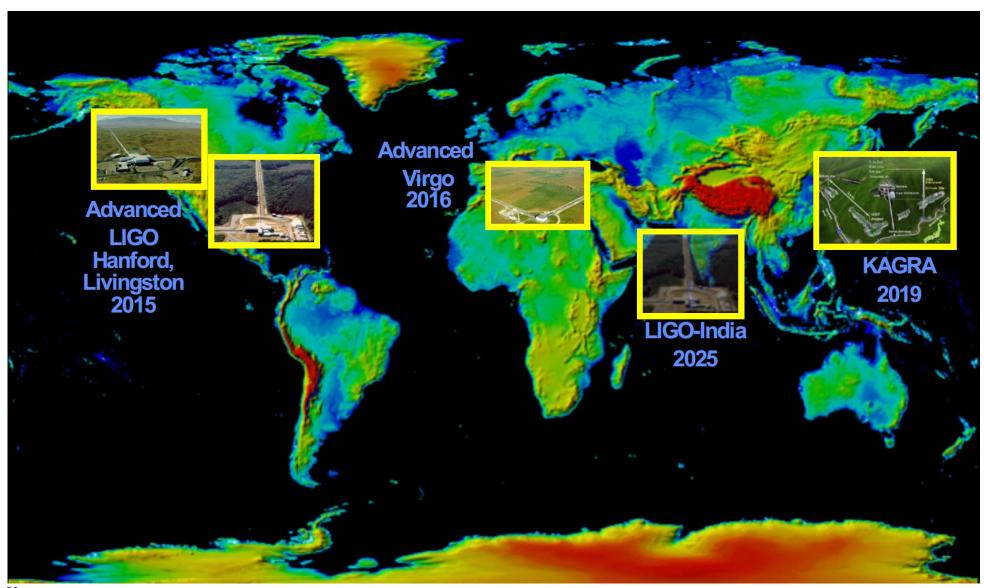

Nuclear physics

Tidal interactions between neutron stars get imprinted on gravitational waves Access to equation of state



The path forward ...

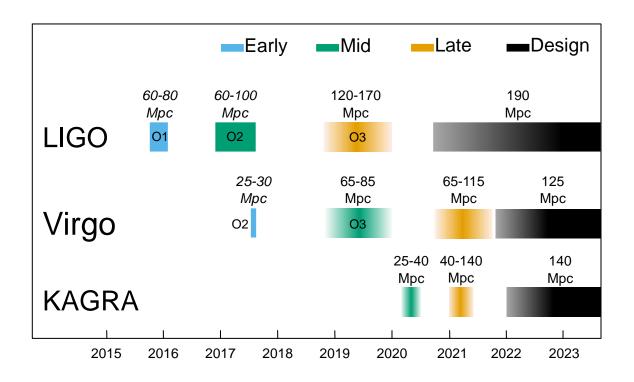
April 1, 2019: LIGO and Virgo started Observation run O3



Virgo's sensitivity increased by about 65% wrt O2

Towards a global network

KAGRA expected to join LIGO and Virgo this year in Observation run 3



Planned observing timeline

One-year O3 started on April 1, 2019 with higher sensitivity (thus significantly higher rate). In O3 LIGO and Virgo will release Open Public Alerts

Observation run O3

Three detectors and perhaps 1 BBH event per week, and 1 BNS per month KAGRA expected to join at the end of O3 Contribute to sky localization and PE

30°N
0°
30°S
60°S

HIKLV 2024

~20% in 20 sq deq

HLV 2019

B. P. Abbott et al., *Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA*, 2016, Living Rev. Relativity 19

AdV+ as the next incremental step forward in sensitivity

AdV+ is the plan to maximize Virgo's sensitivity within the constrains of the EGO site. It has the potential to increase Virgo's detection rate by up to an order of magnitude

AdV+ features

Maximize science

Secure Virgo's scientific relevance

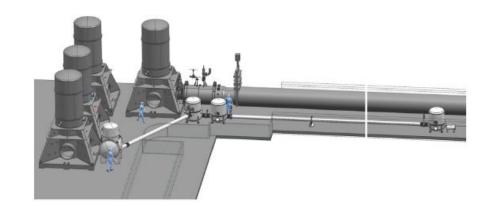
Safeguard investments by scientists and funding agencies

Implement new innovative technologies

De-risk technologies needed for third generation observatories

Attractive for groups wanting to enter the field

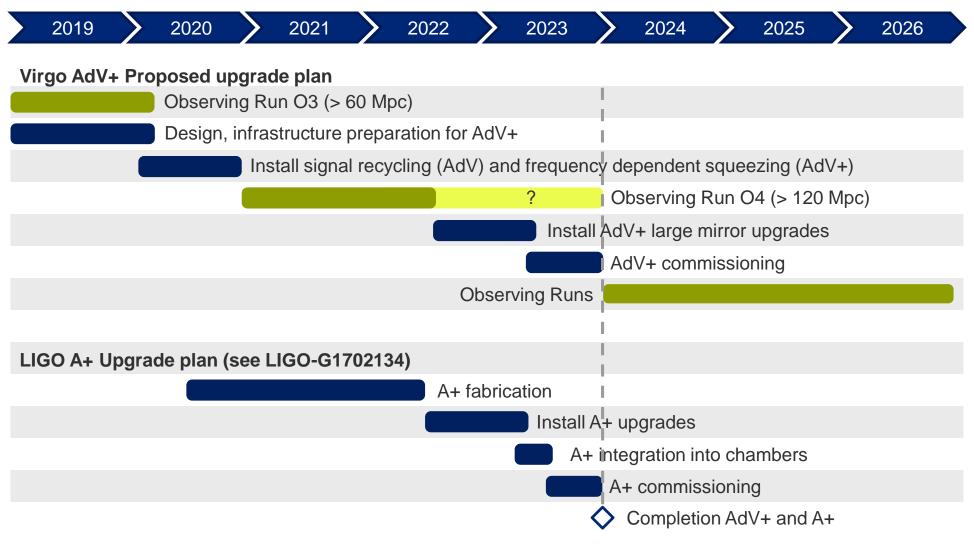
Upgrade activities


Tuned signal recycling and HPL: 120 Mpc

Frequency dependent squeezing: 150 Mpc

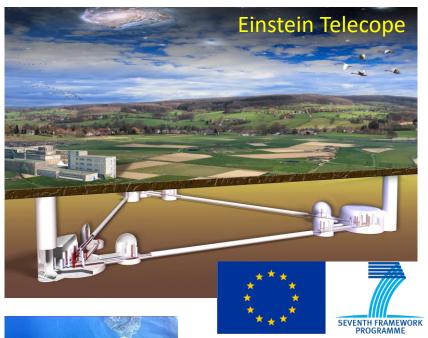
Newtonian noise cancellation: 160 Mpc

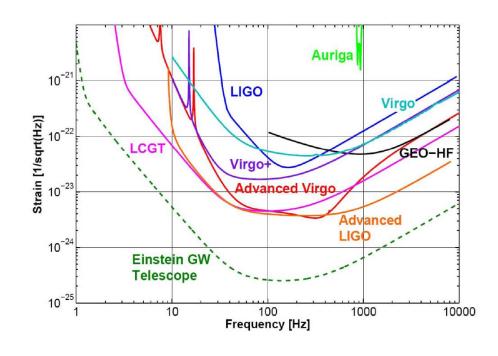
Larger mirrors (105 kg): 200-230 Mpc


Improved coatings: 260-300 Mpc

LIGO upgrade termed A+

AdV+ to be carried out in parallel with LIGO's A+ upgrade

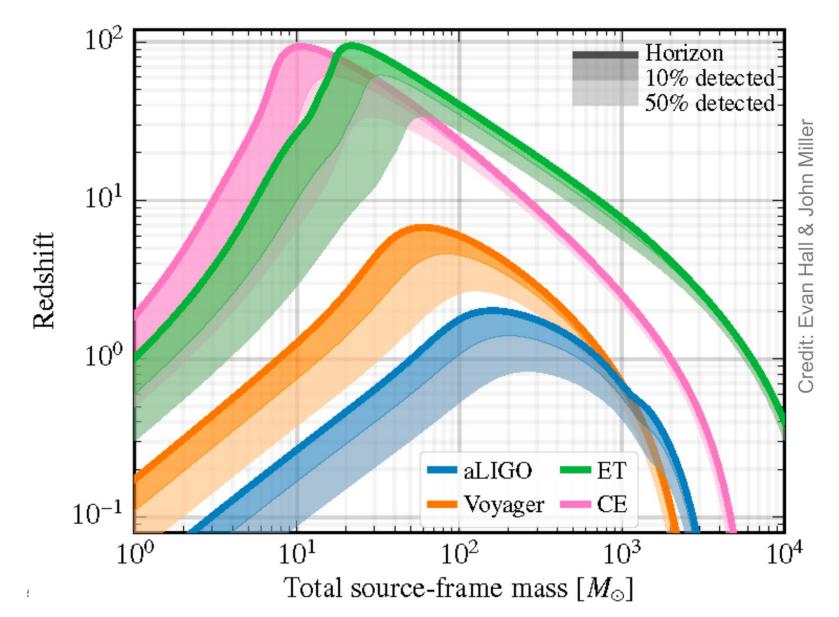

Five year plan for observational runs, commissioning and upgrades



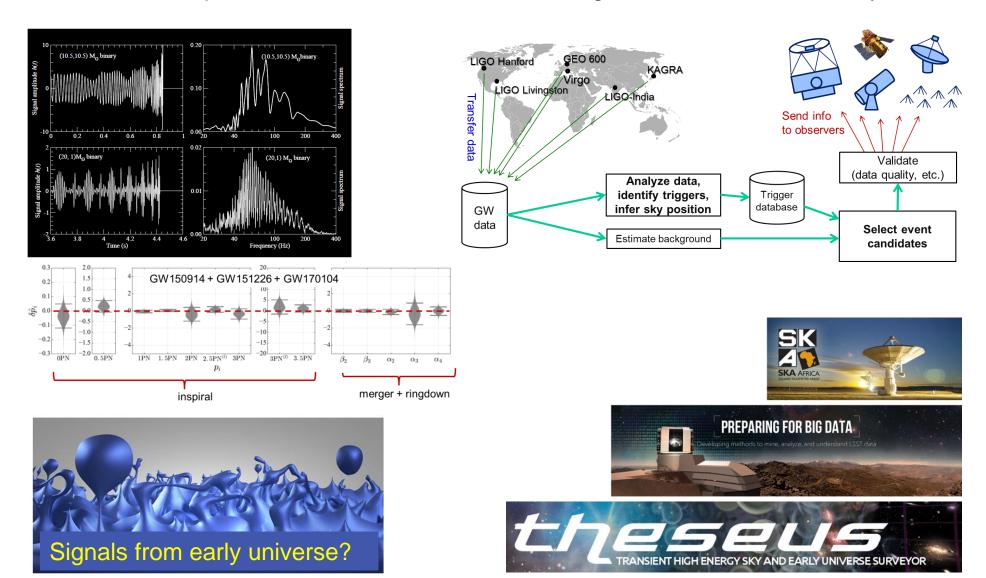
Note: duration of O4 has not been decided at this moment AdV+ is part of a strategy to go from 2nd generation to Einstein Telescope

Einstein Telescope and Cosmic Explorer

Realizing the next gravitational wave observatories is a coordinated effort to create a worldwide 3G network



Einstein Telescope has excellent sensitivity


Einstein Telescope and Cosmic Explorer can observe the entire universe

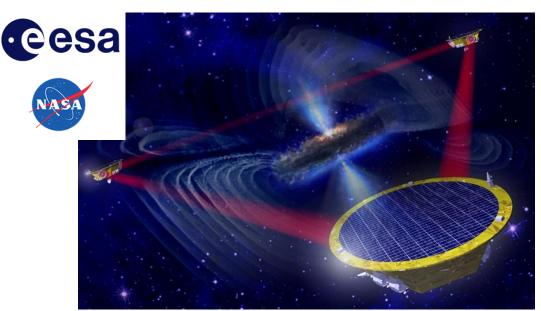
3G science

Detailed studies of gravity, near black holes. Early warning to EM follow-up community. Precision tests of detailed aspects of CBC. Cross correlation of the largest data sets. Access to early Universe

Bright future for gravitational wave research

LIGO and Virgo are operational. KAGRA in Japan joins this year, LIGO-India is under construction. ESA launches LISA in 2034. Einstein Telescope and CE CDRs financed, strong support by APPEC

Gravitational wave research


- LIGO and Virgo operational
- KAGRA to join next year
- LIGO-India under construction (2025)
- ESA selected LISA, NASA rejoins
- Pulsar Timing Arrays, such as EPTA and SKA
- Cosmic Microwave Background radiation

Einstein Telescope and Cosmic Explorer

- CDR ET financed by EU in FP7, CE by NSF
- APPEC gives GW a prominent place in the new Roadmap and especially the realization of ET

Next steps for 3G

- Organize the community and prepare a credible plan for EU funding agencies
- ESFRI Roadmap (2020)
- Support 3G: http://www.et-gw.eu/index.php/letter-of-intent

