Constraints on PBH binaries from N-body simulations

Martti Raidal NICPB, Tallinn

> Gert Hütsi Ch. Spethmann Hardi Veermäe Ville Vaskonen

arXiv:1812.01930

1

The Dark Side of Black Holes, Brussels

Constraints from Carr et al., arXiv:1705.05567

The Dark Side of Black Holes, Brussels

Wave optics and GRB finite size effects

Raidal et al., arXiv:1802.07728 (bound from Hawking radiation can be removed)

The Dark Side of Black Holes, Brussels

Lognormal mass function

Assume a mass function of the form

$$\psi(M) = \frac{f_{\rm PBH}}{\sqrt{2\pi}\sigma M} \exp\left(-\frac{\log^2(M/M_c)}{2\sigma^2}\right)$$

• We converted the bounds for mass functions

$$f_{\rm PBH} \equiv \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} = \int \mathrm{d}M\,\psi(M)$$

 The strongest bounds in this region come from the LIGO GW measurements

The merger rate of PBH binaries

Merger rate of PBH binaries at t

Density of initial conditions (pairs)

X

P(PBH binary with coalescence time t | initial conditions)

Teruaki Suyama's talk yesterday

astro-ph/9708060 astro-ph/9807018 arXiv:1707.01480 arXiv:1709.06576

$$dR = \int dn_{\rm b} dj \frac{dP}{dj} \delta\left(\tau - \frac{3}{85} \frac{r_a^4}{\eta M^3} j^7\right)$$
$$= \frac{1}{14\tau} dn(m_1) dn(m_2) \int dV(x_0) e^{-\bar{N}(y)} j \frac{dP(j|x_0, y)}{dj} \Big|_{j=j(\tau)}$$

Formation of PBH binaries in early Universe

- Initially close pairs form binaries
- Tidal forces fix the eccentricity
- Coalescence time

$$\tau = \frac{3}{85} \frac{r_a^4}{\eta M^3} j^7$$

• Approximation: the binary evolution depends on x, y: $\bar{N}(y) \equiv nV(y)$

The fate of initial binaries

- For small $f_{\mbox{\scriptsize PBH}}$: most of the initial binaries remains un-disturbed
- For f_{PBH}=1: most of the initial binaries are destroyed

Initial binaries are highly eccentric

The perturbed binaries tend to have more circular orbits

Coalescence time increased by many orders of magnitude

Binding energy is increased

The disturbed binaries become hard

Enhanced small scale structure formation

Formation of PBH clusters enhances the binary disruption

Binary destroyed by a mini-cluster

The LIGO/VIRGO rate

We do not know what happens for f_{PBH} > 0.1

A fit to LIGO/Virgo data

Do the bounds apply for the f_{PBH} =1 case too? OR

Are all binaries destroyed by clustering for f_{PBH}=1 and no bounds apply?

Clustering: Implications for the CMB

- Photons radiated by accretion of gas by PBHs results in the bound on the PBH abundance Yacine Ali-Haimoud Francesca Carone
- Two competing effects due to clustering:
 - 1/v⁶ reduction of accretion due to the extra velocity of PBHs inside the early clusters (ADAF accretion model):

$$L \simeq 4 \times 10^{29} \frac{\text{erg}}{\text{s}} f \lambda^2 \left(\frac{M_{\text{BH}}}{10 \, M_{\odot}}\right)^3 \left(\frac{n_{\text{H}}}{1 \, \text{cm}^{-3}}\right)^2 \left(\frac{v_{\text{eff}}}{10 \, \text{km s}^{-1}}\right)^{-6},$$

Possible N² coherent accretion enhancement if the accretion radius=the distance between PBHs

The velocity distribution due to clustering

However, DM–baryon streaming velocity at recombination is 30km/s

Just a few % effect for the CMB bound

but the effect might be large later - revise PBH bounds from radio astronomy

The Dark Side of Black Holes, Brussels

Coherent accretion due to clustering

• arXiv:1901.03649 argued that if the accretion radius,

$$R_{\rm a} = \frac{2GM}{v_{\infty}^2},$$

exceeds the distance between PBHs, the accretion is coherent and enhanced by N²

- Our simulation: this seems to be the case for f_{PBH}=1
- The CMB bounds on PBH abundance should be approximately N=10 times more stringent

Conclusions

- For f_{PBH} << 1 most initial binaries are unperturbed
 - Results in literature are qualitatively valid
 - The strongest bound for 10 $\rm M_{\odot}$ PBHs is given by LIGO
- For f_{PBH}=1 most binaries are disrupted
 Late evolution of binaries needed to derive constraints
- Enhanced small scale structures already at recomb.
 - PHB clusters enhance the binary merger/disruption rate
 - Coherent accretion of gas makes the CMB bound on f_{PBH} about N=10 times more stringent