# Femtolensing Constraints on Primordial Black Holes

Joachim Kopp (CERN & JGU Mainz) Solvay Workshop "The Dark Side of Black Holes" | Brussels | April 2019







JOHANNES GUTENBERG UNIVERSITÄT MAINZ



#### In this Talk

- **Markov** Introduction to Femtolensing
- Lensing of Gamma Ray Bursts (GRBs)
- Lensing of Fast Radio Bursts (FRBs)



















#### www.spacetelescope.org



#### www.spacetelescope.org



#### **Gravitational Lensing**











#### **Gravitational Lensing**























Risma







#### **Time Delay**



Image: University of Manchester

# Time Delay:

$$\Delta t = \frac{1}{c} \frac{D_L D_S}{D_L S} (1 + z_L) \left( \frac{|\vec{\theta} - \vec{\beta}|^2}{2} - \psi(\vec{\theta}) \right)$$









#### **Time Delay**











#### **Time Delay**



#### **Lens Equation**



Image: University of Manchester

# Lens Equation:

(in geometric optics, from stationary point of  $\Delta t$ )

$$\theta - \beta = \frac{\theta_E^2}{\theta}$$









### **Lens Equation**

#### **Einstein Angle**











#### $\mathbf{v} \quad \text{If } \omega \Delta t \gg 1:$

- O Stationary Phase Approximation breaks down
- O Instead of two discrete images, evaluate full Fresnel integral

$$F(\vec{\beta};\omega) = \frac{\Omega}{2\pi i} \int d^2 \vec{\theta} \, e^{i\omega\Delta t(\vec{\theta},\vec{\beta})}$$











Katz JK Sibiryakov Xue arXiv:1807.11495







































# **Excursion: Finite Size Lenses**

Non-pointlike compact DM candidates: ultra-compact (axion) minihalos large uncertainty in mass distribution and density profile



# Primordial Black Hole Constraints from Femtolensing of GRBs











#### **Finite Size of GRB Sources**



Katz JK Sibiryakov Xue arXiv:1807.11495









# **Finite Size of GRB Sources**











#### **Finite Size of GRB Sources**











 $\checkmark$   $\gamma$  production in GRBs:

Katz JK Sibiryakov Xue, arXiv:1807.11495

- O e+, e- acceleration in relativistic shock waves
- **Variability time scale** in rest frame for source size  $a_s$ :  $t_{\rm var} \sim a_S/c$
- $\mathbf{M}$  Relativistic boost  $\gamma$ :

$$t_{\rm var} \sim (1+z_S) \left(1-\frac{v}{c}\cos\theta_{\rm obs}\right) \gamma a_S/c$$



- Observation angle  $\theta_{obs} \sim 1/\gamma$
- ☑ Observed  $t_{var} \ge 0.01$  sec (short GRB);  $\ge 0.1$  sec (long GRB)

$$a_S \simeq \frac{10^{11} \,\mathrm{cm}}{1+z_S} \times \left(\frac{t_{\mathrm{var}}}{0.03 \,\mathrm{sec}}\right) \left(\frac{\gamma}{100}\right)$$









# Finite Size of GRB Sources: Caveats

- **Some GRBs with shorter variability time scale**  $t_{var} \leq 10^{-3} \text{ sec}$ 
  - $t_{var}$  distributio could have a long tail  $\rightarrow$  use tail form femtolensing
- Intrinsic variability might be too fast to be resolved
- $\mathbf{M}$  Conservative estimate from optical depth requirement  $\tau < 1$ :

$$a_S > 1.8 \times 10^9 \left(\frac{d_S}{7 \text{Gpc}}\right)^2 \left(\frac{f_{500}}{10^{-3} \text{sec}^{-1} \text{cm}^{-2} \text{ keV}^{-1}}\right) \left(\frac{\gamma}{1000}\right)^{-4} \text{cm}$$

# Assumptions:

- **O** Power law spectrum with  $\alpha = -2$
- Thomson scattering (non-relativistic in rest frame of ejecta)
- **O** Target e<sup>+</sup>, e<sup>-</sup> from pair production by  $\gamma$  rays
- 0 ...

Katz JK Sibiryakov Xue, arXiv:1807.11495









#### Lensed GRB spectra











#### Lensed GRB spectra











#### Lensed GRB spectra













Katz JK Sibiryakov Xue arXiv:1807.11495































erc





Katz JK Sibiryakov Xue arXiv:1807.11495











Existing (microlensing) analysis based on Subaru data neglects wave optics effects



Katz JK Sibiryakov Xue arXiv:1807.11495









# **Femtolensing of FRBs**







JOHANNES GUTENBERG UNIVERSITÄT MAINZ



#### Short (~ms) burst of radio waves

- At O(Gpc) distance (inferred from dispersion)
- Some repeaters
- 🗹 Mechanism unknown





#### Short (~ms) burst of radio waves



# Fast Radio Bursts

#### **Scintillation**

interference between waves traveling along different paths through turbulent ISM / IGM.



# One of O(50) proposed FRB mechanisms



see arXiv:1810.05836 for a review of mechanisms











#### **Market Remember:**

$$\Delta t \simeq \frac{1}{c} \frac{D_L D_S}{D_{LS}} (1 + z_L) \theta_E^2 \left( \frac{|\vec{\theta} - \vec{\beta}|^2}{2} - \psi(\vec{\theta}) \right) \sim 4G_N M_{\text{lens}}$$

I Leads to  $O(2\pi)$  phase shifts for  $f \sim GHz$  if  $M_{lens} \sim 10^{-4} M_{sun}$ 

- $\mathbf{M}$  Many new FRBs expected from SKA  $\rightarrow$  high statistics
- **But:** easily confused with *scintillation*









- many different lines of sight to the source because of refraction / diffraction in turbulent ISM / IGM
- Ieads to random interference patterns











# **Scintillation**











# Scintillation











# Scintillation



# Summary











# Femtolensing is an interesting tool to constrain PBHs

# GRB lensing

- for  $M_{\text{PBH}} \sim 10^{-14} 10^{-16} M_{\text{sun}}$
- o must include wave optics corrections
- must consider finite source size
- O no constraints with current data (contrary to previous claims)

# **FRB** lensing

- **o** FRBs are cool!
- **O** for  $M_{\text{PBH}} \sim 10^{-4} M_{\text{sun}}$
- O need to disentangle lensing from scintillation
- Iimited by poor understanding of turbulent interstellar and intergalactic medium









# Thank You !









