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The astronomical data landscape

Ground-based telescopes and space-borne instruments dedicated to
detection of electromagnetic radiation, cosmic rays and HE neutrinos
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Constraints from HE astrophysics

B. Carr talk
10 — 100 M 10719 — 10716 M,

Mechanism: Gas accretion onto Mechanism: Emission of charged
(P)BH* cosmic rays and photons at low
Probes: Radio (GHz), X rays (keV) energies via Hawking radiation™
Exp: VLA, Chandra, NuSTAR Probes: Extragalactic gamma

rays, electron/positron yields (sub-

GeV)

Exp: EGRET, Voyager, AMS02,

Fermi-LAT

* Complementary to CMB and other cosmological bounds
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Stellar-mass BH distribution

Black Holes of Known Mass

X-Ray Studies

GW150914

LVT151012
GW151226

e Stellar-mass BH in X-ray binaries [ |
* GW detection of stellar mass BH with mass as high as 40 Msun | ]
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High-mass PBH constraints (end ’16)

Lensing constraints: Dynamical constraints:

* MACHO project [Allsman+ ApJ’01]: micro-lensing * Disruption of wide binaries [\Monroy-Rodriguez+
events towards the Large Magellanic Cloud ApJ'14]

* EROS project [Tisserand+ A&A'07]: 7-year * Ultra-faint dwarfs [Brandt ApJ’16]: constraint from
monitoring millions of bright stars in the LMC and existence of star cluster at the center of Eridanus
SMC I
A. Green talk { Ali-Haimoud & Kamionkowski PRD'17
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* Exploiting accretion of gas onto PBH at very early times [e.g. Ali-Haimoud & Kamionkowski PRD’17]

* 21 cm line brightness temperature fluctuations: how PBH do alter the reionisation history
[Gong+JCAP'18] Y. Ali-Haimoud talk
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Gas accretion onto (P)BH

- Isolated black holes should all accrete at some level from the local interstellar

medium (ISM)
- Because of BH gravitational potential the gas inspires towards the event horizon and

heats up, emitting non-thermal X rays
- In the presence of a jet, radio emission from synchrotron emission is expected.

Emission mechanisms targeted by
traditional searches for astrophysical
stellar-mass BH
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Astro BH & PBH in the MW bulge

* From the star formation history of the * Assuming that all DM is made of PBH,
MW and the local mass density of stellar and adopting the mass model from
remnants, the total number of isolated, , One can estimate ~108
stellar-mass, black holes in our galaxy is PBH in the Galactic bulge

estimated to be ~108 [e.g.
] MBuge = (1.84 4 0.07) x 100 M,

e |sotropic distribution in MW of 5x105 BH Mpnr ~ 4O%MBulge

per kpc3, with a mean separation of just
over 10 pc. Rpuige ~ 2kpc, Mppy = 30Mg, fpm =1

— Nppg ~ 103, npgy ~ 10" kpe™?

At least fom < 0.01 to be comparable in number in the
Galactic bulge
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Some questions

* Given the large amount of gas in the inner Galaxy, how bright is this large
population of DM PBH thanks to accretion?

* |s this population compatible with current X-ray (Chandra, NuUSTAR) and
radio (VLA) point-source catalogues?

e Will future radio (hgVLA, SKA) and X-ray facilities be able to detect such
PBH population? What is the level of “background” expected by the
astrophysical BH population?




The accretion rate

Bondi-Hoyle-Lyttleton accretion formalism Hoyle & Lyttleton '39; Bondi & Hoyle ‘44

2712

M = \Mp = 47\

(VVEy +¢2)?




The accretion rate

Bondi-Hoyle-Lyttleton accretion formalism Hoyle & Lyttleton "39; Bondi & Hoyle "44
2012
2 2\3
(V VB + c2)

Accretion efficiency relative to the Bondi accretion rate

M = \Mp = 47\

* Numerical parameter quantifying non-gravitational forces, pressure, viscosity,
radiation feedback, disk formation

e Benchmark value for \ = 0.02, consistent with neutron star population estimates
and studies of AGN [Perna+ ApJ'03; Pellegrini ApJ 05]




The accretion rate

Bondi-Hoyle-Lyttleton accretion formalism Hoyle & Lyttleton "39; Bondi & Hoyle "44
2012
2 2\3
(V VB +€E2)

Accretion efficiency relative to the Bondi accretion rate

M = A\Mpg = 47\

* Numerical parameter quantifying non-gravitational forces, pressure, viscosity,
radiation feedback, disk formation

e Benchmark value for \ = 0.02, consistent with neutron star population estimates
and studies of AGN [Perna+ ApJ'03; Pellegrini ApJ 05]

Gas density and sound speed

* nNgas: 3D distribution of molecular, atomic and ionised gas in the inner bulge, notably in
the Central Molecular Zone (CMZ), within 300 pc from GC [Ferriere+ AAP07]; ~0.1 g/
cm?2

» Constraint on isothermal sound speed cs ~ 0.5-0.9 km/s, from mapping of CMZ
temperature Ginsburg+’15

» Effect of radiative feedback and formation of ionisation bubble around PBH,; if gas fully
ionised with cs = 10 km/s



The accretion rate

Bondi-Hoyle-Lyttleton accretion formalism
2712
2 2\3
(VB +€2)

Accretion efficiency relative to the Bondi accretion rate

M = A\Mpg = 47\

* Numerical parameter quantifying non-gravitational forces, pressure, viscosity,
radiation feedback, disk formation

e Benchmark value for \ = 0.02, consistent with neutron star population estimates
and studies of AGN [ ]

Gas density and sound speed

* nNngas: 3D distribution of molecular, atomic and ionised gas in the inner bulge, notably in

the Central Molecular Zone (CMZ), within 300 pc from GC | l; ~0.1 g/
cm?2

* Constraint on isothermal sound speed cs ~ 0.5-0.9 km/s, from mapping of CMZ
temperature

e Effect of radiative feedback and formation of ionisation bubble around PBH,; if gas fully
ionised with cs = 10 km/s

Mass modelling of the MW and derivation of phase-space velocity distribution
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Accretion rate and luminosity

The maximum luminosity of a source in hydrostatic equilibrium is the Eddington luminosity

M
Leqq = 1.2 x 10°° (M—> erg/sec
©

If the luminosity exceeds the Eddington limit, then the radiation pressure drives an outflow.
For a 100 Msun BH:

Mg ~ 10_4 CH?BLSS Meq4 Mg <€ Mgqq

Sub-Eddington accretion rate (if < 0.01 radiatively inefficient accretion)
e.g. Sgr A* in weak accretion regime

In the weak accretion limit, the luminosity scales non-linearly with the accretion rate:
o M . .
Lg =nMc® wit n=0.1= , M.t = 0.01 Mgqaq
Mcrit

Some observational evidence in
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X rays

radio

=

l0g L,y = Sy log Mgy (erg s7')

X-ray and radio emission

Hard X-ray luminosity obtained from the bolometric L by assuming a photon index a = 1.6
from 1013 Hz up to 100 keV in line with observations of X-ray binaries @ low accretion rates

Lx ~0.3Lpg 2-10 keV Hong+ ApJ'16

Hadio emission from jet electron population: main hp jet formation, with flat, optically thick,
spectrum [Fender+ 2001]

Advantage of radio: More successful than X-ray in detecting isolated BH since jet kinetic power
should dominate the total accretion with decreasing L [Maccarone MINEAS 05]

To convert from hard X rays to radio, we make use of the Fundamental Plane
[Plotkin+MNRAS13]: Universal scaling relation for low-accretion BH between hard X rays and
radio @ 5GHz
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PBH population

(MBHa UBH) Monte Carlo simulation of PBH distribution in the Galactic bulge

* Mass distribution: Monochromatic mass distribution
* Spatial distribution: Follows the Navarro-Frenk-White DM space density distribution
(benchmark)*

* Velocity distribution: Follows the Maxwell-Boltzmann distribution with position-dependent
1D velocity dispersion, derived from the spherical average of a MW mass model distribution

[ ]**

104-; —— NFW
] Einasto
103_;\ fBurkert ’UMB p— \/GM(< /”')//’4
— 102;
E 10" - : ~50 km/s @ 60 pc
S ~74 km/s @ 100 pc
107 5 ~138 km/s @ 500 pc
10—2-é
10—3: T
1073 1072 10~1 109 10* 102
r [kpc]
*  We tested shallower DM profiles with inner slope ~-0.6 | ], and a Burkert with 1 kpc core

** Maxwell-Boltzmann characteristic velocities are consistent with v distribution derived by applying the
Eddington formalism (agreement in the low-velocity tails)
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X rays

catalog, Hong et al. 2016
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X-ray and Radio catalogues

Chandra 0.5-8 keV | ]
—0.9° <1< 0.7°&|b| < 0.3° 2 x 107 ph/cm? /s
483 likely Galactic X-ray sources => 291 BH candidates

NuSTAR 10-40 keV | ]
~0.9°<1<03°& —0.1° < b < 04° 8 x 10%% erg /s
70 sources => 42 BH candidates

10-40 keV, NuStar

Prediction: More than 3000 (160) bright X-ray sources

b L [ ]

+ogg ., T 170 source in 1 deg?
e | 1 mJy sensitivity threshold

We search for spatial coincidence (10”) with Chandra
catalogue => 24 sources (9 likely foreground)

. ‘_+ e If accreting BH, they should lie on the FP (10-100 Msun): the

FP X-ray flux is 3-7 0.d.m. lower than what measured => No
BH candidate in radio survey

a8 46 a“ “w
RIGHT ASCENSION (J2000)

1.4 GHz, VLA, Lazio & Cordes

Francesca Calore

2008 prediction: for 30 Msun and fom = 1 we expect ~41 PBH detectable
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Constraints on PBH DM abundance

Gaggero, FC+ PRL’17

(30Mg, fom =1, A =0.02) — 40 £ 6

0.4

—0.4
—0.4 —0.2 0.0 0.2 04
ay
Example of the distribution of 30 Mo PBHs detectable by VLA in the ROI, for one Monte Carlo realisation.

Detectable PBH velocity in the range 0.3 - 3 km/s.
The constraints arise from the very low-velocity tail of the distribution and high gas column densities (CMZ).



Constraints on PBH DM abundance

Gaggero, FC+ PRL’17
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Limits from 100 MC realisations of the PBH population, 10—100 Msyn, for fom = 1

<NpgH> proportional to fom

The limit vanish for A <2 x 1073



MeerKAT (data taking)
0.01 mJy sensitivity
Detectable PBH

(30Mg, fou =1, A =0.001) — 88 £ 11
(30Mg, fom = 0.1, A =0.01) = 99 £ 9

SKA1-MID configuration

2.7 micro-Jy (1_hr, shallow survey)
~2000 detectable PBH

—0.4 = no BH candidates => Very strong limit
0.4 —0.2 0.0 0.2 04 = BH candidate => Great potential for
¢ [O] detection®

Deep field continuum observation (1000h)
Radio sources above the SKA1-Mid point source

e SO 87ndy sensitivity => Strong constraints placed
sensitivity, for 1000 hours of data taking, if PBHs even if lambda ~0.001
are ~ 1% of the DM '

SKA could allow the discovery of PBHs, even if they
represent a subdominant contribution to DM

* For fom < 0.001, searches must include the modelling of the comparably abundant population of
astrophysical BHs



Caveats & Questions

e Effective accretion rate lambda parameter is highly uncertain. We rely on current
UL for weak accretors. If < 0.01 bounds vanish

e Accretion spectrum is largely unknown: a) Rely on observed spectra (photon index
~1.6-2); b) Spectrum from accretion models (e.g. ADAF)

e Significant impact of the DM profile: e.g. for a cored profile, the bound is non-
vanishing for lambda = 1

e The bound is very sensitive to the velocity distribution (which is probably also
degenerate with lambda): Limits here come from low-velocity tail of the distribution.
A careful treatment of gas turbulent motion is required

e What is the impact of the gas fine structure in dense molecular clouds?

e Radio bounds rely on the assumption that a jet is triggered (spin, magnetic fields,
etc.)

e What is the effect of an extended mass function? | ]
e |s the Fundamental Plane relation robust? [ ]

* Disk can form in the early Universe, strongest constraints from CMB anisotropy | ]

Francesca Calore 17 CNRS, LAPTh



Turbulent gas motion

The relative velocity between BH and gas can be affected by the turbulent motion of the gas”*
How to estimate impact of turbulent gas motion in the CMZ?

Molecular gas kinematics within the central 250 pc of the Milky Way

[ ]

Velocity dispersions range from 2.6 km/s < 0 < 53.1 km/s

A median dispersion of 9.8 km/s

Yellow: 2.6kms™ ! <o < 74kms™; Blue: 74kms™ << 13.3kmy ™' Red: 13.3kms ™ <o < 53.1kms™
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* Only relevant for UL, if those depend on low-velocity tails of v distribution
Francesca Calore 18

Evidence for non-thermal gas
motions inherently supersonic
(Mach number ~10-60)

"This should be taken as an
upper bound on the level of
turbulent motion”

Importance of turbulence in the
suppression of star formation

[ ] and in
setting the initial distribution of
masses for star formation

| ] in the
environment of the CMZ

Driving mechanism for the
increased turbulence in CMZ
clouds is not conclusively
identified

CNRS, LAPTh



Gas small-scale structure

On top of the mean gas density, the ISM is finely structured in molecular clouds

CMZ molecular clouds have unusually high mean H2 densities ~104/cms3

Clouds reside at a distance of 8.34 + 0.16 kpc | ]
They seem to lie on a well-organized common orbit | ] along which

clouds might also systematically evolve [ ]

Galactic Center Molecular Cloud Survey (GCMS)
First systematic study resolving all major CMZ molecular clouds at interferometer angular resolution

T T N R | o T 1
KiH, 0% om 4, " . . <
a+0.27= 1 1 B ] () GCMS targets -
- . -~ - .
= i _ Dust Ridge C () ancillary clouds
o Dust Ridge D G0.253+0.016 2
{ o ’ U0 gt -
= +0.0°- ™ . Ol A o d
= 1 gr G2W % Sqgr Bl off w20 kmy/s - 1
J . ....- "ZJ / - ..'\,_J‘.‘ .‘@”. ('?) .- o
o Sg7D & T "ot motion 50 kmfs s @ e .
@ o200 (markers every 1 Myr) el h
100 pc
. L) Ll . . ' L} . L} L} l L} L] . L] l L} . L} . - l _— "
1.0° 0.5¢ 0.0° 359.5° 359.0°

Galactic Longitude

Impact on PBH abundance bounds: In case viurn=0 the number of detectable sources does not depend on the
gas small-scale structure; viurn > 0 the small-scale gas density distribution function improves the limits
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Accretion spectrum
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ADAF model [ Yuan & Narayan A&A’14]
- Depends on several parameters (e.g. viscosity, magnetisation, etc)
- In the case of a non-thermal electron component (e.g. jet) the IC bumps are smoothed out.
Required e.g. to explain Sgr A* data [ Yuan+ ApJ 03]
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NuSTAR constraints revised

What’s new:

* Include turbulent gas motion (probably overestimating Viur)

*

Effect of small-scale gas distribution (power-law pdf with slope 2.8)
Advection dominated accretion flow (ADAF) spectrum (w/o adjusting for Sgr A* observation)

* Limits from NuSTAR 70 PS (w/o considering contamination from Galactic sources, e.g CV)
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| ADAF [0 ADAF, 0, > 1.250,

| £=0.3 f=0.3, 0, --> 1.250,

= |n the case of turbulent gas motion, PBH
above NuSTAR threshold are rare

= Adopting an Einasto DM profile, less
detectable PBH are predicted

= Adopting a small-scale gas density, increasing
in the # of detectable PBH but not enough to
set a bound

X-ray observation cannot rule out O(10) Msun
PBH
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Improving on accretion modelling

Weak accretion onto e.g. Sgr A* => Models for radiatively inefficient accretion flows (RIAFs)

Traditionally adopted factorised parametrisation:
1) lambda: encodes our ignorance on gas energetics in the accretion flow
2) eta: efficiency of converting gravitational potential energy into radiation depending on cs (gas phase)

Going beyond: Self-consistent estimate of how the accretion rate depends on the BH velocity in the
presence of radiative feedback => radiation-(non-rel)-hydrodynamic simulations

le.g. ]

1( L
——  Park&Ricotti (20 1 ‘3)

107 A = (012, unionized e Factorised formalism:

—— A=0.02 ionized Simple, monotonic decrease of accretion rate
with increasing BH velocity

e Full simulation:
If BH velocity below M, a bow shock forms
developing a dense ionisation front behind the
shock with lower downstream density (and gas
velocity) => accretion rate increases with v
If BH above M., the ionisation front is rarefied

=> the accretion rate decreases with v

|

1 1 1 L L 1 1 ] 1 | ) 1 L 1 1 L L
() 10 20) 3 10 ol)

URH _..{111‘,."’:4_

* Radio jet not included in the hydrodynamic simulation while can have dynamical and radiative implications
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Latest X-ray and radio constraints

Manshanden+

1812.07967

HEl Radio 50 Bl X-ray 50
BN Radic3r EEE X-ray 3o e Accretion rate of low-v PBH is suppressed
Radio 20 WM X-ray 20 => They no longer contribute to the
constraints

)\

104

e Accretion rate of high-v PBH is enhanced
=> Those objects are more likely to radiate

10-2 above threshold

e The bounds originate from PBH with v~20
km/s (peak of accretion rate)

PBH DM fraction f

[
-
|
&S

e Limit O(100) stronger than Gaggero,FC+
PRL’17

-

1 1 1 1 1 1 1
20 10) 60 3() 100
PBH mass [M..]

104

* Bounds still present at 5 sigma even with a 2 kpc core of the DM distribution
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XRB luminosity function

Inoue & Kusenko JCAP’18

Limits from observed number density of X-ray binaries (XRB)

Ly (dN/dLy)
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Bondi accretion
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X-ray emission from free-floating BHs interacting with ISM gas is similar to XRBs.
How to disentangle the two? lonisation bubble around accreting (P)BHs, emission of iron K-alpha

fluorescent light



Low-mass PBH

How to constrain PBH which are evaporating at the present epoch (1014 - 1017 g)?

Hawking radiation is emitted in all available (SM) particle species, the total emitted power and
therefore the lifetime of a PBH depends on the number of available particle states

- . . dM 25 . 8 —1
BHs lose mass radiating particles with the rate: rale —5.25 x 107 f (M) (J\/I) gs
electron/positron spectrum
10" ¢ vy e —— e
E v Mgy = 10% g [Ty 22 100 MeV)
----- M =10"g (T = 10 MeV) ..
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Spectrum of emitted particles is centered at MeV-a
10" f few GeV energies
\ f.: . Page & Hawking ApJ’76;
M. Boudaud, PNHE2018 Carr & MacGibbon Phys. Rep.’98
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Mass M [Mg)]

Fraction f of DM in PBHs
s 5 5 3
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—— EGB Carr+(2010)

—-— GRB lens Barnacka+(2012) |
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— “1'616 - '1'0'17

Mass M [g]

Low-mass PBH
constraints

v Extragalactic diffuse background limits on
the mean cosmological number density,
by integrating the flux from PBHs over
the lifetime of the Universe

v Searching for diffuse emission from
PBHs in the halo of the Milky Way galaxy
=> Constraints from the Galactic diffuse
background (EGRET)

v Strongest constraints from Voyager |
electron/positron data

[Femtolensing constraints: J. Kopp talk]
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Voyager |: The local ISM

Sub-GeV interstellar cosmic rays cannot reach detectors orbiting the Earth, because they are
stopped by the heliopause (Solar wind)
Voyager-1 crossed the heliopause in August 2012 and probes now the local interstellar medium

=> First sub-GeV interstellar CRs
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Electrons/positrons from PBH radiation

MB & Cirelli (2018)
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Propagation B: no reacceleration
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DM distribution from meminanizo16) (NFW/cored)
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| Voyager-1 probes PBHs with mass up to ~1017 g
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* Voyager-1 is sensitive local PBHs (~1kpc) because of e+energy losses (ISM ionisation)
= signal not sensitive to the DM halo profile

* strong reacceleration (A) enables to detect a signal above 1 GV
= AMS-02 probes PBHs with M < 106 g

Voyager-1 data = upper limit for f = pper/pom M. Boudaud, PNHE2018



Constraints from Voyager |
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Fermi-LAT PBH search

Search for evidence of gamma rays produced by the Hawking radiation of low-mass, high-
temperature PBHs in the Fermi-LAT data

PBHs with the remaining lifetime of months to years

Would appear as Fermi-LAT unassociated sources with proper motion

Differential point-source sensitivity in 4 yr (3FGL) of observations is most sensitive to PBHs with
temperature Tgy ~16 GeV, i.e. with a remaining lifetime of ~4 yr.

Detectable up to 0.03 pc, very local sources
Expected proper motion of 1 deg, vs localisation error of 0.1 deg
 Smoking-gun signature: A moving unassociated source with a hard spectrum of gamma rays

No PBH candidate found in the 3FGL

Set limits on PBH evaporation rate /reu < (7.275 ;) x 10% pe™ yr™!
Constraint on local mass density Mg, < (3.6%73) x 107
Average PBH density Qpon < (1.5555) <1072

* Several orders of magnitude less constraining than the limits obtained from extragal. and Galactic gamma-ray backgrounds

Francesca Calore 30 CNRS, LAPTh



Conclusions & Outlook

v Solar-mass PBHs can be bright in and X rays

v How much, it depends on the modelling of gas accretion onto BH. Latest
results based on hydro simulations show that a sizeable number of
detectable PBHs is predicted above current radio and X-ray survey
thresholds

v Radio and X-ray bounds nicely complements other constraints in the PBH
solar-mass range

v Future radio facilities (SKA, ngVLA) have the potential to either set very
strong constraints on PBH abundance or to detect a population of PBHs at
the GC

v Low-mass PBHs can be probed by sub-GeV particles: photons and
cosmic rays.Strong and robust constraints from Voyager | electron/positron
data

v Future (proposed) gamma-ray missions @ sub-GeV can push further
down the limits on PBH abundance from diffuse photon observations, e.g.
Amego

Francesca Calore 31 CNRS, LAPTh
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PBH velocity distribution

R = 0.1 kpc R = 0.5 kpc

0.010 | . |

= Eddington formula = FEddington formula
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MB centered at 50 km/s at 60 pc, 74 km/s at 100 pc and 138 km/s at 500 pc in our computation



PBH velocity distribution
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~50 km/s @ 60 pc
~74 km/s @ 100 pc
~138 km/s @ 500 pc



How will SKA1 be better
= than today‘s best radio telescopes?

' *ry LOFAR JVLA ! SQUU'KM Mﬂ XA W
resolvlion mMM survey speed

B e 8O
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RESOLUTION SURVEY SPEI SISASTRRAVARD 4

SP0O | Swrbume Avronoery Producs ons

Francesca Calore CNRS, LAPTh



The gas distribution in the MW

Phase Volume Mass N T Cs
Fraction Fraction (cm™3) (K)  (x10° cms™1)
Molecular Clouds 0.005 0.4 1000 10-30 0.6
Diffuse Clouds 0.05 0.4 100 80 0.9
Intercloud Medium 0.4 0.2 1 8000 9

Coronal Gas 0.5 0.001 0.001 10° 100




Extended mass distribution

Manshanden+1812.07967
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Relevance of disk-like accretion

CMB anisotropy constraint on PBH abundance
An accretion disk generally form in dark ages between recombination and reionisation

""" Sphercal accredon
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* Disk not resolved in hydro simulation [Park&Ricotti ApJ°135]
** The disk formation can drive thermal instabilities leading to outbursts [Agol&Kamionkowski MINRAS 0Z]



