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Intro

 Like dark matter and dark energy, black holes (BHs) are
hard to observe. Gravitational waves are a direct probe.

e Black holes are a fossil of dead stars
Perhaps also an early Universe fossil

e Goal: Understand the initial conditions and constituents
of the Universe



Power spectrum constraints
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Constraints, constraints, constraints...

e If you care about PBHs being the DM, then fpen constraints are the key.

* |f you care about the initial conditions then observational constraints are
exponentially less important than properly understanding the formation
mechanism and how to relate Pzeta(k) to beta(MpeH) and the equation of
state. We don’t know if the Universe was radiation dominated before
BBN. Significant uncertainties remain despite a large, ongoing community
effort: Germani & Musco ’18; Yoo et al ’18; Kalaja, Bellomo, Musco,
Verde... in preparation, etc

e Unlike Bringmann, Scott & Akrami ’12, we do not include ultracompact
minihalo constraints because they require DM be WIMPS. The steep
density profile they assumed is unrealistic (simulated by Gosenca,
Adamek, CB, Hotchkiss '17) but tight constraints still exist (Delos et al '18)



Ultimate constraints from PBHs
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Early matter domination dramatically tightens constraints
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Steepest possible power spectra
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From single-field inflation with an inflection point (ultra slow-roll inflation).
The power spectrum cannot be steeper than k4

CB, Cole & Patil 2018



“Realistic” model with a smooth potential

P(k)
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The red line is a full result from a smooth potential (Germani & Prokopec 17, modified from
Garcia-Bellido & Morales '17), while the red line is based on a piecewise analytic calculation.
Calculated using CPPTransport created by David Seery 2016
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GW spectrum
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This is unphysical and a warning against using delta functions.
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PBH abundance is exponentially
sensitive to non-Gaussianity
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Even a tiny amount of squeezed limit (local) non-Gaussianity correlating standard
CMB scales with PBH formation scales will generate large scale DM isocurvature
perturbations. This is strongly ruled out by Planck constraints
- Tada & Yokoyama 2015, Young & CB 2015



Non-Gaussianity strongly impacts the constraints

Considering local non-Gaussianity with a top-hat peak in the power spectrum
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Isocurvature constraints
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 Beware of primordial non-Gaussianity (of the curvature perturbation).

If modes on observable scales are correlated to the PBH forming scales
then a DM isocurvature perturbation will be generated and ruled out by
Planck observations: - Tada & Yokoyama 2015, Young & CB 2015
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The density profiles are related to the power spectrum shape

Due to the 2-point correlation function which tells you the density near peaks and

shows that spherical symmetry is a good approximation
(BBKS 1986 classic paper, non-spherical effects Kiihnel & Sandstad 2016)

The density profile does not change strongly assuming a smooth peak in the
primordial power spectrum, independently of the width
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The density profiles are related to the power spectrum shape

2«
Curvature perturbation profiles: Ca(r) = Aexp [_ (L) 1

M (r,t) — Mpy(r,t)
R(r,t)

Profile dependence: Musco 2018 (see also Nakama, Harada, Polnarev & Yokoyama 2014)

rm is the scale at which the compaction function is maximised C(7,t) = 2
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The curvature and density perturbation

e The literature has almost exclusively assumed a linear mapping from the curvature
perturbation, zeta, to the comoving density perturbation

e However, the large amplitude perturbations required for PBH formation mean that the
linear relationship is unreliable

e This mapping is required because zeta is not a good variable for studying PBH
formation (with some exceptions) and also to connect the inflationary and GR simulator

communities
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The non-linear relation has been studied very recently
Kawasaki & Nakatsuka 2019 (last month);
De Luca et al and Young, Musco, CB both on Tuesday this week
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The non-linearity suppresses PBH formation
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* This looks exactly like local non-Gaussianity, acts like a negative skewness on the 1-point distribution
e This non-Gaussianity is inevitable (ineludible)

e But the derivatives are uncorrelated on scales much larger than the PBH radii (rm), SO no large scale
isocurvature perturbation generated (unless zeta is non-Gaussian)
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Power spectrum constraints are weakened by a factor ~ 2

1.x1079
1.x10714
, Delta function power spectrum
o 110 Young, Musco, CB 19
1.x10724
1.x10729 / Non-Linear
/
LK 4 mm—— Linear
1.x10734 )
0.01 0.02 0.05 0.10 0.20
As

In order to generate the same number of PBHs when taking the non-linear (NL) relation into
account, compared to the normal/wrong case that you use the linear relation, the power
spectrum amplitude needs to increase by the ratio
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For the typical value of delta_c~0.55, power spectrum constraints are weakened by a factor of 2
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A cosmological
coincidence

The QCD transition occurs
during the time when LIGO
mass PBHs formed.

Juan’s talk: Another
coincidence beta~eta~10-°

The horizon mass has grown
by about 50 orders of
magnitude since the end of
inflation.

QCD transition: t~10-6¢s, T~200
MeV, M~1 Mg, k~107 Mpc-1

18

t = 15 billion years

Today t

T=3K {1 meV)

Life on earth
Solar system

Quasars

Galaxy formation
Epoch of gravitational collapse

Recombination
Relic radiation decouples (CBR)

Matter domination
Onset of gravitational insta bility

Nucleosynthesis

Lightelements created - D, He, Li t=1 second

T=1MeV

Quark-hadron transition
Hadrons form - protons & neutrons

Electroweak phase transition

Electromagnetic & weak nuclear

forces become differenfiated:
SU(3)xSU(2)xU(1) -> SU(3)xU (1)

The Particle Desert
Axions, supersymmetry?

Grand unification transition
G -> H -> SU(3)xSU(2)xU(1)
Inflaion, baryogenesis,
monopoles, cosmic strings, etc.?

The Planck epoch

The quantum gravity barrier
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The QCD transition

e As the Universe cools below 1 GeV, strong interactions confine quarks into hadrons and
the equation-of-state parameter w decreases. Borsanyi et al (2016) made the first
definitive predictions of this period

e PBHs form with a mass comparable to the horizon mass - 1 solar mass
(Crawford & Schramm 82,Jedamzik 98)
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The resultant PBH mass function

. 1 dQppy _1/9 —-ii%-
M) = & — 3o M F(M) oxc M~/2¢ 275
1074 ~ o
107
10—6 ............

107 dashed - w=1/3

..
N
L 4
N
L J
L J
..
L
L/
L ]
L 4
N
L ]
N
L 4
L 4
L 4
L 4
L
L 4
..
N

10_8

0.001 0.010 0.100 1 10 100 1000
M/M,,

Despite the critical collapse threshold decreasing by only ~10%,
PBH formation is boosted by over two orders of magnitude

21



The resultant PBH mass function
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For the left plot, approx 10% of DM is made up of ~ solar mass PBHs and

0.1% lies in the LIGO mass range - enough to get the merger rate LIGO detects
Sasaki et al + Haimoud et al + Chen & Huang + Raidal et al + many more
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* The BHs LIGO and Virgo detected might include PBHs (is the low spin a hint?)
Bird et al; Clesse & Garcia-Bellido; Sasaki, Suyama & Yokoyama; - all 2016

e If the initial power spectrum was boosted on scales corresponding to LIGO
mass BHs, the QCD transition naturally predicts a larger population of solar

mass PBHs. These cannot form by stellar collapse.

LIGO sensitivity for equal mass mergers

Magee et al 2018
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If PBHs are more than one billionth of the
dark matter, what is the rest made of?

Not WIMPs!

If frBH<1, then another DM component

IS inevitable. It matters what it is
Steep and high density profiles form
around PBHs

In contrast to UCMHSs without a PBH
seed

We showed analytically and by the
first N-body simulations of this
process that the DM density profile
scales as r-9/4

WIMPs in the innermost parts of the
halo would annihilate and generate a
strong gamma-ray signal

A detection of WIMPs or PBHs would
rule out the existence of the other
(unless MpgH<10-6 Msun)
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Adamek, CB, Gosenca & Hotchkiss 2019; see
also Lacki & Beacom 2010; Eroshenko 2016;
Boucenna, Kihnel, Ohlsson & Visinelli 2017

24



P(k)

Future constraints
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Summary

Even if PBHs do not exist, Bernard has not wasted 45 years of his life!

The power spectrum cannot grow faster than k4. The commonly assumed delta function
power spectrum is unrealistic in important ways (e.g. stochastic GW constraints).
“Steepest growth of the power spectrum and primordial black holes”,

CB, P Cole, S. Patil; ArXiv:1811.11158

Brand new!

The non-linear delta to zeta relationship weakens the PBH constraints by a factor of 2-3
Primordial black hole formation and abundance: contribution from the non-linear relation
between the density and curvature perturbation; S. Young, |. Musco, CB; ArXiv:1904.00984

If LIGO detected any primordial black hole, then there should exist a larger population of
solar mass black holes

“Primordial black holes with an accurate QCD equation of state”;

CB, M. Hindmarsh, S. Young, M. Hawkins; JCAP (2018); ArXiv:1801.06138

Mixed dark matter models are required if f<<1. PBHS and WIMPs cannot coexist
“WIMPs and stellar-mass primordial black holes are incompatible”;
J. Adamek, CB, M. Gosenca, S. Hotchkiss; arXiv:1901.08528
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FIG. 4: Left-hand plot: Numerical results for the potential in [31] are plotted in red and our
analytical approximation is plotted in blue. The analytical approximation involves 3 constant
phases of 1 from 0 to -6 and back to 0. The right-hand plot shows the piecewise form for n used
for the analytical approximation in blue, with 2.2 e-folds of » = —6. The full numerical evolution
of n for the potential in [31] is shown in red. Note that the units in e-folds have been defined
arbitrarily, and we have chosen to centre the phase of » = —6 in our analytical approximation at
the time N when the numerical 1 reaches -6 instantaneously.

CB, Cole & Patil 2018
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Black hole spin

- GW170608 — LVT151012 - GW170814
- GW151226 - GW170104 - GW150914
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All except one event is consistent with zero effective spin, arguably a surprise if
the BHs are astrophysical but expected for PBHs: Chiba & Yokoyama 2017;
Mirbabyi et al 2019; De Luca et al 2019; Belczynski et al. 2017



1.

Primordial Black Hole (PBH) formation

They form from large amplitude
density perturbations

Causality prevents collapse
while the perturbations are
super-horizon

Shortly after horizon entry they
collapse and form with a mass
comparable to the horizon mass

1-to-1 relation between horizon
entry time, horizon length and
PBH mass

30

Collapse threshold

0.6 — —
s b8
L8 ‘ "
A 9 x X
— A 9 x g —
_ R N
0.4 i . ¢ i
9 X
e
éx a= 0
0.2 — é e o= 1 _
L @) o= 2
: Q A A= 5
- ®
0 P Lo o000 I |
0 0.2 0.4 0.6
equation of state
Musco and Miller 2013



Collapse threshold vs horizon mass
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Varying the primordial perturbations

If the primordial power spectrum is not scale invariant on the relevant
scales then the mass function changes, but a peak remains
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The PBH merger rate
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FIG. 7. Potential upper bounds on the fraction of dark matter disru pted

in PBHs as a function of their mass, derived in this paper (red
arrows), and assuming a narrow PBH mass function. These

bounds need to be confirmed by numerical simulations. For 4. NGg'GCtS accretion around the
comparison we also show the microlensing limits from the BHs

EROS (purple) and MACHO [20] (blue) collaborations
(see Ref. [74] for caveats and Ref. [32] for a discussion of
uncertainties), limits from wide Galactic binaries [22], ultra-
faint dwarf galaxies [25], and CMB anisotropies [24].
First cosmological evolution simulations

Haimoud et al 2017 Raidal, Spethmann, Vaskonen & Veermée 18
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Thermal history
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PBH constraints at formation
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- At linear order in perturbation theory; scalar, vector and tensor modes decouple

- Second-order tensor perturbations are sourced by scalar perturbations squared
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(Disputed)

observational

constraints

Sasaki et al 2017 Review

Accreti "l

(X-ray)
/ OGLE '
0.100¢ / Kepler /\
C-votlc ER,\S
0.010
cCre ‘Il_,[‘
I’ ’R.:bl*»l |
) il Aillilensing /
mi ‘:-lv etion
ray- l
10~4 /\Ctr'gjup
Accretion disk \ D,
10 5 r‘*rv':} ‘ |
10 16 10 1 10 6 10 104 109
Mz BH [f,v'f,:__';]

Figure 11: Upper limit on fppy = Qppn/SdpMm for various PBH mass (assuming monochro-
matic mass function). Blue curves represent lensing constraints by EROS 116/, OGLE [119],
Kepler [122], HSC [123] and Caustic [125] (see 3.1.1). Black curves represent constraints by the
millilensing [132] (3.1.2) and the femtolensing [138 (3.1.3). Orange curves represent dynamical
constraints obtained by requiring that existent compact objects such as white dwarfs (WDs) [141]
(3.2.1) and neutron stars (NSs) [142] (3.2.2) as well as the wide binaries (WBs) [151] (3.2.3) are
not disrupted by PBHs. Green curves represent constraints by the dynamical friction (DF) on
PBHs [152] (3.2.6), the ultra-faint dwarfs (UFDs) [153], and Eridanus II [153] (3.2.5). Red curves
represent constraints by the accretion onto the PBHs such as CMB for the case of the spherical
accretion [166] and the case of the accretion disk [171] with two opposite situations where the
sound speed of the baryonic matter is greater (labeled by CMB) or smaller (labeld by CMB-II)
than the relative baryon-dark matter velocity (3.3.1), radio, and X-rays /173, 180] (3.3.2).
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The Gaussian calculation
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This shows why we probe ~10 sigma fluctuations, and why constraints
only mildly depend on beta
The tail is very sensitive to non-Gaussianity (skewness, kurtosis, etc)



Ultracompact minihalos

relic of the early Universe imprinted in dark matter:

primordial information is preserved

form around matter-radiation equality, if § >~ 1073
large central density Ricotti and Gould, arXiv:0908.0735
steep power-law profile: p(r) oc 7=9/%  Bertschinger, 1985
107°Ms < M <10°'M, today

analytical approximations: spherically symmetric,

iIsolated halo with homogeneous background
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Spherically-symmetric halo in a homogenous background
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The first 3D N-body UCMH simulations: Gosenca, Adamek, CB, Hotchkiss, 2017
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Peak-to-background ratio: 15 (power-law fit)

18 z=30
7] p(r) oc 7@ 2 * The red line corresponds to the same
106 “proto-halo” as on the previous slide but
- with 15 or 5 times smaller background
o perturbations added
10%1 e UCMH formation is heavily disrupted
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107! * NFW profile results in realistic cases
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Figure 6. Consequences of the imposition of slow roll (defined by the smallness of g) for the power
spectrum scaled by e 27, where 7 is the optical depth (whose value affects the amplitude of the
spectrum, but not its shape). The blue contours represent the 68% (dark blue) and 95% (light blue)
limits on the allowed values of the power spectrum (rescaled by a factor of e 2") extrapolated from
Planck 2015 TT+lowTEB constraints (over gray shaded scales) assuming a constant o, (left) and a
constant 3, (right), for different values of k. The solid and dashed red contours represent the 68% and
95% limits on the fraction of these spectra for which |g| < 0.2 for the range of scales corresponding
to 1073Mpc~! < k < 10*Mpc~!. The solid and dashed black contours represent the 68% and 95%
limits on the fraction of these spectra corresponding to the unshaded regions in figure 1 (note that for
the plot on the right the limits of this region already violate the naive expectation for the magnitude
of Bs).
Vieira, CB, Lewis 2017



